DISCRETE SYMMETRIES OF LEPTON MIXING ANGLES

[based on hep-ph/0504165 and hep-ph/0512103 with Guido Altarelli]

Ferruccio Feruglio Padova

Napoli - January 12th 2006

low-energy parameters

v masses			order	$m_1 < m_2$					
[3 li	ght active v]		$\Delta m_{21}^2 < $	Δm_{32}^2 , Δ	$\frac{m_{31}^2}{m_{31}^2}$ [Δm_{ij}^2 =	$\equiv m_i^2$ -	$-m_j^2$]
m_{1}	m_1, m_2, m_3		i.e. 1 and 2 are, by definition, the closest levels						
two	possibilities:	3 - 2 - 1 -	normal hierarchy	i ł	nverted nierarchy	2 1 3			
Mixing n	natrix (analogous	to V _{CK}	M)						
$U_{PMNS} =$	$ c_{12} c_{13} - s_{12} c_{23} - c_{12} s_{13} s_{23} $	$e^{-i\delta}$	S_{12} $C_{12}C_{23} - S_{12}$	c_{13} $s_{13} s_{23} e^{-i\delta}$	$s_{13}e^{i\delta}$ $c_{13}s_{23}$	$\times \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$0 e^{i\alpha}$	0 0	

$$\begin{bmatrix} -c_{12} s_{13} c_{23} + s_{12} s_{23} e^{-i\delta} \\ -c_{12} s_{13} c_{23} + s_{12} s_{23} e^{-i\delta} \end{bmatrix} = \begin{bmatrix} -i\delta & -s_{12} s_{13} c_{23} - c_{12} s_{23} e^{-i\delta} \\ -s_{12} s_{13} c_{23} - c_{12} s_{23} e^{-i\delta} \end{bmatrix}$$

 $c_{12} \equiv \cos \theta_{12}, \dots$

only if v are Majorana
drops in oscillations

 $c_{13}c_{23}$ 0 0

e^{iβ}

Lepton Mixing Angles

 $[2\sigma \text{ errors}(95\% \text{ C.L.})]$

[Fogli, Lisi, Marrone, Palazzo 0506083] [Schwetz 0510331]

different viewpoints: - angles are all generically large [anarchy] 🥜 - angles reflect an underlying order

$$\begin{array}{ll} \mathcal{G}_{23}=45^0 & \mathcal{G}_{13}=0 & \sin^2 \mathcal{G}_{12}=\frac{1}{3} & \mathcal{G}_{12}=35.3^0 \\ \end{array}$$
[Harrison, Perkins and Scott (HPS) mixing pattern] $\mathcal{G}_{12}=(34.1^{+1.7}_{-1.6})^0$ [1 σ]
not a bad 1st order approximation!
 θ_{12} right within 1 $\sigma \approx 2^0 \leq 0.04$ rad $\approx \lambda^2$, where $\lambda=0.22$
errors on θ_{23} and θ_{13} are still large...

future [< 10 yr] precision/sensitivity on θ_{23} and θ_{13} down to about λ^2 could confirm HPS mixing pattern $g_{13} \approx \delta g_{23} \approx \lambda^2 \approx 0.04 \div 0.05 \text{ rad} (2.1^0 \div 2.9^0)$

[Gonzalez-Garcia, Maltoni, Smirnov 0408170]

$sin^2\theta_{23}$

 $\delta(\sin^2\theta_{23})$ reduced by future LBL experiments from v $_{\mu} \rightarrow$ v $_{\mu}$ disappearance channel

$$P_{\mu\mu} \approx 1 - \sin^2 2\vartheta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

i.e. a small uncertainty on P_{\mu\mu} leads to a large uncertainty on $\theta_{\ 23}$

$\sin \theta_{13}$

a similar sensitivity is expected on θ_{13} $~(U_{e3}\text{=sin}~\theta_{13}~)$

If future data will confirm HPS down to about λ^2 precision

$$U_{PMNS} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} + O(\lambda^2)$$

quite symmetric!
 also called
``tribimaximal''

reminiscent of
$$\pi^0 = \frac{|uu\rangle - |dd\rangle}{\sqrt{2}}$$
 $\eta = \frac{|uu\rangle + |dd\rangle - 2|ss\rangle}{\sqrt{6}}$ $\eta' = \frac{|uu\rangle + |dd\rangle + |ss\rangle}{\sqrt{3}}$

theoretical challenges:

- how to derive HPS from a model?
- more in general
- how to achieve exactly maximal θ_{23}
- (eventually modified by small, O(λ^2), corrections)?

