DISCRETE SYMMETRIES OF LEPTON MIXING ANGLES

[based on hep-ph/0504165 and hep-ph/0512103 with Guido Altarelli]

Ferruccio Feruglio

 PadovaNapoli - January 12 ${ }^{\text {th }} 2006$

low-energy parameters

v masses
[3 light active v]

$$
m_{1}, m_{2}, m_{3}
$$

$$
\text { order } \quad m_{1}<m_{2}
$$

$$
\Delta m_{21}^{2}<\left|\Delta m_{32}^{2}\right|,\left|\Delta m_{31}^{2}\right| \quad\left[\Delta m_{i j}^{2} \equiv m_{i}^{2}-m_{j}^{2}\right]
$$

i.e. 1 and 2 are, by definition, the closest levels
two possibilities:

Mixing matrix (analogous to $\mathrm{V}_{\text {CKM }}$)

$$
U_{P M N S}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{i \delta} \\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{-i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{-i \delta} & c_{13} s_{23} \\
-c_{12} s_{13} c_{23}+s_{12} s_{23} e^{-i \delta} & -s_{12} s_{13} c_{23}-c_{12} s_{23} e^{-i \delta} & c_{13} c_{23}
\end{array}\right) \times \underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha} & 0 \\
0 & 0 & e^{i \beta}
\end{array}\right)}
$$

- only if v are Majorana
- drops in oscillations

Lepton Mixing Angles

[2σ errors (95% C.L.)]
$\sin ^{2} \vartheta_{23}=0.44\left(1_{-0.22}^{+0.41}\right) \sin ^{2} \vartheta_{13}=0.9_{-0.9}^{+2.3} \times 10^{-2} \sin ^{2} \vartheta_{12}=0.314\left(1_{-0.15}^{+0.18}\right)$
$\vartheta_{23}=\left(41.6_{-5.7}^{+10.4}\right)^{0} \quad[2 \sigma]$
[Hall, Murayama, Weiner 2000
De Gouvea, Murayama 0301050]
different viewpoints: - angles are all generically large [anarchy]

- angles reflect an underlying order

$$
\vartheta_{23}=45^{0} \quad \vartheta_{13}=0
$$

[Harrison, Perkins and Scott (HPS) mixing pattern] not a bad $1^{\text {st }}$ order approximation!
θ_{12} right within $1 \sigma \approx 2^{0} \leq 0.04$ rad $\approx \lambda^{2}$, where $\lambda=0.22$ errors on θ_{23} and θ_{13} are still large...
future [< 10 yr] precision/sensitivity on θ_{23} and θ_{13} down to about λ^{2} could confirm HPS mixing pattern

$$
\begin{aligned}
& \vartheta_{13} \approx \delta \vartheta_{23} \approx \lambda^{2} \approx 0.04 \div 0.05 \mathrm{rad}\left(2.1^{0} \div 2.9^{0}\right) \\
& \text { [Gonzalez-Garcia, Maltoni, Smirnov 0408170] }
\end{aligned}
$$

$\delta\left(\sin ^{2} \theta_{23}\right)$ reduced by future LBL experiments from $v_{\mu} \rightarrow v_{\mu}$ disappearance channel

$$
P_{\mu \mu} \approx 1-\sin ^{2} 2 \vartheta_{23} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)
$$

- no substantial improvements from conventional beams
- superbeams (e.g. T2K in 5 yr of run)

$$
\begin{aligned}
& \delta P_{\mu \mu} \approx 0.01 \\
& \delta \vartheta_{23} \approx 0.05 \mathrm{rad} \leftrightarrow 2.9^{0}
\end{aligned}
$$

improvement by about a factor 2

$$
\vartheta_{23} \approx \frac{\pi}{4}
$$

$$
\delta \vartheta_{23} \approx \frac{\sqrt{\delta P_{\mu \mu}}}{2}
$$

i.e. a small uncertainty on $P_{\mu \mu}$ leads to a large uncertainty on θ_{23}

T2K-1 90\% CL black = normal hierarchy red = inverted hierarchy true value 41^{0} [courtesy by Enrique Fernandez]

