Status of the CKM matrix

Paolo Gambino INFN Torino

Matter comes in 3 generations

$S M=S U(3) \times S U(2) \times U(1)$ gauge theory describes electroweak and strong interactions
3 generations of matter spin $\frac{1}{2}$ fields (quarks and leptons)
mechanism of mass generation is still unknown (Higgs?)

Variety of masses and mixing (Yukawa sector) is a mystery

Quark flavor mixing and CP violation are described in the SM by the CKM mechanism

The CKM paradigm

Cabibbo 1963

Kobayashi \& Maskawa 1973

The CKM matrix

describes Flavor Violation (mixing between generations of quarks) in the SM

$$
L_{W}=-\frac{g}{2 \sqrt{2}} V_{i j} \bar{\pi} \gamma^{\mu} W_{\mu}^{+}\left(1-\gamma^{5}\right) d_{j}+\text { h.c. }
$$

Wolfenstein parameterization
$\boldsymbol{V}_{C K M}=\left(\begin{array}{lll}\boldsymbol{V}_{u d} & \boldsymbol{V}_{u s} & \boldsymbol{V}_{u b} \\ \boldsymbol{V}_{c d} & \boldsymbol{V}_{c s} & \boldsymbol{V}_{c b} \\ \boldsymbol{V}_{t d} & \boldsymbol{V}_{t s} & \boldsymbol{V}_{t b}\end{array}\right)=\left(\begin{array}{ccc}0.9740 \pm 0.0010 & 0.2196 \pm 0.0023 & 0.0040_{-0.0007}^{+0.0006} \\ 0.224 \pm 0.016 & 0.91 \pm 0.16 & 0.0402 \pm 0.0019 \\ <0.010 & \simeq 0.0400 & 0.99 \pm 0.29\end{array}\right)$
3 angles and 1 phase with strong hierarchy:
$\lambda \sim 0.22$ sine of Cabibbo angle, $A, \rho, \eta=O(1)$
The CKM phase is the only source of CP violation in the SM

The CKM matrix

describes Flavor Violation in the SM

$$
L_{W}=-\frac{g}{2 \sqrt{2}} V_{i j} \overline{u_{i}} \gamma^{\mu} W_{\mu}^{+}\left(1-\gamma^{5}\right) d_{j}+\text { h.c. }
$$

Wolfenstein parameterization

$$
\begin{aligned}
V_{C K M}= & \left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2}
\end{array}+O\left(\lambda^{4}\right)\right. \\
& \left.\begin{array}{l}
\lambda \text { angles and } 1 \text { phase with strong hierarchy: } \\
\lambda \sim 0.22 \text { sine of Cabibbo angle, } A, \rho, \eta=O(1)
\end{array}\right) \\
& \text { At present accuracy, Wolfenstein par must be improved }
\end{aligned}
$$

2 approaches: measure individual elements and test unitarity (PDG) OR use unitarity and test as many observables as possible

On the way to precision physics

Why precision CKM studies?

We are able to describe the observed flavor violation very well But we have no theory of flavor.
The SM does not address flavor, but rather accomodates it Similarly, CP violation is (accidentally) accounted for in the CKM

Most models of new physics include new CP and Flavor violation but measurements are surprisingly close to SM prediction scale $\Lambda_{N P} \gg \mathrm{TeV} \rightarrow \boldsymbol{\rightarrow}$ the flavor \& CP problems

Need precision studies to uncover new dynamics and/or degrees of freedom, testing the CKM paradigm.

> Strong interactions make CKM studies hard. Learning slowly
> but steadily at crossroad of many different fields.
> Theory errors dominate almost everywhere.

The Cabibbo angle

$$
\boldsymbol{V}_{\boldsymbol{C K M}}=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & \boldsymbol{V}_{\boldsymbol{u} \boldsymbol{b}} \\
-\lambda & 1-\frac{1}{2} \lambda^{2} & \boldsymbol{V}_{\boldsymbol{c b}} \\
\boldsymbol{V}_{\boldsymbol{t d}} & \boldsymbol{V}_{\boldsymbol{t s}} & \boldsymbol{V}_{\boldsymbol{t} \boldsymbol{b}}
\end{array}\right) \begin{gathered}
\text { Historically, } \\
\begin{array}{c}
\text { universality of } \\
\text { charged currents } \\
\leftrightarrow \text { CKM unitarity }
\end{array}
\end{gathered}
$$

Comparison between $V_{u d}, V_{u s}$ determinations of
tests unitarity of the first line of $\mathrm{V}_{\text {CKM }}$

$$
\begin{aligned}
& \left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1 \\
& \text { 2nd line, } V_{c d} \text { (DIS) at } 10 \%,
\end{aligned}
$$

λ could also be measured from 2nd line, V_{cd} (DIS) at 10%, W decays at LEP constrains $\Sigma_{i j}\left|V_{i j}\right|^{2}$ at $1.3 \% \Leftrightarrow V_{c s}$ at 1.3%

