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Small systems: Artificial
nanomachines

A metal-plate rotor attached to a multiwalled nanotube
Fennimore et al., 2003
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Small systems: Natural
nanomachines

The kinesin-microtubule system: one 8-nm step every 10–15 ms
ATP −→ ADP + P + ∼ 20 T (kB = 1)
Typically ∆W ∼ 12 T , efficiency ∼ 60% Dissipated power: ∼ 20 T per second

Milligan Laboratory, Scripps Research Institute
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Evolution equation

P (x, t): pdf of microstate x

∂P

∂t
= L̂µ(t) P

L̂µ: Liouville operator depending on parameter µ
Manipulation: t −→ µ(t), 0 ≤ t ≤ tf , µ(0) = 0
Steady state: for each µ,

L̂µ P
SS
µ = 0, ∀µ
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The Hatano-Sasa relation

φ(x, µ): “Steady state hamiltonian”

φ(x, µ) = − lnP SS
µ (x)

Define

A(t) =

∫ t

0

dt′ µ̇(t′)
∂φ

∂µ

∣∣∣∣
µ(t′),x(t′)

Then, if the pdf is P SS
0 at t = 0,

P SS
µ(t)(x) =

〈
δ(x− x(t)) e−A(t)

〉

Average over initial condition and noise
Hatano and Sasa, 2001
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Conservative forces: The Jarzynski
relation

For conservative forces

φ(x, µ) =
E(x, µ) − Fµ

T

dA(t) =
1

T
µ̇(t)

∂(E − F )

∂µ

∣∣∣∣
µ(t),x(t)

=
1

T
µ̇(t)

∂E

∂µ

∣∣∣∣
µ(t),x(t)

−
1

T
dFµ(t) =

1

T
(dW − dF )

〈
δ(x− x(t)) e−W/T

〉
= e−(E(x,µ(t))−F0)/T = P eq

µ(t)(x)
Zµ(t)

Z0

Jarzynski, 1997
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Proof

Consider the joint pdf Φ(x,A, t) of x and A
Evolution equation for Φ:

∂Φ

∂t
= L̂µ Φ + µ̇

∂φ

∂µ

∂Φ

∂A

Define

Ψ(x, t) =

∫
dA e−A Φ(x,A, t)

Then
∂Ψ

∂t
= L̂µ Ψ − µ̇

∂φ

∂µ
Ψ =

∂

∂t
e−φ(x,µ(t))
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Driven Brownian particle

Langevin equation:

mr̈i = −γṙi −
∂U

∂ri

+ fi + ηi(t)

〈ηi(t)〉 = 0; 〈ηi(t)ηi(t
′)〉 = 2γTδijδ(t− t′), ∀t, t′

Kramers equation (ṙi = pi/m)

∂P

∂t
=

∑

i

{[
∂

∂ri

(
−
pi

m

)
P

]

+
∂

∂pi

[(
γ
pi

m
+
∂U

∂ri

− f i

)
P + γT

∂

∂pi

P

]}
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Energy balance

E(x) = E(~r, ~p) =
∑

i

p2
i

2m
+ U(~r)

dE =

(
−γ

~p

m
+ ~η(t)

)
· d~r

︸ ︷︷ ︸
−dQtot

+ ~f · d~r +
∂E

∂µ
dµ

︸ ︷︷ ︸
dWext

dQtot = dQex +

(
~f −

∂U

∂~r
+ T

∂φ

∂~r

)
· d~r +

(
−
p

m
+ T

∂φ

∂~p

)
· d~p

︸ ︷︷ ︸
dQhk

dA =
∂φ

∂µ
µ̇ dt =

dQex

T
+ dφ
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Generalized Second Law

0 = ln TrP SS
µ(t)

= ln 〈exp(−A)〉 = ln

〈
exp

(
−
Qex

T
− ∆φ

)〉

≤ −
1

T
〈Qex〉 − ∆ 〈φ〉

〈φ〉 = −Tr lnP SS P SS = S
[
P SS

]

T ∆S ≥ −〈Qex〉
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Entropy balance

Local entropy:
s(x, t) = − lnP (x, t)

Crooks,1999; Qian, 2002

dQtot = dQ1 +

(
~f −

∂U

∂~r
+ T

∂s

∂r

)
· d~r +

(
−
p

m
+ T

∂s

∂p

)
· d~p

︸ ︷︷ ︸
dQ2

〈
dQ1

T

〉
= ds
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Loschmidt’s paradox

Thomson (1874) and Loschmidt (1876):