$\sin \theta_{13}$

a similar sensitivity is expected on $\theta_{13} \quad\left(U_{e 3}=\sin \theta_{13}\right)$

|Ue3|<0.05 would

- require a much longer timescale

If future data will confirm HPS down to about λ^{2} precision

$$
U_{P M N S}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)+O\left(\lambda^{2}\right)
$$

reminiscent of $\quad \pi^{0}=\frac{|u u\rangle-|d d\rangle}{\sqrt{2}} \quad \eta=\frac{|u u\rangle+|d d\rangle-2|s s\rangle}{\sqrt{6}} \quad \eta^{\prime}=\frac{|u u\rangle+|d d\rangle+|s s\rangle}{\sqrt{3}}$
quite symmetric! also called
"tribimaximal"
theoretical challenges:

- how to derive HPS from a model?
more in general
- how to achieve exactly maximal θ_{23}
(eventually modified by small, $\mathrm{O}\left(\lambda^{2}\right)$, corrections)?
many models predicts a large but not necessarily maximal θ_{23}
an example: abelian flavour symmetry group $\mathrm{U}(1)_{\mathrm{F}}$

$$
\begin{aligned}
& F(l)=(\times, 0,0) \quad[\times \neq 0] \\
& F\left(e^{c}\right)=(\times, \times, 0)
\end{aligned}
$$

$$
m_{e}=\left(\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & O(1) & O(1)
\end{array}\right) v_{d} \quad m_{v}=\left(\begin{array}{ccc}
\times & \times & \times \\
\times & O(1) & O(1) \\
\times & O(1) & O(1)
\end{array}\right) \frac{v_{u}^{2}}{\Lambda}
$$

$\vartheta_{23} \approx O(1) \quad$ maximal only by a fine-tuning!
similarly for all other abelian charge assignements

$$
F(I)=(1,-1,-1) \quad m_{v}=\left(\begin{array}{ccc}
\times & O(1) & O(1) \\
O(1) & \times & \times \\
O(1) & \times & \times
\end{array}\right) \quad \frac{v_{u}^{2}}{\Lambda} \quad \vartheta_{23} \approx O(1)+\text { charged lepton contribution }
$$

no help from the see-saw mechanism within abelian symmetries...

θ_{23} maximal by RGE effects?

running effects important only for quasi-degenerate neutrinos
2 flavour case

$$
m_{2} \approx m_{3} \approx m \quad \text { or } \quad \delta m \equiv m_{2}-m_{3} \ll m_{2}+m_{3} \approx 2 m
$$

boundary conditions at $Q=\Lambda \gg$ e.w. scale

$$
\text { at } \mathrm{Q}<\Lambda \quad \tan 2 \vartheta_{23}(Q)=\frac{\delta m \sin 2 \vartheta_{23}(1-\varepsilon)}{\delta m \cos 2 \vartheta_{23}(1-\varepsilon)+2 m \varepsilon}
$$

$$
\begin{aligned}
& m_{2}, m_{3}, \vartheta_{23} \frac{\delta m}{2 m} \ll 1 \\
& \varepsilon \approx \frac{1}{16 \pi^{2}} y_{\tau}^{2} \log \frac{\Lambda}{Q}
\end{aligned}
$$

$$
\vartheta_{23}(Q) \approx \frac{\pi}{4} \Leftrightarrow \varepsilon \approx-\frac{\delta m}{m} \cos 2 \vartheta_{23} \quad \begin{aligned}
& \text { gives the scale } Q \text { at which } \\
& \theta_{23}(Q) \text { becomes maximal }
\end{aligned}
$$

$m_{2}, m_{3}, \vartheta_{23}$ fine tuned to obtain Q at the e.w. scale
a similar conclusion also for the 3 flavour case:
$\sin ^{2} 2 \vartheta_{12}=\frac{\sin ^{2} \vartheta_{13} \sin ^{2} 2 \vartheta_{23}}{\left(\sin ^{2} \vartheta_{23} \cos ^{2} \vartheta_{13}+\sin ^{2} \vartheta_{13}\right)^{2}}$

$$
\text { if } \vartheta_{23}=\frac{\pi}{4}
$$

infrared stable fixed point
[Chankowski, Pokorski 2002]

$$
\sin ^{2} 2 \vartheta_{12}=\frac{4 \sin ^{2} \vartheta_{13}}{\left(1+\sin ^{2} \vartheta_{13}\right)^{2}}<0.2 \text { (Chooz) }
$$

θ_{23} maximal from non-abelian flavour symmetries ?