λ from $V_{u d}$

Superallowed Fermi transitions ($0^{\circ} \rightarrow 0^{\circ} \cdot \mathrm{p}$ decay)

extremely precise, 9 expts, $\delta \mathrm{V}_{\mathrm{ud}} \sim 0.0005$ dominated by $R C$ and nuclear structure

$$
\left\langle p_{f} ; 0^{+}\right| \bar{u} \gamma_{\mu} d\left|p_{i} ; 0^{+}\right\rangle=\sqrt{2}\left(p_{i}+p_{f}\right)_{\mu}+\text { isospin violation }
$$

Superallowed magic

Nucleus	$\left\|V_{u d}\right\|$
${ }^{10} \mathrm{C}$	$0.97388(76)$
${ }^{14} \mathrm{O}$	$0.97445(41)$
${ }^{26} \mathrm{Al}$	$0.97416(35)$
${ }^{34} \mathrm{Cl}$	$0.97431(40)$
${ }^{38} \mathrm{~K}$	$0.97424(43)$
${ }^{42} \mathrm{Sc}$	$0.97351(38)$
${ }^{46} \mathrm{~V}$	$0.97372(43)$
${ }^{50} \mathrm{Mn}$	$0.97396(44)$
${ }^{54} \mathrm{Co}$	$0.97409(43)$

Towner \& Hardy

$$
\left|V_{u d}\right|=0.9740(1)(3)(4)
$$

$0^{+} \rightarrow 0^{+}$Nuclear Decays $0^{-} \rightarrow 0^{-} \quad \pi^{+} \rightarrow \pi^{\circ} e^{+} \nu$

Vector Current cue \rightarrow No Hadronic Inc.

But Axial Current Enters At loop Level

$$
R^{\mu \nu}(Q)=\int d^{4} x e^{\langle\phi \cdot x}\left\langle\rho / T\left(V_{r}^{\mu}(x)\left(P_{W}^{2}(0)\right)|n\rangle\right.\right.
$$

Operator Prod. Exp $\underset{\text { large } Q^{2}}{ } \frac{1}{Q^{2}}$
Recently we tried to improve matching

1) S.D. Expansion +QCD

$$
Q_{S D}^{2} \leqslant Q^{2} \leqslant \infty \quad Q_{S 0}=156 \mathrm{cV}
$$

2) Interpolator

$$
a_{L D}^{2} \leqslant Q^{2} \leqslant Q_{s D}^{2}
$$

Same QCD corr. as in
3) Born Appox.

$$
0 \leq Q^{2} \leq Q_{L D}^{L}
$$

Match Methods at $Q_{S D}=1566 \mathrm{~V}+Q_{D 0}=$? perturbative behaviour down to $\sim 1 \mathrm{GeV}$ (exp.) largest uncertainty due to em. rad. corrections

λ from $V_{u d}$

Superallowed Fermi transitions ($0^{+}+0^{+} \beta$ decay

extremely precise, 9 expts, $\delta \mathrm{V}_{\mathrm{ud}} \sim 0.0005$ dominated by $R C$ and nuclear structure

$$
\left\langle p_{f} ; 0^{+}\right| \bar{u} \gamma_{\mu} d\left|p_{i} ; 0^{+}\right\rangle=\sqrt{2}\left(p_{i}+p_{f}\right)_{\mu}+\text { isospin violation }
$$

neutron β decay not pure vector, needs g_{A} / g_{V} but no nuclear structure. $\delta V_{u d} \sim 0.0015$, will be improved at PERKEO, Heidelberg New measurement of n lifetime (many σ away) serious problem!
π^{+}decay to $\pi^{0} e V$ th cleanest, promising in long term but BR~10-8 PIBETA at PSI already at $\delta \mathrm{V}_{\mathrm{ud}} \sim 0.003$

$$
\text { PDG : } \mathrm{V}_{\mathrm{ud}}=0.9738 \pm 0.0005
$$

Marciano-Sirlin: 0.9739 ± 0.0003 (NEW)

$$
\lambda=0.2274 \pm 0.0021 \rightarrow 0.2269 \pm 0.0013
$$

Discarding old results and using Leutwyler \& Roos: $\left|V_{\text {us }}\right|_{\text {K13 }}=0.2262 \pm 0.0023$

@ CKM WS (march 2005)

Exp error below 0.5\%

$$
\begin{aligned}
& \Gamma\left(K_{\ell 3}\right)=\frac{G_{\mu}^{2}}{192 \pi^{3}} M_{K}^{5}\left|V_{u s}\right|^{2} C_{K}^{2}\left|f_{+}(0)\right|^{\text {AG heorem: }} \begin{array}{l}
\text { easily calculable }
\end{array} \\
& f_{+}(0)\left.=1+f_{+}, f_{-}\right)+ \text {R.C.+... } \\
& f_{2}+f_{4}+\ldots \text { in the chiral expansion }
\end{aligned}
$$

New lattice result: Becirevic et $f_{n}=\mathcal{O}\left[M_{K, \pi}^{n} /\left(4 \pi f_{\pi}\right)^{n}\right]$ at 1% (confirmed by MILC \& JLQCD, unquenched)

Next frontier: LQCD \& measure slopes for $K_{\mu 3}$ (Dalitz plot) to constrain χ PT Space for theory improvement $\rightarrow 0.5 \%$?

