Fluctuation relations and some applications

Luca Peliti

Dipartimento di Scienze Fisiche and Unità CNISM
Università di Napoli "Federico II"

Associato INFN, Sezione di Napoli

Summary

© Small systems

- Generalized second law: The Hasano-Sasa relation
- Microscopic reversibility and Loschmidt's paradox

6 The "time-reversal" identities and the fluctuation theorems
© Exploiting the Jarzynski relation: The histogram method

- Exploring driven systems: The cloning technique

6 Perspectives

Small systems: Artificial nanomachines

A metal-plate rotor attached to a multiwalled nanotube Fennimore et al., 2003

Small systems: Natural nanomachines

The kinesin-microtubule system: one 8-nm step every $10-15 \mathrm{~ms}$
ATP $\longrightarrow \mathrm{ADP}+\mathrm{P}+\sim 20 T\left(k_{\mathrm{B}}=1\right)$
Typically $\Delta W \sim 12 T$, efficiency $\sim 60 \% \quad$ Dissipated power: $\sim 20 T$ per second
Milligan Laboratory, Scripps Research Institute

Evolution equation

$P(x, t)$: pdf of microstate x

$$
\frac{\partial P}{\partial t}=\widehat{L}_{\mu(t)} P
$$

\widehat{L}_{μ} : Liouville operator depending on parameter μ
Manipulation: $t \longrightarrow \mu(t), 0 \leq t \leq t_{\mathrm{f}}, \mu(0)=0$
Steady state: for each μ,

$$
\widehat{L}_{\mu} P_{\mu}^{\mathrm{SS}}=0, \quad \forall \mu
$$

The Hatano-Sasa relation

$\phi(x, \mu)$: "Steady state hamiltonian"

$$
\phi(x, \mu)=-\ln P_{\mu}^{\mathrm{SS}}(x)
$$

Define

$$
A(t)=\left.\int_{0}^{t} \mathrm{~d} t^{\prime} \dot{\mu}\left(t^{\prime}\right) \frac{\partial \phi}{\partial \mu}\right|_{\mu\left(t^{\prime}\right), x\left(t^{\prime}\right)}
$$

Then, if the pdf is P_{0}^{SS} at $t=0$,

$$
P_{\mu(t)}^{\mathrm{SS}}(x)=\left\langle\delta(x-x(t)) \mathrm{e}^{-A(t)}\right\rangle
$$

Average over initial condition and noise

Conservative forces: The Jarzynski relation

For conservative forces

$$
\begin{aligned}
& \phi(x, \mu)=\frac{E(x, \mu)-F_{\mu}}{T} \\
& \mathrm{~d} A(t)=\left.\frac{1}{T} \dot{\mu}(t) \frac{\partial(E-F)}{\partial \mu}\right|_{\mu(t), x(t)} \\
&=\left.\frac{1}{T} \dot{\mu}(t) \frac{\partial E}{\partial \mu}\right|_{\mu(t), x(t)}-\frac{1}{T} \mathrm{~d} F_{\mu(t)}=\frac{1}{T}(\mathrm{~d} W-\mathrm{d} F) \\
&\left\langle\delta(x-x(t)) \mathrm{e}^{-W / T}\right\rangle=\mathrm{e}^{-\left(E(x, \mu(t))-F_{0}\right) / T}=P_{\mu(t)}^{\mathrm{eq}}(x) \frac{Z_{\mu(t)}}{Z_{0}}
\end{aligned}
$$

Jarzynski, 1997

Proot

Consider the joint pdf $\Phi(x, A, t)$ of x and A Evolution equation for Φ :

$$
\frac{\partial \Phi}{\partial t}=\widehat{L}_{\mu} \Phi+\dot{\mu} \frac{\partial \phi}{\partial \mu} \frac{\partial \Phi}{\partial A}
$$

Define

$$
\Psi(x, t)=\int \mathrm{d} A \mathrm{e}^{-A} \Phi(x, A, t)
$$

Then

$$
\frac{\partial \Psi}{\partial t}=\widehat{L}_{\mu} \Psi-\dot{\mu} \frac{\partial \phi}{\partial \mu} \Psi=\frac{\partial}{\partial t} \mathrm{e}^{-\phi(x, \mu(t))}
$$