 an obstruction: $\vartheta_{23}=45^{0}$ can never arise in the limit of charged lepton mass matrix:$$
m_{l}=m_{l}^{0}+\delta m_{l}^{0} \quad \begin{aligned}
& \text { symmetry breaking effects: } \\
& \text { vanishing when flavour sym }
\end{aligned}
$$

realistic symmetry:
(1) $\left|\delta m_{l}^{0}\right|<\left|m_{l}^{0}\right|$
(2) $m_{l}{ }^{0}$ has rank ≤ 1

$$
m_{l}^{0}=\left(\begin{array}{llc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & m_{\tau}
\end{array}\right) \longrightarrow \longrightarrow \vartheta_{12}^{e} \text { undetermined }
$$

$U_{\text {PMNS }}=U_{e}^{+} U_{v}$
$\tan \vartheta_{23}^{0}=\tan \vartheta_{23}^{v} \cos \vartheta_{12}^{e}+\left(\frac{\tan \vartheta_{13}^{v}}{\cos \vartheta_{23}^{v}}\right) \sin \vartheta_{12}^{e} \longrightarrow$ undetermined

$$
\vartheta_{23}=45^{0}
$$

determined entirely by breaking effects (different, in general, for v and e sectors)

requirements for a model based on a SB flavour symmetry

spontaneous

symmetry breaking
vacuum alignment $\left\langle\varphi_{\nu}\right\rangle,\left\langle\varphi_{e}\right\rangle, \ldots$ problem
should have specific magnitudes and relative directions in flavour space.

* alignment should be natural no ad-hoc relations: desired VEVs from most general V in a finite region of parameter space
* alignment not spoiled by sub-leading terms

$$
\begin{aligned}
& \begin{array}{l}
\text { in HPS } \\
\vartheta_{13}=0
\end{array}+a_{1} \frac{\langle\varphi\rangle}{\Lambda}+a_{2} \frac{\langle\varphi\rangle^{2}}{\Lambda^{2}}+\ldots \\
& \vartheta_{23}=\underbrace{\frac{\pi}{4}}_{\text {leading order }}+\underbrace{b_{1} \frac{\langle\varphi\rangle}{\Lambda}+b_{2} \frac{\langle\varphi\rangle^{2}}{\Lambda^{2}}+\ldots}
\end{aligned} \quad \begin{aligned}
& \begin{array}{l}
\text { from higher-dimensional } \\
\text { operators compatible with } \\
\text { gauge and flavour symmetries }
\end{array} \\
& \text { often } \frac{\langle\varphi\rangle}{\Lambda} \approx \lambda \\
& \text { then }
\end{aligned}
$$

* alignment compatible with mass hierarchies
$\frac{m_{e}}{m_{\tau}}, \quad \frac{m_{\mu}}{m_{\tau}} \quad$ should vanish in the limit of exact symmetry

an example: spontaneously broken A_{4} symmetry

[Ma, Rajasekaran 2001; Babu, Ma, Valle 2003; Hirsch, Romao, Skandage, Valle, Villanova de Moral 2003; Ma 0409075]

A_{4} - group of even permutation of four objects

- subgroup of $\mathrm{SO}(3)$ leaving a tetrahedron invariant
it has 12 elements that can all be S T generated starting from 2 of them

$$
S^{2}=(S T)^{3}=T^{3}=1
$$

$$
A_{4}=\left\{1, S, T, S T, T S, T^{2}, S T^{2}, S T S, T S T, T^{2} S, T S T^{2}, T^{2} S T\right\}
$$

A_{4} representations :

$$
\omega \equiv e^{i \frac{2 \pi}{3}} \begin{array}{cccc}
1 & S=1 & T=1 \\
& 1^{\prime} & S=1 & T=\omega^{2} \\
1^{\prime \prime} & S=1 & T=\omega
\end{array} \quad 3 \quad S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right)
$$

S generates a Z_{2} subgroup: G_{S}
T generates a Z_{3} subgroup : G_{T}
patterns of symmetry breaking

$$
\mathrm{A}_{4} \text { triplet } \quad \varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)
$$

$$
\begin{array}{ll}
\langle\varphi\rangle \propto(1,1,1) & A_{4} \rightarrow G_{S} \\
\langle\varphi\rangle \propto(1,0,0) & A_{4} \rightarrow G_{T}
\end{array}
$$

G_{S} is the low-energy symmetry in the v sector as we shall see
G_{T} is the low-energy symmetry in the charged lepton sector

basic structure (lepton sector)

	l	e^{c}	μ^{c}	τ^{c}	h_{u}	h_{d}	φ_{T}	φ_{S}	ξ_{i}
A_{4}	$\underbrace{3}_{\text {matter fields }}$	1	$1^{\prime \prime}$	1^{\prime}	1	1	3	3	1
Higgses	$\underbrace{}_{\mathrm{A}_{4} \text { breaking sector }}$								