many models predicts a large but not necessarily maximal θ_{23}

an example: abelian flavour symmetry group $U(1)_{F}$ $F(l) = (\times, 0, 0) \qquad [\times \neq 0]$ $F(e^c) = (\times, \times, 0)$ $m_e = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & O(1) & O(1) \end{pmatrix} v_d \qquad m_v = \begin{pmatrix} \times & \times & \times \\ \times & O(1) & O(1) \\ \times & O(1) & O(1) \end{pmatrix} \frac{v_u^2}{\Lambda}$ $\mathcal{G}_{23} \approx O(1)$ maximal only by a fine-tuning!

similarly for all other abelian charge assignements

$$F(l) = (1, -1, -1)$$

$$m_{\nu} = \begin{pmatrix} \times & O(1) & O(1) \\ O(1) & \times & \times \\ O(1) & \times & \times \end{pmatrix} \frac{v_{u}^{2}}{\Lambda}$$

 $\mathcal{G}_{23} \approx O(1) + \text{charged lepton contribution}$

no help from the see-saw mechanism within abelian symmetries...

θ_{23} maximal by RGE effects?

[Ellis, Lola 1999 Casas, Espinoza, Ibarra, Navarro 1999-2003]

running effects important only for quasi-degenerate neutrinos

2 flavour case

$$m_2 \approx m_3 \approx m$$
 or $\delta m \equiv m_2 - m_3 \ll m_2 + m_3 \approx 2m$

boundary conditions at Q= Λ >> e.w. scale

$$m_2, m_3, \mathcal{G}_{23} \quad \frac{\delta m}{2m} << 1$$
$$\varepsilon \approx \frac{1}{16\pi^2} y_\tau^2 \log \frac{\Lambda}{Q}$$

$$\vartheta_{23}(Q) \approx \frac{\pi}{4} \quad \Leftrightarrow \quad \varepsilon \approx -\frac{\delta m}{m} \cos 2\vartheta_{23}$$

gives the scale Q at which $\theta_{23}(Q)$ becomes maximal

 m_2, m_3, θ_{23} fine tuned to obtain Q at the e.w. scale

a similar conclusion also for the 3 flavour case:

$$\sin^{2} 2\theta_{12} = \frac{\sin^{2} \theta_{13} \sin^{2} 2\theta_{23}}{(\sin^{2} \theta_{23} \cos^{2} \theta_{13} + \sin^{2} \theta_{13})^{2}} \quad \text{if } \theta_{23} = \frac{\pi}{4} \quad \text{wrong!}$$

$$\inf \text{ infrared stable fixed point} \quad \sin^{2} 2\theta_{12} = \frac{4\sin^{2} \theta_{13}}{(1 + \sin^{2} \theta_{13})^{2}} < 0.2 \text{ (Chooz)}$$

θ_{23} maximal from non-abelian flavour symmetries ?

an obstruction: $9_{23} = 45^{\circ}$ can never arise in the limit of an exact realistic symmetry

charged lepton mass matrix:

$$m_{l} = m_{l}^{0} + \delta m_{l}^{0} \qquad \text{symmetry breaking effects: vanishing when flavour symmetry F is exact}$$
realistic symmetry:
(1) $\left| \delta m_{l}^{0} \right| < \left| m_{l}^{0} \right|$
(2) m_{l}^{0} has rank ≤ 1

$$m_{l}^{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & m_{\tau} \end{pmatrix} \qquad \mathcal{G}_{12}^{e}$$
 undetermined

$$U_{PMNS} = U_{e}^{+}U_{v} \qquad \text{[omitting phases]}$$
tan $\mathcal{G}_{23}^{0} = \tan \mathcal{G}_{23}^{v} \cos \mathcal{G}_{12}^{e} + \left(\frac{\tan \mathcal{G}_{13}^{v}}{\cos \mathcal{G}_{23}^{v}} \right) \sin \mathcal{G}_{12}^{e}$

$$\mathcal{G}_{23} = 45^{0} \qquad \text{determined entirely by breaking effects}$$
(different, in general, for v and e sectors)

requirements for a model based on a SB flavour symmetry

spontaneous

symmetry breaking

vacuum problem

alignment $\langle \varphi_{v} \rangle, \langle \varphi_{e} \rangle, \dots$

should have specific magnitudes and relative directions in flavour space.

