Status of the CKM matrix

Paolo Gambino INFN Torino

Matter comes in 3 generations

SM=SU(3)xSU(2)_LxU(1) gauge theory describes electroweak and strong interactions

<u>3 generations</u> of matter spin $\frac{1}{2}$ fields (quarks and leptons)

mechanism of mass generation is still unknown (Higgs?)

Variety of masses and mixing (Yukawa sector) is a <u>mystery</u>

Quark flavor mixing and CP violation are described in the SM by the CKM mechanism

The CKM paradigm

Cabibbo 1963

Kobayashi & Maskawa 1973

The CKM matrix

describes Flavor Violation (mixing between generations

of quarks) in the SM

$$L_W = -\frac{g}{2\sqrt{2}} V_{ij} \overline{u}_i \gamma^{\mu} W_{\mu}^+ (1-\gamma^5) d_j + \text{ h.c.}$$

Wolfenstein parameterization

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 0.9740 \pm 0.0010 & 0.2196 \pm 0.0023 & 0.0040^{+0.0006}_{-0.0007} \\ 0.224 \pm 0.016 & 0.91 \pm 0.16 & 0.0402 \pm 0.0019 \\ < 0.010 & \simeq 0.0400 & 0.99 \pm 0.29 \end{pmatrix}$$

3 angles and 1 phase with strong hierarchy: $\lambda \sim 0.22$ sine of Cabibbo angle, $A, \rho, \eta = O(1)$

The CKM phase is the only source of CP violation in the SM

The CKM matrix

describes Flavor Violation in the SM

$$L_W = -\frac{g}{2\sqrt{2}} V_{ij} \overline{u}_i \gamma^{\mu} W_{\mu}^{+} (1-\gamma^5) d_j + \text{ h.c.}$$

Wolfenstein parameterization

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

3 angles and 1 phase with strong hierarchy: λ~0.22 sine of Cabibbo angle, A,ρ,η=O(1) At present accuracy,Wolfenstein par must be improved

2 approaches: measure individual elements and test unitarity (PDG) OR use unitarity and test as many observables as possible

 $\overline{\rho},\overline{\eta}$

On the way to precision physics

Why precision CKM studies?

We are able to describe the observed flavor violation very well **But we have no theory of flavor**. The SM does not address flavor, but rather accomodates it Similarly, **CP violation** is (accidentally) accounted for in the CKM

Most models of new physics include new CP and Flavor violation but measurements are surprisingly close to SM prediction scale $\Lambda_{NP} \gg \text{TeV} \rightarrow \rightarrow \text{the flavor & CP problems}$

Need **precision** studies to uncover new dynamics and/or degrees of freedom, testing the CKM paradigm.

Strong interactions make CKM studies hard. Learning slowly but steadily at crossroad of many different fields. Theory errors dominate almost everywhere.

The Cabibbo angle

$$\boldsymbol{V}_{CKM} = \begin{pmatrix} 1 - \frac{1}{2} \lambda^2 & \lambda & \boldsymbol{V}_{ub} \\ -\lambda & 1 - \frac{1}{2} \lambda^2 & \boldsymbol{V}_{cb} \\ \boldsymbol{V}_{td} & \boldsymbol{V}_{ts} & \boldsymbol{V}_{tb} \end{pmatrix}$$

Historically, *universality of charged currents* ←→ CKM unitarity

Comparison between V_{ud} , V_{us} determinations of tests unitarity of the first line of V_{CKM}

$$V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

 λ could also be measured from 2nd line, V_{cd} (DIS) at 10%, W decays at LEP constrains $\Sigma_{ij} |V_{ij}|^2$ at 1.3% \Leftrightarrow V_{cs} at 1.3% O(10⁻⁵)

Superallowed Fermi transitions (0+->0+ B decay)

extremely precise, 9 expts, δV_{ud} ~0.0005 dominated by RC and nuclear structure $\langle p_f; 0^+ | \bar{u} \gamma_\mu d | p_i; 0^+ \rangle = \sqrt{2} (p_i + p_f)_\mu$ + isospin violation

Superallowed magic

0++0+ Nuclear Decays Vector Current 0+0" T+T°C+> CUC + No Hadronic Unc.

