LE

DISTRIBUZIONI PARTONICHE DA HERA A LHC

STEFANO FORTE UNIVERSITÀ DI MILANO

NAPOLI, 13 MAGGIO 2005

THE PARTON REVOLUTION:

THE ACCURATE COMPUTATION OF PHYSICAL PROCESS AT A HADRON COLLIDER REQUIRES GOOD KNOWLEDGE OF PARTON DISTRIBUTIONS OF THE NUCLEON

THE PARTON REVOLUTION:

THE ACCURATE COMPUTATION OF PHYSICAL PROCESS AT A HADRON COLLIDER REQUIRES GOOD KNOWLEDGE OF PARTON DISTRIBUTIONS OF THE NUCLEON

 $\gamma^*, W^*, Z^* \longrightarrow p' \longrightarrow q \longrightarrow W, Z$

IN ORDER TO EXTRACT THE RELEVANT PHYSICS SIGNAL,

WE NEED TO KNOW THE PARTON DISTRIBUTIONS AND THEIR UNCERTAINTY PARTON DISTRIBUTIONS PROVIDE THE BRIDGE BETWEEN HADRONIC PHYSICS AND PHYSICS AT THE ENERGY FRONTIER

AN ONGOING EFFORT...

HERA AND THE LHC A workshop on the implications of MERA for UNC physics

March 2004 January 2005

Parton density functions

Multijet final states and energy flow

Heavy guarks

Diffraction Monte Carlo tools Startup Meeting March 26-27 2004 Midterm Meeting 11-13 October 2004 CERN,Geneva Final Meeting January 2005 DESY, Hamburg

Oramising Gammilias: 9. Alexali (etfalt), J. Effentala (9487), 9. Dolla (9480), J. Buttarovski (964, 3. Postansk (9460) (stat), S. Separt (960) 9. Jung (1000/0757) (stat), S. Separt (960) 9. Alexan (9600), D. Statuma (Pirathylaco 9. Polacella (960), D. Statuma (960),

Advisory Committee J. Brates (Namero), M. Solin Negra (GEBA), J. Bills (DENN), J.Begsten (GERA), G. Gusyfsen (Dano), G. Nestimen (Desats), P. Jegni (GEBA), R. Nonver (DES), M. Kich, (DESY), J. Moheren (DES), T. Mekade (CHRA), O. Solvetter (DESN), T. Mekade (CHRA), O. Solvetter (DESN), J. Solvetter (DESY), J. Solvetter (DESN), J. Solvetter (DESY), J. Solvetter (DESN), A. Wegner (DESY), R. Yoshido (AMS)

_heralhc.workshop@cern.ch

dill.

SUMMARY

- DETERMINING PARTON DISTRIBUTIONS:
 - PHENOMENOLOGY: FROM DEEP-INELASTIC STRUCTURE FUNCTIONS TO

HADRON COLLIDERS

- THEORY: HIGHER ORDER CORRECTIONS AND RESUMMATIONS

- AN INTERLUDE: THE NUTEV ANOMALY
 - PRECISION PHYSICS WITH PDFS COMES OF AGE
- THE UNCERTAINTY ON PARTON DISTRIBUTIONS
 - THE STATE OF THE ART: PDFS WITH ERRORS AND THEIR LIMITATIONS
 - THE FUTURE?: MONTECARLO PARTONS AND NEURAL PARTONS

DEEP-INELASTIC SCATTERING

STRUCTURE FUNCTIONS...