- alignment should be natural no ad-hoc relations: desired VEVs from most general V in a finite region of parameter space
- alignment not spoiled by sub-leading terms

from higher-dimensional

operators compatible with gauge and flavour symmetries

often
$$\frac{\langle \varphi \rangle}{\Lambda} \approx \lambda$$

then $a_1 = b_1 = 0$ needed

leading order

Alignment compatible with mass hierarchies

$$\frac{m_e}{m_\tau}, \quad \frac{m_\mu}{m_\tau}$$

should vanish in the limit of exact symmetry

an example: spontaneously broken A_{4} symmetry [Ma, Rajasekaran 2001; Babu, Ma, Valle 2003; Hirsch, Romao, Skandage, Valle, Villanova de Moral 2003; A_4 - group of even permutation of four objects Ma 0409075] - subgroup of SO(3) leaving a tetrahedron invariant it has 12 elements that can all be $S^{2} = (ST)^{3} = T^{3} = 1$ ``presentation" $A_{4} = \{1, S, T, ST, TS, T^{2}, ST^{2}, STS, TST, T^{2}S, TST^{2}, T^{2}ST\}$ generated starting from 2 of them A_4 representations : $\omega \equiv e^{i\frac{2\pi}{3}} \begin{array}{ccc} 1 & S=1 & T=1 \\ 1' & S=1 & T=\omega^2 \end{array}$ $3 \quad S = \frac{1}{3} \begin{vmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{vmatrix} \quad T = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{vmatrix}$ 1" S = 1 $T = \omega$

S generates a Z_2 subgroup : G_S T generates a Z_3 subgroup : G_T patterns of symmetry breaking

A₄ triplet
$$\varphi = (\varphi_1, \varphi_2, \varphi_3)$$

$$ig arphi
ight \propto (1,1,1) \ ig arphi
ight \propto (1,0,0)$$

$$A_4 \to G_S$$
$$A_4 \to G_T$$

 G_{S} is the low-energy symmetry in the ν sector

as we shall see

 G_T is the low-energy symmetry in the charged lepton sector

basic structure (lepton sector)

$$L = y_e e^c (\varphi_T l) + y_\mu \mu^c (\varphi_T l)' + y_\tau \tau^c (\varphi_T l)'' + x_a \xi(ll) + x_b (\varphi_S ll) + \dots$$

♦ (...) denotes an A₄ singlet,...

✤ powers of $\left(\frac{h_{u,d}}{\Lambda}\right)$ have been set to 1

some invariant is missing from L: [more on this later on...] $\varphi_S \leftrightarrow \varphi_T$ x(ll)

higher dimensional operators in $1/\Lambda$ expansion

assume:

$$\left\langle \varphi_T \right\rangle = (v_T, 0, 0) \\ \left\langle \varphi_S \right\rangle = (v_S, v_S, v_S) \\ \left\langle \xi \right\rangle = u \\ \left[\left\langle h_{u,d} \right\rangle = v_{u,d} < v_T, v_S, u \right]$$

$$v_T, v_S, u \leq \Lambda$$

then:

$$m_{l} = \begin{pmatrix} y_{e} & 0 & 0 \\ 0 & y_{\mu} & 0 \\ 0 & 0 & y_{\tau} \end{pmatrix} v_{d} \left(\frac{v_{T}}{\Lambda} \right)$$

$$m_{\nu} = \begin{pmatrix} a + \frac{2}{3}b & -\frac{b}{3} & -\frac{b}{3} \\ -\frac{b}{3} & \frac{2}{3}b & a -\frac{b}{3} \\ -\frac{b}{3} & a -\frac{b}{3} & \frac{2}{3}b \end{pmatrix} \frac{v_{u}^{2}}{\Lambda}$$

charged fermion masses

$$m_f = y_f v_d \left(\frac{v_T}{\Lambda}\right)$$

free parameters as in the SM at this level

 $a \equiv 2x_a \frac{u}{\Lambda}$ 2 complex
parameters in
v sector
(overall phase unphysical)

mixing angles entirely from v sector:

$$U_{PMNS} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

independent from [a], [b], $\Delta \equiv \arg(a)$ -arg(b) !!

v masses:
$$m_1 = |a + b| \frac{v_u^2}{\Lambda}$$
 $m_2 = |a| \frac{v_u^2}{\Lambda}$ $m_3 = |a - b| \frac{v_u^2}{\Lambda}$
 $m_2 > m_1$ \longrightarrow $-1 \le \cos \Delta < -\frac{b}{2a}$ \longrightarrow v spectrum always of normal hierarchy type

 $\left|\frac{b}{2a}\right| \approx \begin{cases} 1 & \text{[almost hierarchical spectrum]} \\ 0 & \text{[almost degenerate spectrum]} \end{cases}$