But Axial Current Enters At Loop Level

Q=1.56eV

(3

Same OCD corr. as in Bjorken sum rule T[VV]

> perturbative behaviour down to ~ 1 GeV (exp.)

Nucleus	$ V_{ud} $
^{10}C	0.97388(76)
^{14}O	0.97445(41)
²⁶ Al	0.97416(35)
^{34}Cl	0.97431(40)
³⁸ K	0.97424(43)
^{42}Sc	0.97351(38)
^{46}V	0.97372(43)
⁵⁰ Mn	0.97396(44)
54 Co	0.97409(43)

Towner & Hardy

$$|T_{ud}| = 0.9740(1)(3)(4)$$

Paolo Gambino

Napoli 10/6/2005

Superallowed Fermi transitions (0⁺->0⁺ β decay)

extremely precise, 9 expts, $\delta V_{ud} \sim 0.0005$ dominated by RC and nuclear structure $\langle p_f; 0^+ | \bar{u} \gamma_\mu d | p_i; 0^+ \rangle = \sqrt{2} (p_i + p_f)_\mu$ + isospin violation

neutron β decay not pure vector, needs g_A/g_V but no nuclear structure. $\delta V_{ud} \sim 0.0015$, will be improved at PERKEO, Heidelberg New measurement of *n* lifetime (many σ away) serious problem!

 π^+ decay to $\pi^0 ev$ th cleanest, promising in long term but BR~10⁻⁸ PIBETA at PSI already at δV_{ud} ~0.003

PDG : V_{ud} =0.9738±0.0005 Marciano-Sirlin: 0.9739±0.0003 (NEW) λ = 0.2274±0.0021 \rightarrow 0.2269±0.0013

Discarding old results and using Leutwyler & Roos: $|V_{us}|_{Kl3}$ = 0.2262 ±0.0023

@ CKM WS (march 2005)

<u>Next frontier</u>: LQCD & measure slopes for $K_{\mu3}$ (Dalitz plot) to constrain χ PT Space for theory improvement $\rightarrow 0.5\%$?

τ decay (V_{us}) Jamin et al. m_s from sum rules or LQCD as input, may become competitive with B-factory results. At present δV_{us}~0.0034, low values

Hyperon decays (V_{us})

Cabibbo et al. have revisited the subject focussing on vector form fact. $\delta V_{us} \sim 0.0027$ (exp) but O(1%) or more SU(3) breaking effects NOT included, lattice calculations under way

 λ using f_{π}/f_{K} from lattice Marciano (2004):

 $\frac{\Gamma(K \to \mu \bar{\nu}_{\mu}(\gamma))}{\Gamma(\pi \to \mu \bar{\nu}_{\mu}(\gamma))} = \frac{\left|V_{us}|^2 f_K^2 m_K \left(1 - \frac{m_{\mu}^2}{m_K^2}\right)^2}{|V_{ud}|^2 f_{\pi}^2 m_{\pi} \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2}\right)^2} 0.9930(35)$

Use LQCD for f_{π}/f_{K} . Present MILC result 1.204(4)(14) Staggered fermions, partially unquenched. From there we get $\lambda = 0.2234 \pm 0.0003(exp) \pm 0.0004(rc) \pm 0.0021(lattice)$ Compatible with other determinations. MILC error debated. Good potential for improvement

Gino's conclusions at CKM WS

Summary of V_{us} from from K decays :

Summary Cabibbo angle

- Lots going on in theory and exp
- First row unitarity problem resolved
- many competing methods
- good prospect of improvement

Determination of A

$|V_{cb}|$ from $B \rightarrow D^* |v|$

At zero recoil, where rate vanishes. Despite extrapolation, exp error ~ 2% Main problem is form factor F(1)

The non-pert quantities relevant for excl decays cannot be experimentally determined Must be calculated but HQET helps.