Lepton fractional energy loss: $y = \frac{p \cdot q}{p \cdot k}$; Bjorken x: $x = \frac{Q^2}{2p \cdot q}$ lepton-nucleon CM energy: $s = \frac{Q^2}{xy}$; virtual boson-nucleon CM energy $W^2 = Q^2 \frac{1-x}{x}$;

$$\frac{d^2 \sigma^{\lambda_p \lambda_\ell}(x, y, Q^2)}{dx dy} = \frac{G_F^2}{2\pi (1 + Q^2/m_W^2)^2} \frac{Q^2}{xy} \left\{ \left[-\lambda_\ell y \left(1 - \frac{y}{2} \right) x F_3(x, Q^2) + (1 - y) F_2(x, Q^2) \right. \right. \\ \left. + y^2 x F_1(x, Q^2) \right] - 2\lambda_p \left[-\lambda_\ell y (2 - y) x g_1(x, Q^2) - (1 - y) g_4(x, Q^2) - y^2 x g_5(x, Q^2) \right] \right\}$$

		PARITY CONS.	PARITY VIOL.
$\lambda_l \rightarrow $ lepton helicity	UNPOL.	F_1, F_2	F_3
$\lambda_p \rightarrow \text{proton helicity}$	POL.	g_1	g_4,g_5

...AND PARTON DISTRIBUTIONS

STRUCTURE FUNCTION=HARD COEFF. ©PARTON DISTN.

$$F_2^{\mathrm{NC}}(x,Q^2) = x \sum_{\text{flav. } i} e_i^2(q_i + \bar{q}_i) + \alpha_s \left[C_i[\alpha_s] \otimes (q_i + \bar{q}_i) + C_g[\alpha_s] \otimes g \right]$$

 q_i quark, \bar{q}_i antiquark, g gluon

 \sim

LEADING PARTON CONTENT (up to $O[\alpha_s]$ corrections)

$$\begin{aligned} q_i &\equiv q_i^{\uparrow\uparrow} + q_i^{\uparrow\downarrow} & \Delta q_i \equiv q_i^{\uparrow\uparrow} - q_i^{\uparrow\downarrow} \\ &\text{NC} \quad F_1^{\gamma, \, Z} = \sum_i e_i^2 \left(q_i + \bar{q}_i \right) & g_1^{\gamma, \, Z} = \sum_i e_i^2 \left(\Delta q_i + \Delta \bar{q}_i \right) \\ &\text{CC} \quad F_1^{W^+} = \bar{u} + d + s + \bar{c} & g_1^{W^+} = \Delta \bar{u} + \Delta d + \Delta s + \Delta \bar{c} \\ &\text{CC} \quad -F_3^{W^+}/2 = \bar{u} - d - s + \bar{c} & g_5^{W^+} = \Delta \bar{u} - \Delta d - \Delta s + \Delta \bar{c} \\ &F_2 = 2xF_1 & g_4 = 2xg_5 \\ &W^+ \to W^- \Rightarrow u \leftrightarrow d, \ c \leftrightarrow s; \text{ more combinations using Isospin: } p \to n \Rightarrow u \leftrightarrow d \end{aligned}$$

FROM HERA TO LHC

Х

FROM HERA TO LHC \Rightarrow EVOLUTION

DIS DATA \rightarrow PARTON DISTRIBUTIONS

PROBLEMS:

- STRUCTURE FUNCTION (OR XSECT) IS A CON-VOLUTION OVER x OF PARTON DISTNS. AND PERTURBATIVE CROSS SECTION
 - \rightarrow MUST DECONVOLUTE

DIS DATA \rightarrow PARTON DISTRIBUTIONS

PROBLEMS:

- STRUCTURE FUNCTION (OR XSECT) IS A CON-VOLUTION OVER x OF PARTON DISTNS. AND PERTURBATIVE CROSS SECTION
 - \rightarrow MUST DECONVOLUTE
- EACH STRUCTURE FUNCTION (OR XSECT) IS A LINEAR COMBINATION OF MANY PARTON DISTNS ($2N_f$ QUARKS + 1 GLUON)
 - \rightarrow MUST COMBINE DIFFERENT PROCESSES

DIS DATA \rightarrow PARTON DISTRIBUTIONS

PROBLEMS:

