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Fuzzy spaces are an approximation of the abelian

algebra of functions on an ordinary space with

a finite rank matrix algebra, which preserves

the symmetries of the original space, at the

price of noncommutativity.

The idea was introduced by Madore with the

fuzzy sphere: a sequence of nonabelian alge-

bras, generated by three “noncommutative co-

ordinates” which satisfy

xixi = 1, [xi, xj] = κεijkxk

with κ depending on the dimension of repre-

sentations of SU(2).
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• Brief review of the fuzzy sphere from a per-

spective which can be generalised to the

disc case.

• The fuzzy disc out of the noncommutative

plane, implementing the constraint x2 +

y2 ≤ R2.

• Fuzzy Laplacian and fuzzy Bessel functions.

• Perspectives
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Fuzzy sphere

We first set up a map between a space of op-

erators and a space of functions on the sphere

S2.

We use coherent states of SU(2).

Consider UIRR for SU (2). On each CN , N =

2L + 1, - finite dim Hilbert space - a basis is

|L, M 〉 -with M = (−L,−L + 1, . . . , L− 1, L)-.

u ∈ SU (2)
R̂(L)7→ B

(
CN

)

The second step is to fix a fiducial state. I

choose the highest weight in the representa-

tion: |ψ0〉 = |L, L〉 with Hψ0
its stability sub-

group by the R̂(L).
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If the group manifold is parametrised by Euler angles,
then u represents a point whose “coordinates” range
through α ∈ [0,4π) ,β ∈ [0, π) , γ ∈ [0,2π) . Fixed the
fiducial vector, Hψ0

is made by elements for which β = 0.
u ≡ u′ if u†u′ ∈ Hψ0

.

It is possible to prove that:

SU (2) /Hψ0
≈ S2

identifying θ = β and ϕ = α mod 2π.

Chosen a representative element ũ in each equivalence
class of the quotient, the set of coherent states is de-
fined as:

|θ, ϕ, N〉 = R̂(L) (ũ) |L, L〉 .

The left hand side ket now explicitly depends on N ,
the dimension of the space on which the representation
takes place. This set of states is nonorthogonal, and
overcomplete (dΩ = dϕ sin θ dθ):

〈θ′, ϕ′, N |θ, ϕ, N〉 = e−iL(ϕ′−ϕ)
[
ei(ϕ′−ϕ) cos θ/2cos θ′/2

+ sin θ/2 sin θ′/2
]2L

,

I =
2L + 1

4π

∫

S2

dΩ|θ, ϕ, N〉〈θ, ϕ, N | .
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Then

SU (2) /Hψ0
≈ S2

Chosen a representative element ũ in each equiv-

alence class of the quotient, the set of coherent

states is defined as:

|θ, ϕ, N〉 = R̂(L) (ũ) |L, L〉

Thus it is possible to define a map,

Â(N) ∈ B (
CN

) ≈ MN 7→ A(N) ∈ F (
S2

)
,

A(N) (θ, ϕ) = 〈θ, ϕ, N |Â(N)|θ, ϕ, N〉 .

A(N) (θ, ϕ) Berezin symbol.
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Among these operators, there are Ŷ
(N)
JM whose

symbols are the spherical harmonics, up to or-

der 2L ( J = 0, . . . ,2L and M = −J, . . . ,+J):

〈θ, ϕ, N |Ŷ (N)
JM |θ, ϕ, N〉 = YJM (θ, ϕ) ,

these operators are called fuzzy harmonics.

Why are they important?

In the spirit of NC geometry, the Laplacian carries in-

formation on the geometry of the fuzzy sphere:

∇2 : MN 7→ MN ,

∇2Â(N) =
[
L̂

(N)
s ,

[
L̂

(N)
s , Â(N)

]]
.
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with L̂
(N)
a :

[
L̂

(N)
a , L̂

(N)
b

]
= iεabcL̂

(N)
c ,

representing the Lie algebra of the group SU (2)

on the space CN .

∇2 is the fuzzy Laplacian.

Its spectrum, λ = j(j + 1), j = 0, ..,2L coincides, up

to order 2L, with the one of its continuum counterpart

acting on the space of functions on a sphere.

The cut-off of this spectrum is related to the dimension

of the rank of the matrix algebra.
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Fuzzy harmonics are the eigenmatrices of the

fuzzy Laplacian

Fuzzy harmonics are a basis in each space of

matrices MN −→

F̂ (N) =
2L∑

J=0

J∑

M=−J

F
(N)
JM Ŷ

(N)
JM ,

A Weyl-Wigner map can be defined mapping

spherical harmonics into fuzzy harmonics:

Ŷ
(N)
JM ⇔ YJM (θ, ϕ) .