 $F_{B\to D^*}(1) = \eta_A [1 - O(1/m_b, 1/m_c)^2]$

Lattice QCD: F(1) = 0.91^{+0.03}-0.04 Sum rules give consistent results Needs unquenching (under way)

 $\delta V_{cb}/V_{cb} \sim 5\%$ and agrees with inclusive det, despite contradictory exps B \rightarrow Dlv gives consistent but less precise results

The advantage of being inclusive

 $\Lambda_{QCD} \ll m_b$: inclusive decays admit systematic expansion in Λ_{QCD}/m_b Non-pert corrections are generally small and can be controlled

Hadronization probability =1 because we sum over all states Approximately insensitive to details of meson structure as $\Lambda_{QCD} \ll m_b$ (as long as one is far from perturbative singularities)

 $\frac{d^{2}\Gamma}{dE_{l}dq^{2}dq_{0}}$ can be expressed as double series in α_{s} and Λ_{QCD}/m_{b} (OPE) with parton model as leading term No 1/m_b correction!

Paolo Gambino Napoli 10/6/2005

A double expansion

 $\frac{d^{2}\Gamma}{dE_{l}dq^{2}dq_{0}} \quad \text{can be expressed in terms of structure functions} \\ \frac{dE_{l}dq^{2}dq_{0}}{h_{\mu\nu}(q^{2},q_{0})} = \frac{1}{2M_{B}}\langle B| \int d^{4}x \ e^{-iqx} \ iT\left\{J_{\mu}(x), J_{\nu}^{\dagger}(0)\right\}|B\rangle$

OPE (HQE): $T J(x) J(0) \approx c_1 \overline{b} b + c_2 \overline{b} \overline{D}^2 b + c_3 \overline{b} \sigma \cdot Gb + \dots$

The leading term is parton model, c_i are series in α_s
 New operators have non-vanishing expection values in B and are suppressed by powers of the energy released, <u>E_r~ m_b-m_c</u>
 No 1/m_b correction!

OPE predictions can be compared to exp only after SMEARING and away from endpoints: <u>they have no LOCAL meaning</u>

Leptonic and hadronic spectra

Total **rate** gives CKM elmnts; global **shape** parameters tells us about B structure

State of the art

State of the art

State of the art

$$\begin{array}{l}
 m_{b}, m_{c} \\
 \mu_{G}^{2}, \mu_{\pi}^{2} \\
 \lambda_{1}, \lambda_{2} \\
 \rho_{D}^{3}, \rho_{LS}^{3} \\
 \rho_{I, \rho_{S}}^{2} \\
 \rho_{I, \rho_{S}}^{2} \\
 Gremm, Kapustin... \\
 \Gamma_{clv} = \frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}} |V_{cb}|^{2} A_{ew} z_{0} (r) \left(1 + a_{1}(r) \frac{\mu_{\pi}^{2}}{m_{b}^{2}} + a_{2}(r) \frac{\mu_{G}^{2}}{m_{b}^{2}} + a_{3}(r) \frac{\rho_{D}^{3}}{m_{b}^{3}} + a_{4}(r) \frac{\rho_{LS}^{3}}{m_{b}^{3}} \right)$$

Recent implementation for moments of lept and hadronic spectra including a cut on the lepton energy Bauer et al.,Uraltsev & PG

 $\frac{Perturbative \ Corrections}{For hadronic \ moments \ thanks \ to \ NEW \ calculations} \qquad Trott \\ Aquila, PG, Ridolfi, Uraltsev$

Implementing the OPE: masses & schemes

m_q(pole) is ill-defined, cannot be determined better than ~100MeV, and induces large uncontrolled higher orders