$\mathrm{SU}(2) \mathrm{xU}(1) \times \mathrm{A}_{4}$ invariant Lagrangian:
[Λ Is the cutoff]

$$
L=y_{e} e^{c}\left(\varphi_{T} l\right)+y_{\mu} \mu^{c}\left(\varphi_{T} l\right)^{\prime}+y_{\tau} \tau^{c}\left(\varphi_{T} l\right)^{\prime \prime}+x_{a} \xi(l l)+x_{b}\left(\varphi_{S} l l\right)+\ldots
$$

* (...) denotes an A_{4} singlet, \ldots
$*$ powers of $\left(\frac{h_{u, d}}{\Lambda}\right)$ have been set to 1
higher dimensional operators in $1 / \Lambda$ expansion
* some invariant is missing from L : [more on this later on...]

$$
\left\{\begin{array}{l}
\varphi_{S} \leftrightarrow \varphi_{T} \\
x(l l)
\end{array}\right.
$$

assume:

$$
\begin{array}{rlc}
\left\langle\varphi_{T}\right\rangle & = & \left(v_{T}, 0,0\right) \\
\left\langle\varphi_{S}\right\rangle & = & \left(v_{S}, v_{S}, v_{S}\right) \\
\langle\xi\rangle & = & u \\
{\left[\left\langle h_{u, d}\right\rangle\right.} & =v_{u, d} & \left.\ll v_{T}, v_{S}, u\right]
\end{array} \quad v_{T}, v_{S}, u \leq \Lambda
$$

then:

$$
\left.\left.\begin{array}{l}
m_{l}=\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right) v_{d}\left(\frac{v_{T}}{\Lambda}\right)
\end{array} \begin{array}{l}
\begin{array}{l}
\text { charged fermion masses } \\
m_{f}=y_{f} v_{d}\left(\frac{v_{T}}{\Lambda}\right)
\end{array} \\
m_{v}=\left(\begin{array}{ccc}
a+\frac{2}{3} b & -\frac{b}{3} & -\frac{b}{3} \\
\text { free parameters as in the SM } \\
\text { at this level }
\end{array}\right. \\
-\frac{b}{3} \\
\frac{2}{3} b \\
-\frac{b}{3} \\
a-\frac{b}{3}
\end{array}\right) \frac{2}{3} b\right) \frac{v_{u}^{2}}{\Lambda} \begin{array}{lll}
a \equiv 2 x_{a} \frac{u}{\Lambda} & \begin{array}{l}
2 \text { complex } \\
\text { parameters in } \\
v \text { sector }
\end{array} \\
\text { (overall phase unphysical) }
\end{array}
$$

mixing angles entirely from v sector:
$U_{P M N S}=\left(\begin{array}{ccc}\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\end{array}\right)$
independent from $|\mathrm{a}|,|\mathrm{b}|, \Delta \equiv \arg (\mathrm{a})-\arg (\mathrm{b})!!$
v masses: $\quad m_{1}=|a+b| \frac{v_{u}^{2}}{\Lambda} \quad m_{2}=|a| \frac{v_{u}^{2}}{\Lambda} \quad m_{3}=|a-b| \frac{v_{u}^{2}}{\Lambda}$

$$
m_{2}>m_{1} \quad \square-1 \leq \cos \Delta<-\left|\frac{b}{2 a}\right| \square \begin{aligned}
& v \text { spectrum always } \\
& \text { of normal hierarchy type }
\end{aligned}
$$

$\left|\frac{b}{2 a}\right| \approx\left\{\begin{array}{cc}1 & \text { [almost hierarchical spectrum] } \\ 0 & \text { [almost degenerate spectrum] }\end{array}\right.$
$r \equiv \frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{\text {atm }}^{2}} \approx \frac{1}{35} \quad$ requires a (moderate) tuning
prediction:

$$
\left|m_{3}\right|^{2}=\left|m_{e e}\right|^{2}+\frac{10}{9} \Delta m_{a t m}^{2}\left(1-\frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{a t m}^{2}}\right)
$$

range of VEVs:

$$
\left.\begin{array}{l}
m_{\tau}=y_{\tau} v_{d}\left(\frac{v_{T}}{\Lambda}\right) \quad \square \\
y_{\tau}<4 \pi
\end{array}\right\rangle \begin{aligned}
& \frac{v_{T}}{\Lambda}>0.002(0.02) \quad \tan \beta=\frac{v_{u}}{v_{d}} \\
& \tan \beta=2.5(30)
\end{aligned}
$$

from v spectrum

$$
\square \Lambda=1.8 \times 10^{15}\left(\frac{v_{S}}{\Lambda}\right) \sin ^{2} \beta \quad \mathrm{GeV}
$$

assuming all VEVs of the same order

$$
0.002<\frac{v_{T}}{\Lambda} \approx \frac{v_{S}}{\Lambda} \approx \frac{u}{\Lambda}<1 \quad \Lambda<0.25 \times 10^{15} \quad \mathrm{GeV}
$$

natural vacuum alignment

$\left\langle\varphi_{T}\right\rangle$	$=\left(v_{T}, 0,0\right)$	
$\left\langle\varphi_{S}\right\rangle$	$=$	$\left(v_{S}, v_{S}, v_{S}\right)$
$\langle\xi\rangle$	$=$	u

it is not a local minimum of the most general renormalizable scalar potential V depending on $\varphi_{\mathrm{S}}, \varphi_{\mathrm{T}}, \xi$ and invariant under A_{4}
$v_{T} \approx v_{S} \approx u$
a simple solution in 1 extra dimension \equiv ED

v masses arise from
local operators at $\mathrm{y}=\mathrm{L}$
:---
absence of the terms
with $\varphi_{S} \leftrightarrow \varphi_{T}$

charged lepton
masses from
non-local operators

$$
\left.\begin{array}{l}
\frac{\left(f^{c} \varphi_{T} F\right) \delta(y)}{\sqrt{\Lambda}} \\
-M F F^{c} \\
\left(F^{c} l\right) h_{d}
\end{array}\right\} E \ll M \quad \frac{\left(f^{c} \varphi_{T} l\right) h_{d}}{\Lambda} e^{-M L}
$$

a 4D supersymmetric solution \equiv SUSY

[Altarelli,F. hep-ph/0512103]
L is identified with the superpotential $\mathrm{w}_{\text {lepton }}$ in the lepton sector
$\mathrm{w}_{\text {lepton }}$ is invariant under $A_{4} \times Z_{3} \times U(1)_{R}$

	l	e^{c}	μ^{c}	τ^{c}	$h_{u, d}$	φ_{T}	φ_{S}	ξ	$\tilde{\xi}$	φ_{0}^{T}	φ_{0}^{S}	ξ_{0}
A_{4}	3	1	$1^{\prime \prime}$	1^{\prime}	1	3	3	1	1	3	3	1
Z_{3}	ω	ω^{2}	ω^{2}	ω^{2}	1	1	ω	ω	ω	1	ω	ω
$U(1)_{R}$	1	1	1	1	0	0	0	0	0	2	2	2

matter fields Higgses A_{4} breaking sector "driving fields"
absence of $\quad \varphi_{S} \leftrightarrow \varphi_{T} \quad x(l l)$ automatic

$$
w=w_{\text {lepton }}+w_{d}+\ldots
$$

$$
\begin{aligned}
& w_{d}=M\left(\varphi_{0}^{T} \varphi_{T}\right)+g\left(\varphi_{0}^{T} \varphi_{T} \varphi_{T}\right)+g_{1}\left(\varphi_{0}^{S} \varphi_{S} \varphi_{S}\right)+g_{2} \tilde{\xi}\left(\varphi_{0}^{S} \varphi_{S}\right)+ \\
& g_{3} \xi_{0}\left(\varphi_{S} \varphi_{S}\right)+g_{4} \xi_{0} \xi^{2}+g_{5} \xi_{0} \xi \tilde{\xi}+g_{6} \xi_{0} \tilde{\xi}^{2} \\
& \left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right) \\
& \begin{array}{ccc}
\left\langle\varphi_{S}\right\rangle & = & \left(v_{S}, v_{S}, v_{S}\right) \\
\langle\xi\rangle & = & u \\
\langle\widetilde{\xi}\rangle & = & 0
\end{array} \\
& v_{T}=-\frac{3 M}{2 g} \quad v_{S}^{2}=-\frac{g_{4}}{3 g_{3}} u^{2} \\
& u \text { undetermined }
\end{aligned}
$$

minimum of the scalar potential at:

sub-leading corrections

arising from higher dimensional operators, depleted by additional powers of $1 / \Lambda$.