Driven Brownian particle

Langevin equation:

$$
\begin{align*}
m \ddot{r}_{i}= & -\gamma \dot{r}_{i}-\frac{\partial U}{\partial r_{i}}+f_{i}+\eta_{i}(t) \\
\left\langle\eta_{i}(t)\right\rangle=0 ; & \left\langle\eta_{i}(t) \eta_{i}\left(t^{\prime}\right)\right\rangle=2 \gamma T \delta_{i j} \delta\left(t-t^{\prime}\right),
\end{align*}
$$

Kramers equation ($\dot{r}_{i}=p_{i} / m$)

$$
\begin{aligned}
\frac{\partial P}{\partial t}= & \sum_{i}\left\{\left[\frac{\partial}{\partial r_{i}}\left(-\frac{p_{i}}{m}\right) P\right]\right. \\
& \left.+\frac{\partial}{\partial p_{i}}\left[\left(\gamma \frac{p_{i}}{m}+\frac{\partial U}{\partial r_{i}}-\boldsymbol{f}_{i}\right) P+\gamma T \frac{\partial}{\partial p_{i}} P\right]\right\}
\end{aligned}
$$

Energy balance

$$
\begin{gathered}
E(x)=E(\vec{r}, \vec{p})=\sum_{i} \frac{p_{i}^{2}}{2 m}+U(\vec{r}) \\
\mathrm{d} E=\underbrace{\left(-\gamma \frac{\vec{p}}{m}+\vec{\eta}(t)\right) \cdot \mathrm{d} \vec{r}}_{-\mathrm{d} Q_{\mathrm{tot}}}+\underbrace{+\vec{f} \cdot \mathrm{~d} \vec{r}+\frac{\partial E}{\partial \mu} \mathrm{~d} \mu}_{\mathrm{d} W_{\mathrm{ext}}} \\
\mathrm{~d} Q_{\mathrm{tot}}=\mathrm{d} Q_{\mathrm{ex}}+\underbrace{\left(\vec{f}-\frac{\partial U}{\partial \vec{r}}+T \frac{\partial \phi}{\partial \vec{r}}\right) \cdot \mathrm{d} \vec{r}+\left(-\frac{p}{m}+T \frac{\partial \phi}{\partial \vec{p}}\right) \cdot \mathrm{d} \vec{p}}_{\mathrm{d} Q_{\mathrm{hk}}} \\
\mathrm{~d} A=\frac{\partial \phi}{\partial \mu} \dot{\mu} \mathrm{d} t=\frac{\mathrm{d} Q_{\mathrm{ex}}}{T}+\mathrm{d} \phi
\end{gathered}
$$

Generalized Second Law

$$
\begin{aligned}
0= & \ln \operatorname{Tr} P_{\mu(t)}^{\mathrm{SS}} \\
= & \ln \langle\exp (-A)\rangle=\ln \left\langle\exp \left(-\frac{Q_{\mathrm{ex}}}{T}-\Delta \phi\right)\right\rangle \\
\leq & -\frac{1}{T}\left\langle Q_{\mathrm{ex}}\right\rangle-\Delta\langle\phi\rangle \\
& \langle\phi\rangle=-\operatorname{Tr} \ln P^{\mathrm{SS}} P^{\mathrm{SS}}=S\left[P^{\mathrm{SS}}\right] \\
& T \Delta S \geq-\left\langle Q_{\mathrm{ex}}\right\rangle
\end{aligned}
$$

Entropy balance

Local entropy:

$$
s(x, t)=-\ln P(x, t)
$$

Crooks, 1999; Qian, 2002

$$
\mathrm{d} Q_{\mathrm{tot}}=\mathrm{d} Q_{1}+\underbrace{\left(\vec{f}-\frac{\partial U}{\partial \vec{r}}+T \frac{\partial s}{\partial r}\right) \cdot \mathrm{d} \vec{r}+\left(-\frac{p}{m}+T \frac{\partial s}{\partial p}\right) \cdot \mathrm{d} \vec{p}}_{\mathrm{d} Q_{2}}
$$

$$
\left\langle\frac{\mathrm{d} Q_{1}}{T}\right\rangle=\mathrm{d} s
$$

Loschmidt's paradox

Thomson (1874) and Loschmidt (1876):
To every initial state x_{0} of a mechanical system leading to a decrease in Boltzmann's H function, corresponds an initial state I x_{0} leading to its increase