 $r \equiv \frac{\Delta m_{sol}^2}{\Delta m^2} \approx \frac{1}{35}$ requires a (moderate) tuning

prediction:

$$|m_3|^2 = |m_{ee}|^2 + \frac{10}{9} \Delta m_{atm}^2 \left(1 - \frac{\Delta m_{sol}^2}{\Delta m_{atm}^2}\right)$$

range of VEVs:

assuming all VEVs of the same order

$$0.002 < \frac{v_T}{\Lambda} \approx \frac{v_S}{\Lambda} \approx \frac{u}{\Lambda} < 1$$

$$\Lambda < 0.25 \times 10^{15}$$
 GeV

natural vacuum alignment

$$\begin{array}{lll} \left\langle \varphi_{T} \right\rangle &=& (v_{T}, 0, 0) \\ \left\langle \varphi_{S} \right\rangle &=& (v_{S}, v_{S}, v_{S}) \\ \left\langle \xi \right\rangle &=& u \end{array}$$

it is not a local minimum of the most general renormalizable scalar potential V depending on ϕ_S , ϕ_T , ξ and invariant under A_4

a 4D supersymmetric solution \equiv SUSY

L is identified with the superpotential w_{lepton} in the lepton sector w_{lepton} is invariant under $A_4 \times Z_3 \times U(1)_R$

sub-leading corrections

arising from higher dimensional operators, depleted by additional powers of $1/\Lambda$.

they affect $m_{\rm I}\,,\,m_{\rm v}\,\text{and}$ they can deform the VEVs.

results

$$U_{PMNS} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} + \begin{cases} O(\frac{\text{VEV}}{\Lambda})^2 & \text{for ED case}\\ O(\frac{\text{VEV}}{\Lambda}) & \text{for SUSY case} \end{cases}$$

and similarly for neutrino masses

HPS pattern is preserved if corrections are $\leq \lambda^2 \approx 0.04$

given the range 0.002<(VEV/ Λ)<1, corrections can be kept below λ^2 in both ED and SUSY case.

in ED case, (VEV/ Λ) can be as large as λ without spoiling HPS

alignment and mass hierarchies

$$m_l = \begin{pmatrix} y_e & 0 & 0 \\ 0 & y_\mu & 0 \\ 0 & 0 & y_\tau \end{pmatrix} v_d \left(\frac{v_T}{\Lambda}\right)$$

charged fermion masses are already diagonal

$$m_e \ll m_\mu \ll m_\mu$$

easily **reproduced** by U(1) flavour symmetry

$$Q(e^{c}) = 4 \quad Q(\mu^{c}) = 2 \quad Q(\tau^{c}) = 0$$
$$Q(l) = 0$$

compatible with A₄

$$y_e \approx \frac{\left\langle \mathcal{G} \right\rangle^4}{\Lambda^4} \quad y_\mu \approx \frac{\left\langle \mathcal{G} \right\rangle^2}{\Lambda^2} \quad y_\tau \approx 1$$

quark masses

simple and good first order approximation:

	q	u ^c	c^{c}	t^{c}	d^{c}	S ^C	b^c
A_4	3	1	1''	1'	1	1''	1'

same assignment as in the lepton sector

quark mass matrices diagonal in the leading order mixing matrix $V_{\text{CKM}}\text{=}1$

unfortunately: corrections induced by higher dimensional operators: negligibly small

additional sources of A₄ breaking are needed in the quark sector

relation to the modular group

modular group PSL(2,Z): linear fractional transformation

variable
$$z \rightarrow \frac{a z + b}{c z + d}$$
 $a, b, c, d \in Z$
 $ad - bc = 1$

discrete, infinite group generated by two elements

the modular group is present everywhere in string theory

 A_4 is a finite subgroup of the modular group and

conclusion

mixing in the lepton sector is well described by the HPS pattern

$$\theta_{23} = 45^{\circ}$$
 $\theta_{13} = 0$ $\sin^2 \theta_{12} = \frac{1}{3}$

errors on θ_{23} and θ_{13} are still large and future data are needed to confirm HPS at the λ^2 level

most of existing models predict

$$\left|\frac{\pi}{4} - \mathcal{G}_{23}\right| >> \lambda^2$$

only in ``special'' models this condition is violated. If based on a SB flavour symmetry, special models should give rise to a natural vacuum alignment preserved by high-order effects

with a structure compatible with the observed charged fermion hierarchy

Here: an existence proof based on the discrete group A₄ vacuum alignment and stability is non-trivial and the simplest solutions requires either an extra dimension or a SUSY version In both these models the neutrino spectrum is of normal hierarchy type and the relation $|m_3|^2 = |m_{ee}|^2 + (10/9)\Delta m_{atm}^2 \left(1 - \Delta m_{sol}^2 / \Delta m_{atm}^2\right)$ is

is predicted