they affect m_{1}, m_{v} and they can deform the VEVs.
results

$$
U_{P M N S}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)+\left\{\begin{array}{lr}
O\left(\frac{\mathrm{VEV}}{\Lambda}\right)^{2} & \text { for ED case } \\
O\left(\frac{\mathrm{VEV}}{\Lambda}\right) & \text { for SUSY case }
\end{array}\right.
$$

and similarly for neutrino masses
HPS pattern is preserved if corrections are $\leq \lambda^{2} \approx 0.04$ given the range $0.002<(\mathrm{VEV} / \Lambda)<1$, corrections can be kept below λ^{2} in both ED and SUSY case.
in ED case, (VEV/ Λ) can be as large as λ without spoiling HPS

alignment and mass hierarchies

$$
m_{l}=\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right) v_{d}\left(\frac{v_{T}}{\Lambda}\right) \quad \begin{aligned}
& \text { charged fermion masses } \\
& \text { are already diagonal }
\end{aligned}
$$

$$
m_{e} \ll m_{\mu} \ll m_{\tau}
$$

easily reproduced by
$U(1)$ flavour symmetry

$$
\begin{array}{lll}
Q\left(e^{c}\right)=4 & Q\left(\mu^{c}\right)=2 \quad Q\left(\tau^{c}\right)=0 \quad \text { compatible with } \mathrm{A}_{4} \\
Q(l)=0
\end{array}
$$

$$
y_{e} \approx \frac{\langle\vartheta\rangle^{4}}{\Lambda^{4}} \quad y_{\mu} \approx \frac{\langle\vartheta\rangle^{2}}{\Lambda^{2}} \quad y_{\tau} \approx 1
$$

quark masses

simple and good first order approximation:

	q	u^{c}	c^{c}	t^{c}	d^{c}	s^{c}	b^{c}
A_{4}	3	1	$1^{\prime \prime}$	1^{\prime}	1	$1^{\prime \prime}$	1^{\prime}

same assignment as in the lepton sector

quark mass matrices diagonal in the leading order mixing matrix $\mathrm{V}_{\text {CKM }}=1$
unfortunately: corrections induced by higher dimensional operators: negligibly small
additional sources of A_{4} breaking are needed in the quark sector

relation to the modular group

modular group PSL(2,Z): linear fractional transformation

$$
\begin{aligned}
& \substack{\text { complex } \\
\text { variable }} Z \rightarrow \frac{a Z+b}{c Z+d} \quad \begin{array}{l}
a, b, c, d \in Z \\
a d-b c=1
\end{array} ~
\end{aligned}
$$

discrete, infinite group generated by two elements

$$
\begin{array}{ll}
\underbrace{Z \rightarrow-\frac{1}{Z}}_{S} \quad \underbrace{Z \rightarrow Z+1}_{T} & \begin{array}{l}
\text { obeying } \\
S^{2}=(S T)^{3}=1
\end{array}
\end{array}
$$

the modular group is present everywhere in string theory
A_{4} is a finite subgroup of the modular group and

$$
A_{4}=\frac{\operatorname{PSL}(2, Z)}{H}
$$ representations of PSL(2,Z)

conclusion

mixing in the lepton sector is well described by the HPS pattern
$\vartheta_{23}=45^{\circ} \quad \vartheta_{13}=0 \quad \sin ^{2} \vartheta_{12}=\frac{1}{3}$
errors on θ_{23} and θ_{13} are still large and future data are needed to confirm HPS at the λ^{2} level
most of existing models predict $\left|\frac{\pi}{4}-\vartheta_{23}\right| \gg \lambda^{2}$
only in "special" models this condition is violated. If based on a SB flavour symmetry, special models should give rise to a
natural vacuum alignment
preserved by high-order effects
with a structure compatible with the observed charged fermion hierarchy
Here: an existence proof based on the discrete group A_{4} vacuum alignment and stability is non-trivial and the simplest solutions requires either an extra dimension or a SUSY version
In both these models the neutrino spectrum is of normal hierarchy type and the relation $\left|m_{3}\right|^{2}=\left|m_{e e}\right|^{2}+(10 / 9) \Delta m_{\text {atm }}^{2}\left(1-\Delta m_{\text {sol }}^{2} / \Delta m_{\text {atm }}^{2}\right) \quad$ is predicted