To every initial state x0 of a mechanical system
leading to a decrease in Boltzmann’s H function,
corresponds an initial state Ix0 leading to its
increase
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Loschmidt’s paradox
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Loschmidt’s paradox

Thomson (1874) and Loschmidt (1876):

To every initial state x0 of a mechanical system
leading to a decrease in Boltzmann’s H function,
corresponds an initial state Ix0 leading to its
increase

Boltzmann’s reply (1877):

There are infinitely many more states in a large
system leading to a decrease in H than those
leading to its increase

In small systems, transient increases of Boltzmann’s H are
to be expected
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Microscopic reversibility I

Mechanical system described by x = (p, r)
Time reversal operator: I x = (−p, r)
Time-reversal invariance of the hamiltonian: E(Ix) = E(x)
Solution of the equations of motion:

x(t, x0) : (ṗ, ṙ) =

(
−
∂E

∂r
,
∂E

∂p

)
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Microscopic reversibility I

Mechanical system described by x = (p, r)
Time reversal operator: I x = (−p, r)
Time-reversal invariance of the hamiltonian: E(Ix) = E(x)
Solution of the equations of motion:

x(t, x0) : (ṗ, ṙ) =

(
−
∂E

∂r
,
∂E

∂p

)

Time reversal of the trajectories

The time-reversed trajectory I x(t, I x0) is also a solution:

Ix(t, I x0) = Ix(−t, x0)
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Microscopic reversibility II

Stochastic evolution equation for the pdf P (x, t):

∂P

∂t
= L̂µ P

Microscopic reversibility:

Qψ(x) = e−E(x)/T ψ(Ix) : Q−1L̂Q = L̂†

For the Kramers equation with non-conservative force ~f :

Q−1L̂Q = L̂† −
~f

T
·

(
~p

m

)

Napoli, March 3, 2006 – p. 15/54



Observations

I speak of Boltzmann’s H and not of the entropy: H is
a dynamic observable and the entropy is not

Typically the probability of a fluctuation is ∝ e−F/T

Thus a system is “small” if free energy differences are
O(T )
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The time-reversal relation

Evolution operator:

U(t, t0) = T exp

(∫ t

t0

dt′ L̂µ(t′)

)

Ũ(t, t0) := Q−1
t U(t, t0)Qt0

satisfies

∂

∂t
Ũ(t, t0) = Q̇−1

t U(t, t0)Qt0 + Q−1
t L̂µ(t)QtŨ(t, t0)

=

[
∂E/T

∂t
+ L̂†

µ(t) −
~f

T
·
~p

m

]
Ũ(t, t0)
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Transition probabilities for short time
intervals

Q−1
t+∆tU(x′, t+ ∆t;x, t)Qt

= e((E(x′,t+∆t)−E(x,t))/TU(Ix
′, t+ ∆t; Ix, t)

= U(x, t+ ∆t;x′, t) exp

[
−

(
~f

T
·
~p

m
−
∂E(x′)

∂t

)
∆t

]

U(x′, t+ ∆t;x, t)

U(Ix, t+ ∆t; I x′, t)

= exp

[(
~f ·

~p

m
∆t−

∂E

∂x
(x′ − x)/T

)]

= exp (dQ2/T )
Napoli, March 3, 2006 – p. 18/54



Crooks’s reversal relation

A path is coarsely defined by the “gates”

ω = (x0, 0) −→ (x1, t1) −→ · · ·

· · · −→ (xk−1, tk−1) −→ (xk = x, tk = t)

Then
P (ω, µ|x0, 0)

P (ω̃, µ̃| I x, t)
=

〈
exp

(∫ t

0

dQ2

T

)〉

where

ω̃ = (Ix, t0) −→ (Ixk−1, t̃k−1) −→ · · · −→ (Ix1, t̃1) −→ (Ix0, t)

t̃k = t− tk, µ̃(t) = µ(t̃)
Average over all paths x(t) conditioned by the gates
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Seifert’s relation

Continuous limit: paths ω = x(t), ∀t
Arbitrary initial pdf’s p0(x0) for ω and p1(Ix) for ω̃ :

R[ω, p0, p1] := ln
P (ω, µ|x0, 0)p0(x0)

P (ω̃, µ̃| I x, t)p1(Ix)

=

∫ t

0

dQ2

T
+ ln

p0(x0)

p1(x1)

Averaging over the paths
〈
e−R
〉

= TrP (ω, µ|x0, 0)p0(x0) e−R

= TrP (ω̃, µ̃| I x, t)p1(Ix) = 1
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A first fluctuation theorem