Loschmidt's paradox

Thomson (1874) and Loschmidt (1876):
To every initial state x_{0} of a mechanical system leading to a decrease in Boltzmann's H function, corresponds an initial state I x_{0} leading to its increase

Boltzmann's reply (1877):
There are infinitely many more states in a large system leading to a decrease in H than those leading to its increase

Loschmidt's paradox

Thomson (1874) and Loschmidt (1876):
To every initial state x_{0} of a mechanical system leading to a decrease in Boltzmann's H function, corresponds an initial state I x_{0} leading to its increase

Boltzmann's reply (1877):
There are infinitely many more states in a large system leading to a decrease in H than those leading to its increase
In small systems, transient increases of Boltzmann's H are to be expected

Microscopic reversibility

Mechanical system described by $x=(p, r)$
Time reversal operator: $\mathrm{I} x=(-p, r)$
Time-reversal invariance of the hamiltonian: $E(\mathrm{I} x)=E(x)$ Solution of the equations of motion:

$$
x\left(t, x_{0}\right): \quad(\dot{p}, \dot{r})=\left(-\frac{\partial E}{\partial r}, \frac{\partial E}{\partial p}\right)
$$

Microscopic reversibility

Mechanical system described by $x=(p, r)$
Time reversal operator: $\mathrm{I} x=(-p, r)$
Time-reversal invariance of the hamiltonian: $E(\mathrm{I} x)=E(x)$
Solution of the equations of motion:

$$
x\left(t, x_{0}\right): \quad(\dot{p}, \dot{r})=\left(-\frac{\partial E}{\partial r}, \frac{\partial E}{\partial p}\right)
$$

Time reversal of the trajectories

The time-reversed trajectory $\mathrm{I} x\left(t, \mathrm{I} x_{0}\right)$ is also a solution:

$$
\mathrm{I} x\left(t, \mathrm{I} x_{0}\right)=\mathrm{I} x\left(-t, x_{0}\right)
$$

Microscopic reversibility II

Stochastic evolution equation for the pdf $P(x, t)$:

$$
\frac{\partial P}{\partial t}=\widehat{L}_{\mu} P
$$

Microscopic reversibility:

$$
\mathcal{Q} \psi(x)=\mathrm{e}^{-E(x) / T} \psi(\mathrm{I} x): \quad \mathcal{Q}^{-1} \widehat{L} \mathcal{Q}=\widehat{L}^{\dagger}
$$

For the Kramers equation with non-conservative force \vec{f} :

$$
\mathcal{Q}^{-1} \widehat{L} \mathcal{Q}=\widehat{L}^{\dagger}-\frac{\vec{f}}{T} \cdot\left(\frac{\vec{p}}{m}\right)
$$

Observations

6 I speak of Boltzmann's H and not of the entropy: H is a dynamic observable and the entropy is not
Typically the probability of a fluctuation is $\propto \mathrm{e}^{-\mathcal{F} / T}$
Thus a system is "small" if free energy differences are $\mathrm{O}(T)$

The time-reversal relation

Evolution operator:

$$
\begin{gathered}
\mathcal{U}\left(t, t_{0}\right)=\mathrm{T} \exp \left(\int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \widehat{L}_{\mu\left(t^{\prime}\right)}\right) \\
\tilde{\mathcal{U}}\left(t, t_{0}\right):=\mathcal{Q}_{t}^{-1} \mathcal{U}\left(t, t_{0}\right) \mathcal{Q}_{t_{0}}
\end{gathered}
$$

satisfies

$$
\begin{aligned}
\frac{\partial}{\partial t} \tilde{\mathcal{U}}\left(t, t_{0}\right) & =\dot{\mathcal{Q}}_{t}^{-1} \mathcal{U}\left(t, t_{0}\right) \mathcal{Q}_{t_{0}}+\mathcal{Q}_{t}^{-1} \widehat{L}_{\mu(t)} \mathcal{Q}_{t} \tilde{\mathcal{U}}\left(t, t_{0}\right) \\
& =\left[\frac{\partial E / T}{\partial t}+\widehat{L}_{\mu(t)}^{\dagger}-\frac{\vec{f}}{T} \cdot \frac{\vec{p}}{m}\right] \widetilde{\mathcal{U}}\left(t, t_{0}\right)
\end{aligned}
$$