New ideas

τ decay $\left(V_{u s}\right)$ Jaminetal. m_{s} from sum rules or LQCD as input, may become
competitive with B-factory results. At present
$\delta V_{\mathrm{us}} \sim 0.0034$, low values

Hyperon decays (V_{us})
Cabibbo et al. have revisited the subject focussing on vector form fact.
$\delta V_{\text {us }} \sim 0.0027$ (exp) but $O(1 \%)$ or more SU(3) breaking effects NOT included, lattice calculations under way
λ using f_{π} / f_{k} from lattice Marciano (2004):

$$
\frac{\Gamma\left(K \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)}{\Gamma\left(\pi \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)}=\frac{\left|V_{u s}\right|^{2} f_{K}^{2} m h_{K}\left(1-\frac{m_{\mu}^{2}}{m_{K}^{2}}\right)^{2}}{\left|V_{u d}\right|^{2} f_{\pi}^{2} n_{\pi}\left(1-\frac{m_{\mu}^{2}}{m_{\pi}^{2}}\right)^{2}} 0.9 \underset{\text { R.C. }}{9930}(35)
$$

Use LQCD for f_{π} / f_{k}. Present MILC result 1.204(4)(14) Staggered fermions, partially unquenched. From there we get
$\lambda=0.2234 \pm 0.0003$ (exp) ± 0.0004 (rc) ± 0.0021 (lattice)
Compatible with other determinations. MILC error debated. Good potential for improvement

Gino's conclusions at CKM WS

Summary of $\mathrm{V}_{\text {us }}$ from from K decays :

Preliminary numbers [not to be used yet]:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{us}}=0.2262(12) \cdot\left[0.961 / f_{+}(0)\right] & \Rightarrow 0.2262(23) \\
\mathrm{V}_{\mathrm{us}}=0.2234(05) \cdot\left[1.204 f_{\pi} / f_{\mathrm{K}}\right] & \Rightarrow 0.2234(23) \\
\mathrm{V}_{\mathrm{us}}{ }^{\text {unit }} & =0.2269(13)
\end{aligned}
$$

Summary Cabibbo angle

- Lots going on in theory and exp
- First row unitarity problem resolved
- many competing methods
- good prospect of improvement

Determination of A

$$
\mathrm{V}_{\text {CKM }}=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\boldsymbol{O}\left(\lambda^{4}\right)
$$

A can be determined using $\left|V_{c b}\right|$ or $\left|V_{t s}\right|$

$\left|V_{c b}\right|$ from $B \rightarrow D^{*} \mid v$

At zero recoil, where rate vanishes.

Despite extrapolation, exp error ~ 2\%
Main problem is form factor $F(1)$
The non-pert quantities relevant for excl decays cannot be experimentally determined

Must be calculated but HQET helps.

$$
F_{B \rightarrow D^{*}}(1)=n_{A}\left[1-O\left(1 / m_{b}, 1 / m_{c}\right)^{2}\right]
$$

Lattice QCD: $\quad F(1)=0.91^{+0.03}{ }_{-0.04}$ Sum rules give consistent results Needs unquenching (under way)

$\delta V_{c b} / V_{c b} \sim 5 \%$ and agrees with inclusive det, despite contradictory exps
B \rightarrow Dlv gives consistent but less precise results

The advantage of being inclusive

$\Lambda_{Q C D}<m_{b}$: inclusive decays admit systematic expansion in $\Lambda_{Q C D} / m_{b}$ Non-pert corrections are generally small and can be controlled

Hadronization probability $=1$ because we sum over all states Approximately insensitive to details of meson structure as $\Lambda_{Q C D}<m_{b}$ (as long as one is far from perturbative singularities)

$\frac{d^{2} \Gamma}{d E_{l} d q^{2} d q_{0}} \quad \begin{gathered}\text { can be expressed as double series in } \alpha_{s} \text { and } \\ \text { with parton model as leading term No } 1 / \mathrm{N}_{\mathrm{b}} \\ \\ \text { correction! }\end{gathered}$

A double expansion

$\frac{d^{2} \Gamma}{}$ can be expressed in terms of structure functions $\overline{d E_{l} d q^{2} d q_{0}}$ related to Im of

$$
h_{\mu \nu}\left(q^{2}, q_{0}\right)=\frac{1}{2 M_{B}}\langle B| \int \mathrm{d}^{4} x \mathrm{e}^{-i q x} i T\left\{J_{\mu}(x), J_{\nu}^{\dagger}(0)\right\}|B\rangle
$$