- $\begin{array}{l} |V_{cb}| ~~ k_0 ~ [1-0.66 ~ (m_b-4.6) + 0.39 ~ (m_c-1.15) + \\ + 0.01 ~ (\mu_{\pi}^2 0.4) + 0.05 ~ (\mu_{G}^2 0.35) + 0.09 ~ (\rho_D^3 0.2) ...] \end{array}$
- Need short distance masses: e.g. $m_b^{kin}(\mu)$ and m_b^{15} and HQ parmts
- Exploit correlations (most moments depend on $\sim m_b 0.7 m_c$ like width)
- Avoid unnecessary parameters, avoid 1/m_c expansion
- Define carefully $\mu_{\pi}^2 = -\lambda_1 + ...$ $\mu_G^2 = 3\lambda_2 + ...$

Traditionally m_{\odot} reexpressed using

$$M_{B,D} = m_Q + \bar{\Lambda} + \frac{\mu_{\pi}^2 - \mu_G^2}{2m_Q} + \frac{\rho_D^3 + \rho_{LS}^3 - \rho_{nl}^3}{4m_Q^2} + \mathcal{O}\left(\frac{1}{m_Q^3}\right)$$

1/m_c expansion
Non linear ops: T₁₋₄

Using moments to extract HQE parameters

We do know something on HQE par. need to check consistency.

• M_{B^*} - M_B fix μ_G^2 = 0.35±0.03 •Sum rules: $\mu_G^2 < \mu_{\pi}^2$, $\rho_D^3 > -\rho_{LS}^3$...

Central moments can be VERY sensitive to HQE parameters

$$\left\langle \left(M_X^2 - \left\langle M_X^2 \right\rangle \right)^2 \right\rangle \approx \left[1.3 + 0.4(m_b - 4.6) - (m_c - 1.2) + 5(\mu_\pi^2 - 0.4) - 6(\rho_D^3 - 0.1) + \dots \right] GeV^4$$

Variance of mass distribution
BUT: OPE accuracy deteriorates for higher
moments (getting sensitive to local effects)
Provided cut is not too severe (~1.3GeV)

the cut moments give additional info

Global fit to $|V_{cb}|$, BR_{sl}, HQE parmts

No external constraint

Pioneer work by CLEO & Delphi employed less precise/complete data, some external constraints, and CLEO a different scheme

Global fit to $|V_{cb}|$, BR_{sl}, HQE parmts

Comparison with other Determinations

Measurements and Predictions of the b-Quark Mass (MS scheme)

to MS scheme with hep-ph/9708372, hep-ph/0302262 See also report from CKM WS hep-ph/0304132

Moriond QCD 30. March 04

Henning Flächer (RHUL)

Theoretical uncertainties are crucial for the fits

- Missing higher power corrections
- ✓ Intrinsic charm
- ✓ Missing perturbative effects in the Wilson coefficients: $O(\alpha_s^2)$, $O(\alpha_s/m_b^2)$ etc
- Duality violations

How can we estimate all this?

Different recipes, results for $|V_{cb}|$ unchanged

Testing parton-hadron duality

- What is it? For all practical purposes: No OPE, no duality
- ✓ **Do we expect violations?** ye because OPE must be continued analytically. the described by the OPE, like hadronic thresholds decays

 \checkmark Can we constrain them eff....

in a self-consistent way: just check the OPE predictions. E.g. leptonic vs hadronic moments. Models may also give hints of how it works

✓ **Caveats?** HQE depends on many parameters and we know only a few terms of the double expansion in α_s and Λ/m_b .

It is not just V_{cb} ...

HQE parameters describe *universal* properties of the B meson and of the quarks

- c and b masses can be determined with competitive accuracy (likely better than 70 and 50 MeV)
- m_b-m_c is already measured to better than 30 MeV: a benchmark for lattice QCD etc?
- most V_{ub} incl. determinations are sensitive to a shape function, whose moments are related to μ_{π}^2 etc, moments in $B \rightarrow X_u lv$ to constrain WA and to validate MC (Ossola, Uraltsev, PG)
- Bounds on ρ , the slope of IW function (B \rightarrow D^{*} form factor)