Transition probabilities for short time intervals

$$
\begin{aligned}
& \mathcal{Q}_{t+\Delta t}^{-1} \mathcal{U}\left(x^{\prime}, t+\Delta t ; x, t\right) \mathcal{Q}_{t} \\
& \quad=\mathrm{e}^{\left(\left(E\left(x^{\prime}, t+\Delta t\right)-E(x, t)\right) / T\right.} \mathcal{U}\left(\mathrm{I} x^{\prime}, t+\Delta t ; \mathrm{I} x, t\right) \\
& \quad=\mathcal{U}\left(x, t+\Delta t ; x^{\prime}, t\right) \exp \left[-\left(\frac{\vec{f}}{T} \cdot \frac{\vec{p}}{m}-\frac{\partial E\left(x^{\prime}\right)}{\partial t}\right) \Delta t\right]
\end{aligned}
$$

$$
\frac{\mathcal{U}\left(x^{\prime}, t+\Delta t ; x, t\right)}{\mathcal{U}\left(\mathrm{I} x, t+\Delta t ; \mathrm{I} x^{\prime}, t\right)}
$$

$$
=\exp \left[\left(\vec{f} \cdot \frac{\vec{p}}{m} \Delta t-\frac{\partial E}{\partial x}\left(x^{\prime}-x\right) / T\right)\right]
$$

$$
=\exp \left(\mathrm{d} Q_{2} / T\right)
$$

Crooks's reversal relation

A path is coarsely defined by the "gates"

$$
\begin{aligned}
\omega= & \left(x_{0}, 0\right) \longrightarrow\left(x_{1}, t_{1}\right) \longrightarrow \cdots \\
& \cdots \longrightarrow\left(x_{k-1}, t_{k-1}\right) \longrightarrow\left(x_{k}=x, t_{k}=t\right)
\end{aligned}
$$

Then

$$
\frac{P\left(\omega, \mu \mid x_{0}, 0\right)}{P(\widetilde{\omega}, \widetilde{\mu} \mid \mathrm{I} x, t)}=\left\langle\exp \left(\int_{0}^{t} \frac{\mathrm{~d} Q_{2}}{T}\right)\right\rangle
$$

where
$\widetilde{\omega}=\left(\mathrm{I} x, t_{0}\right) \longrightarrow\left(\mathrm{I} x_{k-1}, \tilde{t}_{k-1}\right) \longrightarrow \cdots \longrightarrow\left(\mathrm{I} x_{1}, \tilde{t}_{1}\right) \longrightarrow\left(\mathrm{I} x_{0}, t\right)$
$\tilde{t}_{k}=t-t_{k}, \widetilde{\mu}(t)=\mu(\tilde{t})$
Average over all paths $x(t)$ conditioned by the gates

Seifert's relation

Continuous limit: paths $\omega=x(t), \forall t$
Arbitrary initial pdf's $p_{0}\left(x_{0}\right)$ for ω and $p_{1}(\mathrm{I} x)$ for $\widetilde{\omega}$:

$$
\begin{aligned}
R\left[\omega, p_{0}, p_{1}\right] & :=\ln \frac{P\left(\omega, \mu \mid x_{0}, 0\right) p_{0}\left(x_{0}\right)}{P(\widetilde{\omega}, \tilde{\mu} \mid \mathrm{I} x, t) p_{1}(\mathrm{I} x)} \\
& =\int_{0}^{t} \frac{\mathrm{~d} Q_{2}}{T}+\ln \frac{p_{0}\left(x_{0}\right)}{p_{1}\left(x_{1}\right)}
\end{aligned}
$$