1. Entropy production must sometimes be negative!

2. Take p0(x, 0) arbitrary, p1(x) = P (x, t) (starting from this
initial condition)

R =

∫
dQ2

T
− ∆s =

∫
dQtot

T
= ∆stot

Thus
P (∆stot)

P (−∆stot)
= e∆stot
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The Gallavotti-Cohen fluctuation
theorem

3. In particular for µ(t) = const., p0(x) = p1(x) = P SS
µ (x):

R ≃
Q̇2

T
t = σt

P (σ)

P (−σ)
= eσt

Gallavotti and Cohen, 1995
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Back to Jarzynski

4. Take p0 = exp(−(Eµ(0) − Fµ(0))/T ) and
p1 = exp(−(Eµ(t) − Fµ(t))/T ). Then

R = ∆Sm +
[(
E(x, t) − Fµ(t)

)
−
(
E(x, 0) − Fµ(0)

)]
/T

= Wd/T

Thus
1 =

〈
e−Wd/T

〉
=
〈
e−W/T

〉
e∆F/T

Napoli, March 3, 2006 – p. 23/54



Evaluation of free-energy landscapes

F0(M) = −T ln Tr δ(M −M(x)) e−E0(x)/T

Z0 =

∫
dM e−F0(M)/T = Tr e−E0(x)/T

Manipulation: t −→ Eµ(t)(x), Eµ(0)(x) = E0(x),

Eµ(x) = E0(x) + Uµ(M(x))
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The basic identity

A. Imparato and L. Peliti, 2005

〈
δ(M −M(x))e−βW

〉
t

=

∫
dx δ(M −M(x))

e−βEµ(t)(x)

Z0

= e−(F0(M)−F0)/T e−Uµ(t)(M)/T

Generalization of Hummer and Szabo, 2001
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The histogram method

Thus

eUµ(t)(M)/T
〈
δ(M −M(x))e−W/T

〉
t
= e−(F0(M)−F0)/T

N trajectories (Mk
t ,W

k
t ), sampled at discrete times tj

Discrete bins Mℓ ≤M ≤Mℓ + ∆Mℓ

r(Mℓ, tj) = Z0 e
Uµ(tj )(Mℓ)/T

θℓ(M(tj))e−W/T

= Z0 eUµ(t)(Mℓ)/T 1

N

N∑

k=1

θℓ(M
k
tj
) e

−Wk
tj

/T

∆R(Mℓ) = e−(F0(Mℓ)−F0)/T δMℓ = 〈r(Mℓ, tj)〉 , ∀ℓ, j
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The best estimate

∆R∗(Mℓ) =
∑

j

r(Mℓ, tj)pj

0 ≤ pj ≤ 1,
∑

j

pj = 1

Best estimate:

pj =
λ

Var r(Mℓ, tj)
∝

e
Uµ(tj )(Mℓ)/T

e−Wtj

Braun et al., 2004
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A mean-field Ising model

F0(M) = −
J

2N
M 2 − TS(M)

S(M) = −

[(
N +M

2

)
log

(
N +M

2

)

+

(
N −M

2

)
log

(
N −M

2

)]

Uh(M) = −hM

m =
M

N

f ∗
0 (m) = −

T

N
lnR∗(M)
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Linear protocol

 0.3
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 0.7

 0.8
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 1
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tf = 2
tf = 10

m
h(t) = h0 + h1−h0

tf
t

h1 = −h0 = 1, tf = 2, 10, N = 10, N = 104 samples
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A larger system

 0.4
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Oscillatory protocol

-0.8

-0.4

 0

 0.4

 0.8

 1.2

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

ν = 1/2
ν = 2
ν = 4
ν = 8
ν = 16

m
h(t) = h0 sin(2πνt), 0 ≤ t ≤ tf
h0 = 1, N = 10, J0 = 0.5, tf = 2, N = 104 samples
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At lower temperatures

-0.8

-0.4

 0

 0.4

 0.8

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

ν = 1/2
ν = 2
ν = 4
ν = 8

m
h(t) = h0 sin(2πνt), 0 ≤ t ≤ tf
h0 = 1, N = 10, J0 = 1.1, tf = 2, N = 104 samples
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Unzipping of a model homopolymer

z

z

ζ

ζ

Uz(t)(ζ) = 1
2
k (ζ − z(t))2

L-J potential (ǫ, σ) + harmonic potential for successive beads
N = 20, σ = 0.5 nm, ǫ = 1 kcal/mol, m = 3 · 10−25 kg τ =

p

mσ2/ǫ ≃ 3.3 ps,
γ = 15m/τ , k = 5000ǫ/σ2, T = 300 K
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Linear protocol
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Oscillatory protocol: “Pulsed”
protocol
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The free energy
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The “always attached” protocol
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What is happening?