This map depends on N

F̂ (N) ↔ F (N) (θ, ϕ) =
2L∑

J=0

+J∑

M=−J

F (N)
JM YJM (θ, ϕ) .
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Given a function on the sphere,

f (θ, ϕ) =
∞∑

J=0

J∑

M=−J

fJM YJM (θ, ϕ) .

Now consider the set of “truncated” functions:

f(N) (θ, ϕ) =
2L∑

J=0

J∑

M=−J

fJM YJM (θ, ϕ) .

this is made into an algebra, isomorphic to the

matrix algebra MN , if we define a new product,

(
f (N) ∗ g(N)

)
(θ, ϕ) =< θ, ϕ, N |f̂ (N)ĝ(N)|θ, ϕ, N >

The sequence of nonabelian algebras A(N)
(
S2, ∗)

is the fuzzy sphere.
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WHY

These algebras can be seen as formally gener-

ated by matrices which are the images of the

norm 1 vectors in R3, i.e. points on a sphere.

They are mapped into multiples of the gener-

ators L̂
(N)
a of the Lie algebra:

xa

‖ ~x ‖ 7→ x̂(N)
a

[
x̂(N)

a , x̂(N)
b

]
=

2iεabc√
N2 − 1

x̂(N)
c .

L̂(N)
a =

√
N2 − 1x̂(N)

a

The commutation rules make it intuitively clear

that the limit for N → ∞ of this sequence is

an abelian algebra.
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Fuzzy disc

How do we generalise to the disc?

• To set up the Weyl-Wigner map, we use coherent
states for the H-W group plus a truncation, which
implements the constraint.

• This identifies the sequence of finite- dimensional
matrix algebras which gives a good approximation
to functions supported on the disc.

• The underlying geometry is introduced, as for the
sphere, through a Laplacian, defined on each of the
algebras of the sequence.

• The eigenvalues are seen to converge to those of
the Laplacian with Dirichlet boundary conditions on
the disc.

• The eigenmatrices of the fuzzy Laplacian are the
fuzzy Bessel functions, their symbols converging to
ordinary Bessel functions in some appropriate limit.
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Bessel functions are a basis in D.

Fuzzy Bessels are a a basis in MN . −→ We
have a WW isomorphism.

Given f ∈ A(D)

• expand it in Bessel functions

• truncate the expansion

• ‘quantise’ by replacing Bessel functions with
fuzzy Bessel functions

• consider Berezin symbols and import the
nonabelian product

We obtain a sequence of nonabelian algebras
converging to the algebra of functions on the
ordinary disc. It is this sequence that we call
fuzzy disc.
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Start with the noncommutative plane

It can be defined using a Weyl-Wigner map,

following again the general procedure of Berezin

• Weyl-Wigner map

Given the usual coherent states of the HW

group, eigenstates of the annihilation op-

erator â, with the sole difference that
[
â, â†

]
= θ I,

A Berezin symbol can be associated to an operator
in the Fock space:

f (z̄, z) = 〈z|f̂ |z〉 .

with inverse

f̂ =

∫
d2ξ

πθ

∫
d2z

πθ
f (z, z̄) e−(z̄ξ−ξ̄z)/θ eξâ†/θ e−ξ̄â/θ.
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This quantization map can be given an in-

teresting form. Start with functions :

f (z̄, z) =
∞∑

m,n=0

fTay
mn z̄mzn .

which is the symbol of

f̂ =
∞∑

m,n=0

fTay
mn â†mân .

note the ordering



More generally we can consider operators

written in a density matrix notation:

f̂ =
∞∑

m,n=0

fmn|ψm〉〈ψn| .

The Berezin symbol of this operator is the

function:

f (z̄, z) = e−|z|
2/θ

∞∑

m,n=0

fmn
z̄mzn

√
m!n!θm+n

,

(1)

Invertibility of the Weyl map (on a suitable domain)

enables to define a noncommutative product -Voros

(Wick)- product

(f ∗ g) (z̄, z) = 〈z|f̂ ĝ|z〉 .

It has an integral form similar to the Moyal product,

a part from a weight factor.
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If symbols are expressed in the form (1),

then the product acquires a matrix form:

(f ∗ g)mn =
∞∑

k=0

fmkgkn .