Averaging over the paths

$$
\begin{aligned}
\left\langle\mathrm{e}^{-R}\right\rangle & =\operatorname{Tr} P\left(\omega, \mu \mid x_{0}, 0\right) p_{0}\left(x_{0}\right) \mathrm{e}^{-R} \\
& =\operatorname{Tr} P(\widetilde{\omega}, \tilde{\mu} \mid \mathrm{I} x, t) p_{1}(\mathrm{I} x)=1
\end{aligned}
$$

A first fluctuation theorem

1. Entropy production must sometimes be negative!
2. Take $p_{0}(x, 0)$ arbitrary, $p_{1}(x)=P(x, t)$ (starting from this initial condition)

$$
R=\int \frac{\mathrm{d} Q_{2}}{T}-\Delta s=\int \frac{\mathrm{d} Q_{\mathrm{tot}}}{T}=\Delta s_{\mathrm{tot}}
$$

Thus

$$
\frac{P\left(\Delta s_{\mathrm{tot}}\right)}{P\left(-\Delta s_{\mathrm{tot}}\right)}=\mathrm{e}^{\Delta s_{\mathrm{tot}}}
$$

The Gallavotti-Cohen fluctuation theorem

3. In particular for $\mu(t)=$ const., $p_{0}(x)=p_{1}(x)=P_{\mu}^{\mathrm{SS}}(x)$:

$$
\begin{aligned}
& R \simeq \frac{\dot{Q}_{2}}{T} t=\sigma t \\
& \frac{P(\sigma)}{P(-\sigma)}=\mathrm{e}^{\sigma t}
\end{aligned}
$$

Gallavotti and Cohen, 1995

Back to Jarzynski

4. Take $p_{0}=\exp \left(-\left(E_{\mu(0)}-F_{\mu(0)}\right) / T\right)$ and
$p_{1}=\exp \left(-\left(E_{\mu(t)}-F_{\mu(t)}\right) / T\right)$. Then

$$
\begin{aligned}
R & =\Delta S_{m}+\left[\left(E(x, t)-F_{\mu(t)}\right)-\left(E(x, 0)-F_{\mu(0)}\right)\right] / T \\
& =W_{\mathrm{d}} / T
\end{aligned}
$$

Thus

$$
1=\left\langle\mathrm{e}^{-W_{\mathrm{d}} / T}\right\rangle=\left\langle\mathrm{e}^{-W / T}\right\rangle \mathrm{e}^{\Delta F / T}
$$

Evaluation of free-energy landscapes

$$
\begin{aligned}
\mathcal{F}_{0}(M) & =-T \ln \operatorname{Tr} \delta(M-M(x)) \mathrm{e}^{-E_{0}(x) / T} \\
Z_{0} & =\int \mathrm{d} M \mathrm{e}^{-\mathcal{F}_{0}(M) / T}=\operatorname{Tr} \mathrm{e}^{-E_{0}(x) / T}
\end{aligned}
$$

Manipulation: $t \longrightarrow E_{\mu(t)}(x), E_{\mu(0)}(x)=E_{0}(x)$,

$$
E_{\mu}(x)=E_{0}(x)+U_{\mu}(M(x))
$$

The basic identity

A. Imparato and L. Peliti, 2005

$$
\begin{aligned}
\left\langle\delta(M-M(x)) \mathrm{e}^{-\beta W}\right\rangle_{t} & =\int \mathrm{d} x \delta(M-M(x)) \frac{\mathrm{e}^{-\beta E_{\mu(t)}(x)}}{Z_{0}} \\
& =\mathrm{e}^{-\left(\mathcal{F}_{0}(M)-F_{0}\right) / T} \mathrm{e}^{-U_{\mu(t)}(M) / T}
\end{aligned}
$$

Generalization of Hummer and Szabo, 2001

The histogram method

Thus

$$
\mathrm{e}^{U_{\mu(t)}(M) / T}\left\langle\delta(M-M(x)) \mathrm{e}^{-W / T}\right\rangle_{t}=\mathrm{e}^{-\left(\mathcal{F}_{0}(M)-F_{0}\right) / T}
$$