OPE (HQE): $\boldsymbol{T} \boldsymbol{J}(\boldsymbol{x}) \boldsymbol{J}(0) \approx c_{1} \bar{b} \boldsymbol{b}+c_{2} \bar{b} \vec{D}^{2} b+c_{3} \bar{b} \sigma \cdot G b+\ldots$

- The leading term is parton model, c_{i} are series in α_{s}
$>$ New operators have non-vanishing expection values in B and are suppressed by powers of the energy released, $\underline{E}_{\underline{r}} \sim m_{\underline{b}}-m_{\underline{c}}$
$>$ No $1 / m_{b}$ correction!
OPE predictions can be compared to exp only after SMEARING and away from endpoints: they have no LOCAL meaning

Leptonic and hadronic spectra

Total rate gives CKM elmnts; global shape parameters tells us about B structure

State of the art

$$
m_{b}, m_{c} \quad \mu_{G}^{2}, \mu_{\pi}^{2} \lambda_{1}, \lambda_{\mathbf{2}}
$$

State of the art

$$
\begin{gathered}
m_{b}, m_{c} \quad \mu_{G}^{2}, \mu_{\pi}^{2} \lambda_{1}, \lambda_{2} \quad \rho_{D}^{3}, \rho_{L S}^{3}{\underset{\text { Gremm, Kapustin... }}{\rho_{1}} \rho_{2}}_{\begin{array}{c}
O\left(1 / m_{b}^{2}\right): \text { mean } \\
\text { kin.energy of b in } \mathrm{B}
\end{array}}^{\mu_{\pi}^{2}(\boldsymbol{\mu})=\frac{1}{2 \boldsymbol{M}_{\boldsymbol{B}}}\langle\boldsymbol{B}| \overline{\boldsymbol{b}}(i \overrightarrow{\boldsymbol{D}})^{2} \boldsymbol{b}|\boldsymbol{B}\rangle_{\mu}}
\end{gathered}
$$

State of the art

$$
\begin{gathered}
m_{b}, m_{c} \quad \mu_{G}^{2}, \mu_{\pi}^{2} \lambda_{1}, \lambda_{2} \quad \rho_{D}^{3}, \rho_{L S}^{3} \rho_{\text {Gremm,Kapustin... }}, \rho_{2} \\
\Gamma_{c l v}=\frac{\boldsymbol{G}_{F}^{2} \boldsymbol{m}_{b}^{5}}{192 \pi^{3}}\left|V_{c b}\right|^{2} \boldsymbol{A}_{e w} z_{0}(r)\left(1+a_{1}(r) \frac{\mu_{\pi}^{2}}{m_{b}^{2}}+a_{2}(r) \frac{\mu_{G}^{2}}{m_{b}^{2}}+a_{3}(r) \frac{\rho_{D}^{3}}{m_{b}^{3}}+a_{4}(r) \frac{\rho_{L S}^{3}}{\boldsymbol{m}_{b}^{3}}\right)
\end{gathered}
$$

Recent implementation for moments of lept and hadronic spectra including a cut on the lepton energy

Bauer et al.,Uraltsev \& PG

Perturbative Corrections: full $O\left(\alpha_{s}\right)$ and $O\left(\beta_{0} \alpha_{s}{ }^{2}\right)$ available

 For hadronic moments thanks to NEW calculations TrottAquila,PG,Ridolfi,Uraltsev

Implementing the OPE: masses \& schemes

$$
\begin{aligned}
& m_{q} \text { (pole) is ill-defined, cannot be determined better than } \sim 100 \mathrm{MeV} \text {, } \\
& \text { and induces large uncontrolled higher orders } \\
& \left|\mathrm{V}_{c b}\right| \sim \mathrm{k}_{0}\left[1-0.66\left(m_{b}-4.6\right)+0.39\left(m_{c}-1.15\right)+\right. \\
& \left.\quad+0.01\left(\mu_{\pi}^{2}-0.4\right)+0.05\left(\mu_{G}^{2}-0.35\right)+0.09\left(\rho_{D}^{3}-0.2\right) \ldots\right]
\end{aligned}
$$

- Need short distance masses: e.g. $m_{b}{ }^{\text {kin }}(\mu)$ and $m_{b}{ }^{1 s}$ and HQ parmts
- Exploit correlations (most moments depend on $\sim m_{b}-0.7 m_{c}$ like width)
- Avoid unnecessary parameters, avoid $1 / m_{c}$ expansion
- Define carefully

$$
\mu_{\pi}^{2}=-\lambda_{1}+\ldots \quad \mu_{G}{ }^{2}=3 \lambda_{2}+\ldots
$$

Traditionally m_{Q} reexpressed using

Using moments to extract HQE parameters

We do know something on HQE par. need to check consistency.