This is an important feature of Voros prod-

uct.

Aθ = F(R2, ∗) is a nonabelian algebra, a

noncommutative plane.

It is isomorphic to an algebra of operators

-infinite dimensional matrices-
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• Sequence of non abelian algebras

A fuzzy space has been presented as a sequence of
finite rank matrix algebras converging to an algebra
of functions.

Here -differently form the sphere- there is no natural
definition of finite dimensional matrix algebras, the
HW group being noncompact.

⇒

– Consider Aθ as a matrix algebra made up by
formally infinite dimensional matrices.

– Define a set of finite dimensional matrix alge-
bras truncating Aθ.

Truncation is formalised via the introduc-

tion of a set of projectors:

P̂
(N)
θ =

N∑

n=0

|ψn〉〈ψn|
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in the space of operators. Their symbols

are projectors in the algebra Aθ of the non-

commutative plane. With z = reiϕ:

P
(N)
θ (r, ϕ) = e−r2/θ

N∑

n=0

r2n

n!θn

P
(N)
θ ∗ P

(N)
θ = P

(N)
θ .

This finite sum can be performed yielding

a rotationally symmetric function:

P
(N)
θ (r, ϕ) =

Γ
(
N + 1, r2/θ

)

Γ(N + 1)
.



The function PN
θ for N = 102
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– In the limit N → ∞, θ fixed, and nonzero,

P
(N)
θ (r, ϕ) → 1

in this limit one recovers the whole non-

commutative plane.

– In the limit N → ∞, Nθ = R2

P
(N)
θ →




1 r < R
1/2 r = R
0 r > R


 = Id (r) .

The sequence of projectors converges to a

step function in the radial coordinate r, the

characteristic function of a disc . Thus a

sequence of subalgebras A(N)
θ can be de-

fined by:

A(N)
θ = P

(N)
θ ∗ Aθ ∗ P

(N)
θ .

Given a generic f ∈ F(R2) :

f (N)
θ = P (N)

θ ∗ f ∗P (N)
θ = e−|z|

2
/θ

N∑
m,n=0

fmn
z̄mzn

√
m!n!θm+n

.
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Profile of the spherically symmetric func-

tion ΠN
θ

(
1

παe−
r2
α

)
for the choice R2 = Nθ =

1, N = 103
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– On every subalgebra A(N)
θ ≈ MN+1, P (N)

θ (r, ϕ) is
the identity.

– Note that the rotation group on the plane, SO (2),
acts in a natural way on these subalgebras.

Its generator is the truncated number operator
N̂ (N) =

∑N
n=0 nθ|ψn〉〈ψn|.

– Cutting at a finite N the expansion provides an
infrared cutoff.

This cutoff is “fuzzy” in the sense that functions
in the subalgebra are still defined outside the
disc of radius R, but are exponentially damped.

– Functions are close to f (N)
θ if they are mostly

supported on a disc of radius R =
√

Nθ, other-
wise they are exponentially cut.

– If they present oscillations of too small wave-
length (compared to θ) the projected function
becomes very large on the boundary of the disc.
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Profile of the spherically symmetric func-

tion ΠN
θ (

(
1

παe−
r2
α

)
) for the choice R2 =

Nθ = 1, N = 102
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• Fuzzy derivatives and fuzzy Laplacian

So far the Weyl-Wigner formalism and the

projection procedure have provided a way

to associate to functions a sequence of fi-

nite dimension (N + 1)× (N + 1) matrices.

The next step is the analysis of the geom-

etry these algebras can formalize.

We need derivations and a Laplacian.

In the full algebra Aθ

∂zf =
1

θ
〈z|

[
f̂ , â†

]
|z〉 ,

∂z̄f =
1

θ
〈z|

[
â, f̂

]
|z〉 .
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We define a fuzzified version as

∂zf
(N)
θ ≡ 1

θ
〈z|P̂ (N)

θ

[
P̂ (N)

θ f̂ P̂ (N)
θ , â†

]
P̂ (N)

θ |z〉

∂z̄f
(N)
θ ≡ −1

θ
〈z|P̂ (N)

θ

[
P̂ (N)

θ f̂ P̂ (N)
θ , â

]
P̂ (N)

θ |z〉 .

This is really a derivation on each A(N)
θ

Let us come to the Laplacian operator.

This additional structure carries informa-

tion about the geometry of the space un-

derlying Aθ.