\mathcal{N} trajectories $\left(M_{t}^{k}, W_{t}^{k}\right)$, sampled at discrete times t_{j}
Discrete bins $M_{\ell} \leq M \leq M_{\ell}+\Delta M_{\ell}$

$$
\begin{aligned}
r\left(M_{\ell}, t_{j}\right) & =Z_{0} \mathrm{e}^{U_{\mu\left(t_{j}\right)}\left(M_{\ell}\right) / T} \overline{\theta_{\ell}\left(M\left(t_{j}\right)\right) \mathrm{e}^{-W / T}} \\
& =Z_{0} \mathrm{e}^{U_{\mu(t)}\left(M_{\ell}\right) / T} \frac{1}{\mathcal{N}} \sum_{k=1}^{\mathcal{N}} \theta_{\ell}\left(M_{t_{j}}^{k}\right) \mathrm{e}^{-W_{t_{j}^{k}}^{k} / T} \\
\Delta R\left(M_{\ell}\right) & =\mathrm{e}^{-\left(\mathcal{F}_{0}\left(M_{\ell}\right)-F_{0}\right) / T} \delta M_{\ell}=\left\langle r\left(M_{\ell}, t_{j}\right)\right\rangle, \quad \forall \ell, j
\end{aligned}
$$

The best estimate

$$
\begin{aligned}
& \Delta R^{*}\left(M_{\ell}\right)=\sum_{j} r\left(M_{\ell}, t_{j}\right) p_{j} \\
& 0 \leq p_{j} \leq 1, \quad \sum_{j} p_{j}=1
\end{aligned}
$$

Best estimate:

$$
p_{j}=\frac{\lambda}{\operatorname{Var} r\left(M_{\ell}, t_{j}\right)} \propto \frac{\mathrm{e}^{U_{\mu\left(t_{j}\right)}\left(M_{\ell}\right) / T}}{\overline{\mathrm{e}^{-W_{t_{j}}}}}
$$

Braun et al., 2004

A mean-field Ising model

$$
\begin{aligned}
\mathcal{F}_{0}(M)= & -\frac{J}{2 N} M^{2}-T S(M) \\
S(M)=- & {\left[\left(\frac{N+M}{2}\right) \log \left(\frac{N+M}{2}\right)\right.} \\
+ & \left.\left(\frac{N-M}{2}\right) \log \left(\frac{N-M}{2}\right)\right] \\
U_{h}(M) & =-h M \\
m & =\frac{M}{N} \\
f_{0}^{*}(m) & =-\frac{T}{N} \ln R^{*}(M)
\end{aligned}
$$

Linear protocol

$$
\begin{aligned}
& h(t)=h_{0}+\frac{h_{1}-h_{0}}{t_{\mathrm{f}}} t \\
& h_{1}=-h_{0}=1, t_{\mathrm{f}}=2,10, N=10, \mathcal{N}=10^{4} \text { samples }
\end{aligned}
$$

A larger system

$$
\begin{aligned}
& h(t)=h_{0}+\frac{h_{1}-h_{0}}{t_{\mathrm{f}}} t \\
& h_{1}=-h_{0}=1, t_{\mathrm{f}}=2,10, N=100, \mathcal{N}=10^{4} \text { samples }
\end{aligned}
$$

Oscillatory protocol

$$
\begin{aligned}
& h(t)=h_{0} \sin (2 \pi \nu t), \quad 0 \leq t \leq t_{\mathrm{f}} \\
& h_{0}=1, N=10, J_{0}=0.5, t_{\mathrm{f}}=2, \mathcal{N}=10^{4} \text { samples }
\end{aligned}
$$

At lower temperatures

$$
\begin{aligned}
& h(t)=h_{0} \sin (2 \pi \nu t), \quad 0 \leq t \leq t_{\mathrm{f}} \\
& h_{0}=1, N=10, J_{0}=1.1, t_{\mathrm{f}}=2, \mathcal{N}=10^{4} \text { samples }
\end{aligned}
$$

Unzipping of a model homopolymer

$U_{z(t)(\zeta)}=\frac{1}{2} k(\zeta-z(t))^{2}$
L-J potential $(\epsilon, \sigma)+$ harmonic potential for successive beads
$N=20, \sigma=0.5 \mathrm{~nm}, \epsilon=1 \mathrm{kcal} / \mathrm{mol}, m=3 \cdot 10^{-25} \mathrm{~kg} \tau=\sqrt{m \sigma^{2} / \epsilon} \simeq 3.3 \mathrm{ps}$,
$\gamma=15 m / \tau, k=5000 \epsilon / \sigma^{2}, T=300 \mathrm{~K}$

Linear protocol

Oscillatory protocol: "Pulsed" protocol

The free energy

The "always attached" protocol

What is happening?