z

z

ζ

ζ
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The configurations

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 3  3.5  4  4.5  5  5.5  6  6.5  7  7.5  8

z

x

Napoli, March 3, 2006 – p. 39/54



Discussion

The JE is effective (via the histogram method) to
reconstruct free-energy landscapes for systems small
enough (small energy barriers)

Care must be taken that the monitored collective
coordinate is “good”, i.e., that the distribution of the
transverse degrees of freedom is sufficiently sampled
during manipulation

The choice of the manipulation protocol affects the
reliability of the results
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Exploring nonequilibrium systems

C. Giardinà, J. Kurchan, L. Peliti, 2005
Evolution equations:

∂Ψ

∂t
= L̂Ψ +AΨ

Then Ψ is given by a weighted average:

Ψ(x, t) =

〈
δ(x− x(t)) exp

(∫ t

0

dt′ A(t′)

)〉
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The weight can be wild

 0

 1
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 3

 4

 5

-1.5 -1 -0.5  0  0.5  1  1.5

w
Work distribution P (W/N) for the Ising model
Dashed line: Weighted work distribution P (W/N)e−W/T
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Can we improve our statistics?

Interpret Ψ(x, t) as a density of walkers

Walkers move according to the Langevin equation

Walkers reproduce or die depending on the local value
of A

Thus Ψ samples the weighted probability, not the
original one!
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The Totally Asymmetric Exclusion
Process (TASEP)

At any given time step t, a given particle moves to the right
with probability α if the target site is empty
Configuration C = (ni), ni ∈ {0, 1}, i = 1, L, periodic b.c.
Current J :

JC′C =

{
1, if one particle jumps to the right;

0, if nothing happens.

We wish to evaluate

eΛ(λ) =

〈
exp

(
λ
∑

t

JCt+1Ct

)〉
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The large-deviation function

Prob[C0, C1, . . . , CT ] = UCT CT−1
· · · UC2C1 · UC1C0

eΛ(λ) =
∑

C1,...,CT

ŨCT CT−1
· · · ŨC1C0 =

∑

CT

[
ŨT
]
CT C0

where
ŨC′C := eλJ

C′CUC′C

Define
KC :=

∑

C′

ŨC′C, U ′
C′C ≡ ŨC′CK

−1
C

eΛ(λ) =
∑

C2,...,CT

U ′
CT CT−1

KCT−1
· · ·U ′

C1C0
KC0
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The simulation steps

A cloning step:

PC(t+ 1/2) = KCPC(t)

G clones of C : G =

{
[KC] + 1, with probability KC − [K
[KC], otherwise
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The simulation steps

A cloning step:

PC(t+ 1/2) = KCPC(t)

G clones of C : G =

{
[KC] + 1, with probability KC − [K
[KC], otherwise

A shift step:

PC′(t+ 1) =
∑

C

U ′
C′CPC(t+ 1/2)
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The simulation steps

A cloning step:

PC(t+ 1/2) = KCPC(t)

G clones of C : G =

{
[KC] + 1, with probability KC − [K
[KC], otherwise

A shift step:

PC′(t+ 1) =
∑

C

U ′
C′CPC(t+ 1/2)

Overall cloning step with an adjustable rate
Mt = N/(N +G) (the same for all configurations)
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Results

-10 -8 -6 -4 -2 0
λ

-1.1
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-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

σ
(λ

)

For long times

− lim
t→∞

1

t
ln[MT · · ·M2 ·M1] = lim

t→∞

Λ(λ)

t
= σ(λ)
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The configurations

Space-time diagram for a ring of N = 100 sites, λ = −50 and density 0.5

Note the logarithmic scale on the y-axis Napoli, March 3, 2006 – p. 48/54



Moving shock waves

Space-time diagram for a ring of N = 100 sites, λ = −30 and density 0.3
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The Lorentz gas

ẍi = −Ei + γ(t)ẋi, i = 1, 2

γ(t) =

X
i

Eiẋi

Λ(λ) = ln

�

exp

�Z t

0
dt′ γ(t′)

��
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The Gallavotti-Cohen relation
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Data for ~E = (E, 0), E = 1, 2 and noise intensity ∆ = 10−3, 10−4
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Discussion

Efficient sampling technique (minutes on PC)

So far restricted to steady states

Beyond steady states: sampling of the initial condition
(TBD)
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Perspectives

“Local” fluctuation relations

Experimental checks: Electrical circuits (Ciliberto et al.)

Energetics of molecular engines
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