We can say we have succeeded only if we

have been able to define a fuzzy Laplacian

whose spectrum approaches that of the or-

dinary Laplacian on the disc when N →∞.
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Starting from the exact expressions:

∇2 f(z̄, z) = 4∂z̄∂zf =
4

θ2
〈z|

[
â,

[
f̂ , â†

]]
|z〉

we define, in each A(N)
θ :

∇2
(N) f̂ (N)

θ ≡ 4

θ2
P̂ (N)

θ

[
â,

[
P̂ (N)

θ f̂ P̂ (N)
θ , â†

]]
P̂ (N)

θ .

The eigenvalues of this Laplacian can be
numerically calculated.

They are seen to converge to the spectrum
of the continuum one for functions on a
disc, with boundary conditions on the edge
of the disc of Dirichlet homogeneous kind.

Exact spectrum (Dirichlet boundary condi-
tions):

All eigenvalues are negative, and their mod-
ules λ solve the implicit equation:

Jn

(√
λ

)
= 0 ,
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where n is the order of the Bessel functions.

Those related to J0 are simply degenerate,

the others are doubly degenerate: so there

is a sequence of eigenvalues λn,k where k

indicates that it is the kth zero of the func-

tion.

The eigenfunctions are:

Φn,k = einϕJ|n|
(√

λ|n|,kr
)

.

Fuzzy spectrum

Computed numerically

It is in good agreement with the spectrum

of the continuum case, even for low values

N of the dimension of truncation, as can

be seen in figure.

It reproduces correctly the degeneracy pat-

tern



Eigenvalues of the fuzzy Laplacian (circles) / exact
Laplacian (crosses). N = 10
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N = 20
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N = 30
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• Fuzzy Bessel functions We now introduce

a basis on the fuzzy disc.

We cannot use representation theory unlike

for the sphere.

But we have a well defined Laplacian for

each A(N)
θ .

We answer the problem looking at the eigen-

functions of the fuzzy Laplacian.
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– Consider exact eigenfunctions Φn,k

– map to operators Φ̂n,k.

Φ̂n,k =

(
λn,k

4

)n/2 ∞∑

j=n

j−n∑
s=0

(
−θ λn,k

4

)s
θn/2

s! (s + n)!

√
j! (j − n)!

(j − s− n)!
|ψj−n〉〈ψj| .

– truncate the series (fuzzify)
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In the paper we prove that Φ̂(N)
n,k are eigen-

functions of the fuzzy Laplacian , namely

∇2
(N) Φ̂(N)

n,k = −λ
(N)
n,k Φ̂(N)

n,k

if and only if the eigenvalues are solutions
of:

N−n+1∑

k=0

(−1)k+N−n+1

(N + 1)! (N − n + 1)!

k! (n + k)! (N − n− k + 1)!

(
λ(N)

n,k

4N

)k

= 0 .

Finally, we prove that solutions of this equa-

tion are exactly the eigenvalues.

This completes the proof: Eigenfunctions

of the fuzzy Laplacian coincide, up to the

order of the truncation, with ordinary Bessel

functions
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Since the fuzzy Bessels play a role similar to

fuzzy harmonics for the fuzzy sphere algebra,

we can now make describe the process of ap-

proximating the algebra of functions on a disc

with matrices more precise.

If f is square integrable with respect to the

standard measure on the disc dΩ = rdrdϕ, it

can be expanded in terms of Bessel functions:

f (r, ϕ) =
+∞∑

n=−∞

∞∑

k=1

fnkeinϕJ|n|
(√

λ|n|,kr
)

and it is possible to truncate:

f(N) (r, ϕ) =
+N∑

n=−N

N+1−|n|∑

k=1

fnkeinϕJ|n|
(√

λ|n|,kr
)

=
+N∑

n=−N

N+1−|n|∑

k=1

fnk Φn,k (r, ϕ) .
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This set of functions is a vector space, but

it is no more an algebra, with the standard

definition of sum and pointwise product, as the

product of two truncated functions will get out

of the algebra. The mapping from truncated

functions into finite rank matrices:

f(N) → f̂
(N)
θ =

+N∑

n=−N

N+1−|n|∑

k=1

fnkΦ̂
(N)
n,k

endows the set of functions with a noncommu-

tative product, inherited from the matrix prod-

uct, which makes it into a non abelian algebra.

The formal limit N → ∞ with the constraint

Nθ = 1 is the abelian algebra of functions on

the disc. The sequence of nonabelian algebras

A(N)
θ is what we call the fuzzy disc.
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