The configurations

Discussion

The JE is effective (via the histogram method) to reconstruct free-energy landscapes for systems small enough (small energy barriers)

- Care must be taken that the monitored collective coordinate is "good", i.e., that the distribution of the transverse degrees of freedom is sufficiently sampled during manipulation

6 The choice of the manipulation protocol affects the reliability of the results

Exploring nonequilibrium systems

C. Giardinà, J. Kurchan, L. Peliti, 2005

Evolution equations:

$$
\frac{\partial \Psi}{\partial t}=\widehat{L} \Psi+A \Psi
$$

Then Ψ is given by a weighted average:

$$
\Psi(x, t)=\left\langle\delta(x-x(t)) \exp \left(\int_{0}^{t} \mathrm{~d} t^{\prime} A\left(t^{\prime}\right)\right)\right\rangle
$$

The weight can be wild

Work distribution $P(W / N)$ for the Ising model
Dashed line: Weighted work distribution $P(W / N) \mathrm{e}^{-W / T}$

Can we improve our statistics?

© Interpret $\Psi(x, t)$ as a density of walkers
© Walkers move according to the Langevin equation

- Walkers reproduce or die depending on the local value of A

6 Thus Ψ samples the weighted probability, not the original one!

The Totally Asymmetric Exclusion Process (TASEP)

At any given time step t, a given particle moves to the right with probability α if the target site is empty Configuration $\mathcal{C}=\left(n_{i}\right), n_{i} \in\{0,1\}, i=1, L$, periodic b.c. Current J:

$$
J_{\mathcal{C}^{\prime} \mathcal{C}}= \begin{cases}1, & \text { if one particle jumps to the right; } \\ 0, & \text { if nothing happens. }\end{cases}
$$

We wish to evaluate

$$
\mathrm{e}^{\Lambda(\lambda)}=\left\langle\exp \left(\lambda \sum_{t} J_{\mathcal{C}_{t+1} \mathcal{C}_{t}}\right)\right\rangle
$$

The large-deviation function

$$
\begin{aligned}
& \operatorname{Prob}\left[\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{T}\right]=U_{\mathcal{C}_{T} \mathcal{C}_{T-1}} \cdots U_{\mathcal{C}_{2} \mathcal{C}_{1}} \cdot U_{\mathcal{C}_{1} \mathcal{C}_{0}} \\
& \mathrm{e}^{\Lambda(\lambda)}=\sum_{\mathcal{C}_{1}, \ldots, \mathcal{C}_{T}} \tilde{U}_{\mathcal{C}_{T} \mathcal{C}_{T-1}} \cdots \tilde{U}_{\mathcal{C}_{1} \mathcal{C}_{0}}=\sum_{\mathcal{C}_{T}}\left[\tilde{U}^{T}\right]_{\mathcal{C}_{T} \mathcal{C}_{0}}
\end{aligned}
$$

where

$$
\tilde{U}_{\mathcal{C}^{\prime} \mathcal{C}}:=\mathrm{e}^{\lambda J_{\mathcal{C}^{\prime} \mathcal{C}}} U_{\mathcal{C}^{\prime} \mathcal{C}}
$$