- $M_{B^{*}}-M_{B}$ fix $\mu_{G}{ }^{2}=0.35 \pm 0.03$
- Sum rules: $\mu_{G}{ }^{2}<\mu_{\pi}{ }^{2}, \rho_{D}{ }^{3}>-\rho^{3}{ }^{\text {LS }} \ldots$

Central moments can be VERY sensitive to HQE parameters

$$
\begin{aligned}
& \left\langle\left(\boldsymbol{M}_{X}^{2}-\left\langle\boldsymbol{M}_{X}^{2}\right\rangle\right)^{2}\right\rangle \approx\left[1.3+0.4\left(\boldsymbol{m}_{b}-4.6\right)-\left(\boldsymbol{m}_{c}-1.2\right)+5\left(\mu_{\pi}^{2}-0.4\right)-6\left(\rho_{D}^{3}-0.1\right)+\ldots\right] \boldsymbol{G e} \boldsymbol{V}^{4} \\
& \text { Variance of mass distribution }
\end{aligned}
$$

BUT: OPE accuracy deteriorates for higher moments (getting sensitive to local effects) Provided cut is not too severe ($\sim 1.3 \mathrm{GeV}$) the cut moments give additional info

Global fit to $\left|\mathrm{V}_{\mathrm{cb}}\right|, \mathrm{BR}_{\mathrm{sl}}$, HQE parmts

Global fit to $\left|\mathrm{V}_{\mathrm{cb}}\right|, B R_{s l}$, HQE parmts

HADRONIC MOMENTS

Very similar results in a different approach/scheme, Bauer et al

Combined fit in kinetic scheme

Benson, Bigi, Gambino, Mannel, Uraltsev
$\left|\mathrm{V}_{\mathrm{cb}}\right|=41.38+/-0.4510^{-3}$
$\mathrm{~m}_{\mathrm{b}}=4.61+/-0.06 \mathrm{GeV}$
$\mathrm{m}_{\mathrm{c}}=1.17+/-0.08 \mathrm{GeV}$
$\mu_{\mathrm{m}}{ }^{2}=0.40+/-0.04 \mathrm{GeV}^{2}$
$\mu_{G}=0.29+/-0.05 \mathrm{GeV}^{2}$
$\rho_{\mathrm{D}}=0.16+/-0.06 \mathrm{GeV}^{3}$
$\rho_{\mathrm{LS}}=-0.18+/-0.09 \mathrm{GeV}^{3}$
$\mathrm{BR}(\mathrm{B} \rightarrow \mathrm{XIV})=10.64+/-0.14 \%$

- Stat., syst. and theo. (HQE, as) errors included.
- Error from uncertainty in $\Gamma_{\text {SL }}$ (intrinsic charm) not included!
- $\left|\mathrm{V}_{\mathrm{cb}}\right|$ error of $\approx 1 \%$
\rightarrow Substantial improvement from combination!

Could also be done in alternative schemes

Comparison with other Determinations

Measurements and Predictions of the b-Quark Mass (MS scheme)

PDG2003

Conversion from kinetic mass scheme

 to MS scheme with hep-ph/9708372, hep-ph/0302262 See also report from CKM WS hep-ph/0304132
Theoretical uncertainties are crucial for the fits

\checkmark Missing higher power corrections
\checkmark Intrinsic charm
\checkmark Missing perturbative effects in the Wilson coefficients: $O\left(\alpha_{s}{ }^{2}\right), O\left(\alpha_{s} / m_{b}{ }^{2}\right)$ etc
\checkmark Duality violations

How can we estimate all this?
Different recipes, results for $\left|V_{c b}\right|$ unchanged

Testing pariton-hadron duality

\checkmark What is it? For all practical purposes:
No OPE, no duality
\checkmark Do we expect violations? ye because OPE must be continued analytically. th ${ }^{\bar{v}}$ described by the OPE, like hadronic thresholds decays
\checkmark Can we constrain them eff $\begin{array}{ccc}0 & 0.5 & 1 \\ \cdots & . & \end{array}$
 in a self-consistent way: just check the OPE predictions.
E.g. leptonic vs hadronic moments. Models may also give hints of how it works
\checkmark Caveats? HQE depends on many parameters and we know only a few terms of the double expansion in α_{s} and Λ / m_{b}.

It is not just V_{cb}...