٠

Need precision measurements to probe limits of HQE & test our th. framework

Universality: spectrum of $B \rightarrow X_s \gamma$

Motion of b quark inside B and gluon radiation smear the spike at $m_b/2$

Belle NEW: lower cut at 1.8GeV

The photon spectrum is very insensitive to new physics, can be used to study the B meson structure

 $\langle E_{\gamma} \rangle = m_{b}/2 + ... \text{ var} \langle E_{\gamma} \rangle = \mu_{\pi}^{2}/12 + ...$

Importance of extending to $E_{\gamma}^{\min} \sim 1.8 \text{ GeV}$ or less for the determination of both the BR AND the HQE parameters Bigi Uraltsev

Info from radiative spectrum compatible with semileptonic moments $\rightarrow \rightarrow$

Erkcan Ozcan

BaBar: Fit to new b → s gamma spectrum

Benson-Bigi-Uraltsev

Neubert

CKM 2005, Mar. 15-18, 2005

12

|V_{ub}| (not so much) inclusive

$$m_X < M_D \qquad E_I > (M_B^2 - M_D^2)/2M_B \qquad q^2 > (M_B - M_D)^2$$

or combined (m_X, q^2) cuts

The cuts destroy convergence of the OPE, supposed to work only away from pert singularities

Rate becomes sensitive to "local" $\overline{\Gamma}_{G}$ b-quark wave function properties (Given Fermi motion

 \rightarrow at leading in 1/m_b SHAPE function)

Each strategy has pros and cons

cut	% of rate	good	bad
$E_{\ell} > \frac{m_{B}^{2} - m_{D}^{2}}{2m_{B}}$	~10%	don't need neutrino	 depends on f(k⁺) (and subleading corrections) WA corrections may be substantial reduced phase space - duality issues?
$s_{H} < m_{D}^{2}$	~80%	lots of rate	depends on f(k ⁺) (and subleading corrections)
$q^{2} > (m_{B} - m_{D})^{2}$	~20%	insensitive to ƒ(k+)	 very sensitive to m_b WA corrections may be substantial effective expansion parameter is I/m_c
"Optimized cut"	~45%	 insensitive to f(k⁺) lots of rate can move cuts away from kinematic limits and still get small uncertainties 	- sensitive to <i>m_b</i> (need +/- 30 MeV for 5% error)

Luke, CKM workshop 2003

V_{ub} incl. and exclusive

Intense theoretical activity: ✓ subleading shape functions \checkmark optimization of cuts (P₊,P₋ etc) ✓ weak annihilation contribs. ✓ Resum. pert. effects \checkmark relation to b \rightarrow s γ spectrum ✓ SCET insight

A lot can be learned from exp (on WA, better constraints on s.f., subleading effects from cut dependence, $b \rightarrow s \gamma ...$)

REQUIRES MANY COMPLEMENTARY **MEASUREMENTS** (affected by different uncert.)

Other constraints on the UT

Looking for V_{td} (and V_{ts}) through loop processes

$\varepsilon_{\rm K}, \Delta M_{\rm d}, \Delta M_{\rm s}$: at the mercy of lattice QCD

Paolo Gambino Napoli 10/6/2005

Progress in LQCD

Despite folklore, <u>there has been progress</u> B physics simulations are *multiscale:* present lattices can resolve neither b (too heavy) nor light q (too light)

- 3 main sources of systematics:
- Discretization (different complementary approach)
- Chiral extrapolation (needs lighter quarks)
- Quenching (getting there: many new unquenched results)
 NEW B_k=0.79(4)(9) instead of 0.86(6)(14)

<u>Example of difficulties: ξ parameter</u>

Chiral extrapolation done using ChPT but at NLO large logs appear (+10-20%) can we trust ChPT in regime of simulations? (chiral logs are not observed in that range) Waiting for lower m_q , a 10% effect maybe safe