Define

$$
\begin{aligned}
K_{\mathcal{C}} & :=\sum_{\mathcal{C}^{\prime}} \tilde{U}_{\mathcal{C}^{\prime} \mathcal{C}}, \quad U_{\mathcal{C}^{\prime} \mathcal{C}}^{\prime} \equiv \tilde{U}_{\mathcal{C}^{\prime} \mathcal{C}} K_{\mathcal{C}}^{-1} \\
\mathrm{e}^{\Lambda(\lambda)} & =\sum_{\mathcal{C}_{2}, \ldots, \mathcal{C}_{T}} U_{\mathcal{C}_{T} \mathcal{C}_{T-1}}^{\prime} K_{\mathcal{C}_{T-1}} \cdots U_{\mathcal{C}_{1} \mathcal{C}_{0}}^{\prime} K_{\mathcal{C}_{0}}
\end{aligned}
$$

The simulation steps

A cloning step:

$$
P_{\mathcal{C}}(t+1 / 2)=K_{\mathcal{C}} P_{\mathcal{C}}(t)
$$

G clones of $\mathcal{C}: G= \begin{cases}{\left[K_{\mathcal{C}}\right]+1,} & \text { with probability } K_{\mathcal{C}}-[1 \\ {\left[K_{\mathcal{C}}\right],} & \text { otherwise }\end{cases}$

The simulation steps

A cloning step:

$$
P_{\mathcal{C}}(t+1 / 2)=K_{\mathcal{C}} P_{\mathcal{C}}(t)
$$

G clones of $\mathcal{C}: G= \begin{cases}{\left[K_{\mathcal{C}}\right]+1,} & \text { with probability } K_{\mathcal{C}}-[1 \\ {\left[K_{\mathcal{C}}\right],} & \text { otherwise }\end{cases}$
© A shift step:

$$
P_{\mathcal{C}^{\prime}}(t+1)=\sum_{\mathcal{C}} U_{\mathcal{C}^{\prime} \mathcal{C}}^{\prime} P_{\mathcal{C}}(t+1 / 2)
$$

The simulation steps

A cloning step:

$$
P_{\mathcal{C}}(t+1 / 2)=K_{\mathcal{C}} P_{\mathcal{C}}(t)
$$

G clones of $\mathcal{C}: G= \begin{cases}{\left[K_{\mathcal{C}}\right]+1,} & \text { with probability } K_{\mathcal{C}}-[1 \\ {\left[K_{\mathcal{C}}\right],} & \text { otherwise }\end{cases}$

- A shift step:

$$
P_{\mathcal{C}^{\prime}}(t+1)=\sum_{\mathcal{C}} U_{\mathcal{C}^{\prime} \mathcal{C}}^{\prime} P_{\mathcal{C}}(t+1 / 2)
$$

© Overall cloning step with an adjustable rate $M_{t}=N /(N+G)$ (the same for all configurations)

Results

For long times

$$
-\lim _{t \rightarrow \infty} \frac{1}{t} \ln \left[M_{T} \cdots M_{2} \cdot M_{1}\right]=\lim _{t \rightarrow \infty} \frac{\Lambda(\lambda)}{t}=\sigma(\lambda)
$$

The configurations

Space-time diagram for a ring of $N=100$ sites, $\lambda=-50$ and density 0.5

Moving shock waves

Space-time diagram for a ring of $N=100$ sites, $\lambda=-30$ and density 0.3

The Lorentz gas

$$
\begin{aligned}
\ddot{x}_{i} & =-E_{i}+\gamma(t) \dot{x}_{i}, \quad i=1,2 \\
\gamma(t) & =\sum_{i} E_{i} \dot{x}_{i} \\
\Lambda(\lambda) & =\ln \left\langle\exp \left(\int_{0}^{t} \mathrm{~d} t^{\prime} \gamma\left(t^{\prime}\right)\right)\right\rangle
\end{aligned}
$$

The Gallavotti-Cohen relation

Data for $\vec{E}=(E, 0), E=1,2$ and noise intensity $\Delta=10^{-3}, 10^{-4}$

Discussion

6 Efficient sampling technique (minutes on PC)
So far restricted to steady states
Beyond steady states: sampling of the initial condition (TBD)

Perspectives

"Local" fluctuation relations
Experimental checks: Electrical circuits (Ciliberto et al.)
Energetics of molecular engines

Thanks

My collaborators:

Thanks

My collaborators:
6 For the exploration of general identities and free-energy landscapes: Alberto Imparato

For the cloning simulation technique: Cristian Giardinà and Jorge Kurchan