HQE parameters describe universal properties of the B meson and of the quarks

- c and b masses can be determined with competitive accuracy (likely better than 70 and 50 MeV)
- $m_{b}-m_{c}$ is already measured to better than 30 MeV : a benchmark for lattice QCD etc?
- most V_{ub} incl. determinations are sensitive to a shape function, whose moments are related to μ_{π}^{2} etc, moments in $B \rightarrow X_{u} l v$ to constrain WA and to validate MC (Ossola, Uraltsev,PG)
- Bounds on ρ, the slope of IW function ($B \rightarrow D^{*}$ form factor)

Need precision measurements to probe limits of HQE \& test our th. framework

Universality: spectrum of $B \rightarrow X_{s} \gamma$

Motion of b quark inside B and gluon radiation smear the spike $a t m_{b} / 2$

Belle NEW: lower cut at 1.8 GeV

The photon speeternim is very insensitive to new-ph, ics, can be ased to sturdy the B meson structure $\left\langle E_{\gamma}\right\rangle=m_{b} / 2+\ldots$ var $\left\langle E_{\gamma}\right\rangle=\mu_{\pi}^{2} / 12+\ldots$

Importance of extending to $E_{\gamma}{ }^{\text {min }} \sim 1.8 \mathrm{GeV}$ or less for the determination of both the BR AND the HQE parameters

Bigi Uraltsev

Info from radiative spectrum compatible with semileptonic moments $\rightarrow \rightarrow$

The unitarity triangle

$$
\begin{aligned}
& V_{C K M}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b}
\end{array}\right) \quad V_{i j} V_{j k}^{*}=\delta_{i k} \\
& \text { Unitarity determines } \\
& \text { several triangles } \\
& \text { in complex plane } \\
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \quad O\left(\lambda^{3}\right) \\
& V_{\text {td }} \text { cannot be accessed directly: } \\
& \text { we resort to loop transitions } \\
& \text { FCNC sensitive to new physics } \\
& 1+\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}+\frac{V_{t d} V_{t b}^{*}}{V_{c d} V_{c b}^{*}}=0
\end{aligned}
$$

$\left|V_{\mathrm{ub}}\right|$ (not so much) inclusive

$\left|V_{u b}\right|$ from total $B R(b \rightarrow u l v)$ almost exactly like incl $\left|V_{c b}\right|$ but we need kinematic cuts to avoid the $\sim 100 x$ larger $b \rightarrow c l v$ background:

$$
m_{x}<M_{D} \quad E_{I}>\left(M_{B}^{2}-M_{D}^{2}\right) / 2 M_{B} \quad q^{2}>\left(M_{B}-M_{D}\right)^{2}
$$

or combined (m_{x}, q^{2}) cuts
The cuts destroy convergence of the OPE, supposed to work only away from pert singularities
Rate becomes sensitive to "local" $\frac{1}{\Gamma} \frac{d \Gamma}{d E_{i}} 0.4$ b-quark wave function properties (like Fermi motion
\rightarrow at leading in $1 / m_{b}$ SHAPE function)

Each strategy has pros and cons

| \% of | good |
| :---: | :---: | :---: | :---: | :---: | :---: |
| rate | |

V_{ub} incl. and exclusive

Intense theoretical activity: \checkmark subleading shape functions \checkmark optimization of cuts (P_{+}, P_{-}etc) \checkmark weak annihilation contribs.
\checkmark Resum. pert. effects \checkmark relation to $b \rightarrow s \gamma$ spectrum \checkmark SCET insight

A lot can be learned from exp (on WA, better constraints on s.f., subleading effects from cut dependence, $\mathrm{b} \rightarrow s \gamma$...)

REQUIRES MANY COMPLEMENTARY MEASUREMENTS (affected by different uncert.)

Exclusive modes: NO HQET ff normalization LCSR and LQCD complement each other but $\sim 20 \%$ error. Waiting for unquenching

Other constraints on the UT

Looking for $V_{t d}$ (and $V_{t s}$) through loop processes

$\varepsilon_{k}, \Delta M_{d}, \Delta M_{s}$ at the mercy of lattice QCD

$\left\langle\overline{\mathrm{K}}^{0}\right| Q(\Delta S=2)\left|\mathrm{K}^{0}\right\rangle \equiv \frac{8}{3} B_{K}(\mu) F_{K}^{2} M_{K}^{2} \quad \Delta M_{q}=\frac{G_{\mathrm{F}}^{2}}{6 \pi^{2}} \eta_{B} M_{B_{q}}\left(\hat{B}_{B_{q}} F_{B_{q}}^{2} \quad M_{\mathrm{W}}^{2} S_{0}\left(x_{t}\right)\left|V_{t q}\right|^{2}\right.$
To use $\boldsymbol{\varepsilon}_{k}$ and $\Delta m_{B d, s}$ to extract $C K M$ parameters,
we need 3 quantities from lattice: $\boldsymbol{B}_{\boldsymbol{K}}, \boldsymbol{B}_{\boldsymbol{B d}} \boldsymbol{F}_{\boldsymbol{B d}}^{2}$ and $\quad \xi=\frac{F_{B_{s}} \sqrt{\hat{B}_{B_{s}}}}{F_{B_{d}} \sqrt{\hat{B}_{B_{d}}}}$
Typical errors for quenched results: $10-17 \%$, less for ξ