 $\xi=1.18(4)(^{+12}_{-0})$ Lellouch $\xi=1.21(5)(1)$ Becirevic

New unquenched simulations

Two alternative routes to $|V_{td}|$

- A good measurement of $BR(K^+ \rightarrow \pi^+ \nu \nu)$, O(10⁻¹⁰), will provide an excellent clean deter mination of $|V_{td}|$.
- BR($K_L \rightarrow \pi^0 \nu \nu$)~3×10⁻¹¹, determines η
- Both very useful, but theory must be improved, exp is still far and prospects at NA48, CKM, JHF, KOPIO unclear

 B→ργ/B→K*γ can give a determination of V_{td}/V_{ts} New Belle result (first observation of b→d):
 BR(B→(ρ,w) γ)=(1.8±0.6±0.1)×10⁻⁶ R(B→ργ/B→K*γ)=(4.2±1.3)%
 Ali et al. extract from this 0.16<|V_{td}/V_{ts}|<0.29 at 1σ, in agreement with fits, but less precise. Form factors from LC sum-rules. Exploratory calculations on the lattice confirm LCSR: their improvement is essential

NEW: the UT from radiative decays

Beneke et al. (dec 2004) use QCD factorization in various exclusive radiative decays (BR, CP and isospin asymmetries) to constrain UT

Bound on BR($B \rightarrow \rho^0 \gamma$)/ BR($B \rightarrow K^* \gamma$) gives $|V_{td} / V_{ts}| < 0.21$, cutting into the area selected by present standard fits...

VERY PROMISING But beware of theor. errors!

Standard UT fit

Various strategies: the most effective is Dalitz plot analysis of D->3 body final states

Strictly tree level

Global fit results

http://www.utfit.org

Global fit results (II)

Fitting methods: a matter of taste

Differ in treatment of theory error. Two main groups:

Bayesian (UTfit)

Non gaussian errors (th & exp) are assigned a flat pdf, to be convoluted with gaussian pdfs

Pro: conceptually clean, easy for Δm_s . Con: does not provide a χ^2 test

Rfit (CKMfitter)

Non gaussian parameters have flat likelihood, not pdf Pro: more conservative (beware of theorists guessing errors!) Con: CL is at least x%

CP violation in the B and K sectors

Using only the sides of the UT (CP conserving)

Prediction of Δm_s

In the absence of new physics Tevatron should measure it soon

Prediction of γ and α

$$\gamma = (58.1 \pm 5.0)^{\circ}$$
At 95%CL [48.6-68.6]
$$\sin 2\alpha = -0.29 \pm 0.17$$

$$\gamma = (57.5 \pm {}^{8.7}_{6.8})^{\circ} \quad \underline{CKM}_{\text{fitter}}$$

$$\sin 2\alpha = -0.29 \pm {}^{0.46}_{0.56}$$

direct determinations

sin2a

Paolo Gambino Napoli 10/6/2005

The near (unquenched) future?

A direct measmnt of Δm_s and improvement on V_{ub} will also have a significant effect

 $\Delta \rho = 24\% \rightarrow 15\%$ $\Delta \eta = 7\% \rightarrow 4.6\%$

Summary

- CKM describes well a host of data. Present errors are dominantly theoretical: LQCD best hope, but theory control can be improved by exploiting new data at B-Factories,Cleo-c,Tevatron..
- \Box First row universality problem resolved by new K₁₃ data
- |V_{cb}| inclusive/momnts analyses: duality verified at % level, V_{cb} at 1.5%, better determination of non-pert B parameters
- Progress in LQCD is slow but sure: learning to unquench etc
- \square Excellent agreement so far with direct angle measurmnt (pending scrutiny of $B{\rightarrow}\Phi K_S$)

...nevertheless, still room for new physics (we have tested only a few FCNC)

A dramatic step forward...

A real advance: non-pert parameters are everywhere in B physics

Fitting non-pert parameters

	LATTICE QCD	UT FIT
$\mathbf{f_B} \sqrt{\mathbf{B_B}}$	$223 \pm 33 \pm 12 \text{ MeV}$	257 ± 15 MeV
B _K	$0.86 \pm 0.06 \pm 0.14$	$\boldsymbol{0.68\pm0.10}$

Fit Results