Progress in LQCD

Despite folklore, there has been progress B physics simulations are multiscale: present lattices can resolve neither b (too heavy) nor light q (too light)
3 main sources of systematics:

* Discretization (different complementary approach)
- Chiral extrapolation (needs lighter quarks)
- Quenching (getting there: many new unquenched results)

NEW $B_{K}=0.79(4)(9)$ instead of $0.86(6)(14)$

Example of difficulties: ξ parameter

Chiral extrapolation done using ChPT but at NLO large logs appear ($+10-20 \%$) can we trust ChPT in regime of simulations?
(chiral logs are not observed in that range)
Waiting for lower $m_{q}, a 10 \%$ effect maybe safe
$\boldsymbol{\xi = 1 . 1 8 (4) ({ } ^ { + 1 2 } { } _ { - 0 }) \text { Lellouch } \boldsymbol { \xi } = 1 . 2 1 (5) (1) \text { Becirevic } , ~ (1)}$

New unquenched simulations

some evidence for chiral logs (Kronfeld, ckm2005)

Two alternative routes to $\left|V_{\text {td }}\right|$

- A good measurement of $\mathrm{BR}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v v\right)$, $O\left(10^{-10}\right)$, will provide an excellent clean deter mination of $\left|V_{t d}\right|$.
- $B R\left(K_{L} \rightarrow \pi^{0} v v\right) \sim 3 \times 10^{-11}$, determines η
- Both very useful, but theory must be improved, exp is still far and prospects at NA48, CKM, JHF,KOPIO unclear
$B \rightarrow \rho \gamma / B \rightarrow K^{*} \gamma$ can give a determination of $V_{\text {td }} / V_{\text {ts }}$ New Belle result (first observation of $b \rightarrow d$):

$$
B R(B \rightarrow(\rho, \omega) \gamma)=(1.8 \pm 0.6 \pm 0.1) \times 10^{-6} \quad R\left(B \rightarrow \rho \gamma / B \rightarrow K^{*} \gamma\right)=(4.2 \pm 1.3) \%
$$

Ali et al. extract from this $0.16<\left|V_{t d} / V_{\text {ts }}\right|<0.29$ at 1σ, in agreement with fits, but less precise. Form factors from LC sum-rules. Exploratory calculations on the lattice confirm LCSR: their improvement is essential

NEW: the UT from radiative decays

Beneke et al. (dec 2004) use QCD factorization in various exclusive radiative decays ($B R, C P$ and isospin asymmetries) to constrain UT

Bound on $B R\left(B \rightarrow \rho^{0} \gamma\right) / B R\left(B \rightarrow K^{*} \gamma\right)$ gives $\left|V_{t d} / V_{t s}\right|<0.21$, cutting into the area selected by present standard fits...

VERY PROMISING
But beware of theor. errors!
Standard UT fit

Various strategies:
the most effective is Dalitz plot analysis of D->3 body final states

Strictly tree level

Global fit results

http://www.utfit.org

Global fit results (II)

slightly different inputs

$$
\begin{gathered}
\bar{\rho}=0.207 \pm 0.040_{;}^{5} \quad \bar{\eta}=0.339 \pm 0.024 \\
\text { http://ckmfitter.in2p3.fr }
\end{gathered}
$$

Fitting methods: a matter of taste

Differ in treatment of theory error. Two main groups:

Bayesian (UTfit)

Non gaussian errors (th \& exp) are assigned a flat pdf, to be convoluted with gaussian pdfs
Pro: conceptually clean, easy for Δm_{s}. Con: does not provide a χ^{2} test

Rfit (CKMfitter)

Non gaussian parameters have flat likelihood, not pdf
Pro: more conservative (beware of theorists guessing errors!)
Con: CL is at least $\mathrm{x} \%$

Parameters	68% range	95% range
$\hat{B}_{K} R$ fit (Bayes) [ratio R/B]	$0.68-1.06(0.76-0.98)[1.70]$	$0.62-1.12(0.67-1.06)[1.25]$

Difference important especially when theory (non-gaussian) error dominates. The 99\% CL ranges of global fit are quite similar with SAME INPUTS.
see CKM Yellow book

Ratio Rfit/Bayesian Method			
Parameter	$5 \% \mathrm{CL}$	$1 \% \mathrm{CL}$	$0.1 \% \mathrm{CL}$

DO NOT TAKE 1б RANGES TOO SERIOUSLY
$\gamma^{\circ} \quad 1.46$
1.31
1.09

$C P$ violation in the B and K sectors

Using only the sides of the UT (CP conserving)
$\operatorname{Sin} 2 \beta_{\text {UT }}=0.725 \pm 0.043$
(without direct meas.)
$\operatorname{Sin} 2 \beta_{J / \psi \text { Ks }}=0.726 \pm 0.037$

Prediction of Δm_{s}

$$
\begin{gathered}
\Delta \mathrm{m}_{\mathrm{s}}=21.2 \pm 3.2 \mathrm{ps}^{-1} \\
\left(\Delta \mathrm{~m}_{\mathrm{s}} \text { not used }\right)
\end{gathered}
$$

$\Delta \mathrm{m}_{\mathrm{s}}=18.9 \pm 1.7 \mathrm{ps}^{-1}$ (with all constraints)

DIRECT MEASUREMENT:
$\Delta m_{s} \geq 30 \rightarrow$ new physics at 3σ $\Delta \mathrm{m}_{\mathrm{s}}>14.5 @ 95 \%$ C.L.

In the absence of new physics Tevatron should measure it soon

Prediction of γ and α

$$
\begin{aligned}
& \gamma=(58.1 \pm 5.0)^{\circ} \text { 酮 } \\
& \text { At 95\%CL [48.6-68.6] } \\
& \sin 2 \alpha=-0.29 \pm 0.17
\end{aligned}
$$

$$
\begin{gathered}
\gamma=\left(57.5 \pm_{6.8}^{8.7}\right)^{\circ} \quad \underset{\text { CKM }}{\text { CKM }} \\
\sin 2 \alpha=-0.29 \pm_{0.56}^{0.46}
\end{gathered}
$$

direct determinations $\sin 2 \alpha$

ONLY ANGLES

ALL (reliable) DATA angle measurements start being noticed

The near (unquenched) future?

$$
\begin{array}{ll}
B_{K}=0.79 \pm 0.06 \pm 0.09 & f_{B s} \sqrt{B_{B s}}=276 \pm 38 \mathrm{MeV} \\
\xi=1.24 \pm 0.04 \pm 0.06 & \sin 2 \beta=0.734 \pm 0.054
\end{array}
$$

A direct measmnt of Δm_{s} and improvement on $V_{u b}$ will also have a significant effect

$$
\Delta \rho=24 \% \rightarrow 15 \% \quad \Delta \eta=7 \% \rightarrow 4.6 \%
$$

Napoli 10/6/2005

Summary

\square CKM describes well a host of data. Present errors are dominantly theoretical: LQCD best hope, but theory control can be improved by exploiting new data at B-Factories,Cleo-c, Tevatron
\square First row universality problem resolved by new K_{13} data
$\square\left|V_{c b}\right|$ inclusive/momnts analyses: duality verified $a t \%$ level, $V_{c b}$ at 1.5%, better determination of non-pert B parameters
\square Progress in LQCD is slow but sure: learning to unquench etc
\square Excellent agreement so far with direct angle measurmnt (pending scrutiny of $B \rightarrow \Phi K_{s}$)
...nevertheless, still room for new physics (we have tested only a few FCNC)

A dramatic step forward...

A real advance: non-pert parameters are everywhere in B physics

Fitting non-pert parameters

	LATTICE QCD	UT FIT
$\mathbf{f}_{B} \sqrt{B}_{B}$	$223 \pm 33 \pm 12 \mathrm{MeV}$	$257 \pm 15 \mathrm{MeV}$
B_{K}	$0.86 \pm 0.06 \pm 0.14$	0.68 ± 0.10

Fit Results

Kinetic scheme: Small pert corrections Minimal set of parmts No $1 / m_{c}$ expansion Uraltsev \& PG

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\lvert\, \begin{array}{ll}
\mu_{\pi}^{2} & =\left(0.45 \pm 0.04_{\exp } \pm 0.04_{\mathrm{HQE}} \pm 0.01_{\alpha_{\mathrm{s}}}\right) \mathrm{GeV}^{2} \\
\mu_{G}^{2} & =\left(0.27 \pm 0.06_{\exp } \pm 0.03_{\mathrm{HQE}} \pm 0.02_{\alpha_{\mathrm{s}}}\right) \mathrm{GeV}^{2} \\
\rho_{D}^{3} & =\left(0.20 \pm 0.02_{\exp } \pm 0.02_{\mathrm{HQE}} \pm 0.00_{\alpha_{\mathrm{s}}}\right) \mathrm{GeV}^{3} \\
\rho_{L S}^{3} & =\left(-0.09 \pm 0.04_{\exp } \pm 0.07_{\mathrm{HQE}} \pm 0.01_{\alpha_{\mathrm{s}}}\right) \mathrm{GeV}^{3}
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

Strong correlation between

 $\underline{m}_{\underline{b}}$ and $\underline{m}_{\underline{\underline{c}}}$:$$
\begin{gathered}
\mathrm{m}_{\mathrm{b}}(1 \mathrm{GeV})-\mathrm{m}_{\mathrm{c}}(1 \mathrm{GeV})= \\
\left(3.44 \pm 0.03_{\mathrm{exp}^{ \pm}} \pm .02_{\mathrm{HQE}} \pm 0.01_{\alpha_{\mathrm{s}}}\right) \mathrm{GeV}
\end{gathered}
$$