- STRUCTURE FUNCTION (OR XSECT) IS A CON-VOLUTION OVER x OF PARTON DISTNS. AND PERTURBATIVE CROSS SECTION
 - \rightarrow MUST DECONVOLUTE
- EACH STRUCTURE FUNCTION (OR XSECT) IS • A LINEAR COMBINATION OF MANY PARTON DISTNS ($2N_f$ QUARKS + 1 GLUON)
 - → MUST COMBINE DIFFERENT PROCESSES
- DATA GIVEN AT VARIOUS SCALES, WANT PAR-TON DISTNS. AS FCTN OF x AT COMMON SCALE Q^2

 \rightarrow MUST EVOLVE

DIS DATA \rightarrow PARTON DISTRIBUTIONS

PROBLEMS:

- STRUCTURE FUNCTION (OR XSECT) IS A CON-VOLUTION OVER x OF PARTON DISTNS. AND PERTURBATIVE CROSS SECTION
 - \rightarrow MUST DECONVOLUTE
- EACH STRUCTURE FUNCTION (OR XSECT) IS A LINEAR COMBINATION OF MANY PARTON DISTNS ($2N_f$ QUARKS + 1 GLUON)
 - \rightarrow MUST COMBINE DIFFERENT PROCESSES
- DATA GIVEN AT VARIOUS SCALES, WANT PAR-TON DISTNS. AS FCTN OF x AT COMMON SCALE Q^2
 - \rightarrow MUST EVOLVE
- TH UNCERTAINTIES: HIGHER PERTURBA-TIVE ORDERS, RESUMMATION, NUCLEAR CORRECTIONS, HIGHER TWIST, HEAVY QUARK THRESHOLDS...

PHENOMENOLOGY: DETERMINING THE GLUON

EVOLUTION:

SINGLET SCALING VIOLATIONS

 $\frac{d}{dt}F_2^s(N,Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \left[\gamma_{qq}(N)F_2^s + 2n_f\gamma_{qg}(N)g(N,Q^2) \right] + O(\alpha_s^2)$ $F_2(N,Q^2) \equiv \int_0^1 dx \, x^{N-1}F_2(x,Q^2); \qquad \gamma_{ij}(N) \equiv \int_0^1 dx \, x^{N-1}P_{ij}(x,Q^2)$

PHENOMENOLOGY: DETERMINING THE GLUON

EVOLUTION:

SINGLET SCALING VIOLATIONS

 $\frac{d}{dt}F_2^s(N,Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \left[\gamma_{qq}(N)F_2^s + 2n_f\gamma_{qg}(N)g(N,Q^2) \right] + O(\alpha_s^2)$ $F_2(N,Q^2) \equiv \int_0^1 dx \, x^{N-1}F_2(x,Q^2); \qquad \gamma_{ij}(N) \equiv \int_0^1 dx \, x^{N-1}P_{ij}(x,Q^2)$ $\text{LARGE/SMALL X} \Leftrightarrow \text{LARGE/SMALL N}$

 $\gamma_{qq} << \gamma_{qq}$

PHENOMENOLOGY: DETERMINING THE GLUON

EVOLUTION:

SINGLET SCALING VIOLATIONS

 $\frac{d}{dt}F_2^s(N,Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \left[\gamma_{qq}(N)F_2^s + 2n_f\gamma_{qg}(N)g(N,Q^2) \right] + O(\alpha_s^2)$ $F_2(N,Q^2) \equiv \int_0^1 dx \, x^{N-1}F_2(x,Q^2); \qquad \gamma_{ij}(N) \equiv \int_0^1 dx \, x^{N-1}P_{ij}(x,Q^2)$ $\text{LARGE/SMALL } \mathbf{X} \quad \Leftrightarrow \quad \text{LARGE/SMALL } \mathbf{N}$

 $\begin{array}{c} \text{AT LARGE } x \\ \Rightarrow \text{ GLUON HARD TO DETERMINE} \end{array}$

PHENOMENOLOGY: DISENTANGLING THE QUARK SEA

PHENOMENOLOGY: DISENTANGLING THE QUARK SEA

DRELL-YAN p/d ASYMMETRY

PHENOMENOLOGY: DISENTANGLING THE QUARK SEA

DRELL-YAN p/d ASYMMETRY

 W^{\pm} ASYMMETRY

CDF

PHENOMENOLOGY: DISENTANGLING STRANGENESS γ^* SCATTERING VS. W^{\pm} SCATTERING:

IN NC, CHARGED LEPTON DIS, ONLY MEASURE COMBINATION $\sum_{i} e_i^2 (q_i + \bar{q}_i)$

- CANNOT DETERMINE STRANGENESS
- CAN ONLY DETERMINE C-EVEN COMBINATION $q_i + \bar{q}_i$

PHENOMENOLOGY: DISENTANGLING STRANGENESS γ^* SCATTERING VS. W^{\pm} SCATTERING:

IN NC, CHARGED LEPTON DIS, ONLY MEASURE COMBINATION $\sum_{i} e_i^2 (q_i + \bar{q}_i)$

- CANNOT DETERMINE STRANGENESS
- CAN ONLY DETERMINE C-EVEN COMBINATION $q_i + \bar{q}_i$

IN NEUTRINO DIS, CAN DISENTANGLE INDIVIDUAL PDFS BY LINEAR COMBINATION: AT LO

$$\frac{1}{2} \left(F_1^{W^-} + \frac{1}{2} F_3^{W^-} \right) = u + c; \qquad \frac{1}{2} \left(F_1^{W^+} - \frac{1}{2} F_3^{W^+} \right) = \bar{u} + \bar{c}$$
$$\frac{1}{2} \left(F_1^{W^+} + \frac{1}{2} F_3^{W^+} \right) = d + s; \qquad \frac{1}{2} \left(F_1^{W^-} - \frac{1}{2} F_3^{W^-} \right) = \bar{d} + \bar{s}$$

 $c,\,\bar{c},\,s,\,\bar{s}$ only present above charm threshold

THEORETICAL ISSUES: NNLO CORRECTIONS

HOW BIG IS THE IMPACT OF HIGHER ORDER PERTURBATIVE CORRECTIONS?

THEORETICAL ISSUES: NNLO CORRECTIONS

HOW BIG IS THE IMPACT OF HIGHER ORDER PERTURBATIVE CORRECTIONS? FULL NNLO SPLITTING FUNCTIONS COMPUTED RECENTLY! (MOCH, VERMASEREN AND VOGT, APRIL 2004)

The Results

Anomalous dimensions in Mellin space

- One-loop : Gross, Wilczek '73

$$\gamma_{\rm ns}^{(0)}(N) = C_F (2(\mathbf{N}_- + \mathbf{N}_+)S_1 - 3)$$

- Two-loop : Floratos, Ross, Sachrajda '79 ; Gonzalez-Arroyo, Lopez, Ynduráin '79

$$\begin{split} \gamma_{\rm ns}^{(1)+}(N) &= 4C_A C_F \left(2 \mathbf{N}_+ S_3 - \frac{17}{24} - 2S_{-3} - \frac{28}{3} S_1 + (\mathbf{N}_- + \mathbf{N}_+) \left[\frac{151}{18} S_1 + 2S_{1,-2} - \frac{16}{3} \right] \right. \\ &+ 4C_F n_f \left(\frac{1}{12} + \frac{4}{3} S_1 - (\mathbf{N}_- + \mathbf{N}_+) \left[\frac{11}{9} S_1 - \frac{1}{3} S_2 \right] \right) + 4C_F^2 \left(4S_{-3} + 2S_1 + 2S_2 - \frac{3}{8} \right] \\ &+ \mathbf{N}_- \left[S_2 + 2S_3 \right] - (\mathbf{N}_- + \mathbf{N}_+) \left[S_1 + 4S_{1,-2} + 2S_{1,2} + 2S_{2,1} + S_3 \right] \right) \\ \gamma_{\rm ns}^{(1)-}(N) &= \gamma_{\rm ns}^{(1)+}(N) + 16C_F \left(C_F - \frac{C_A}{2} \right) \left((\mathbf{N}_- - \mathbf{N}_+) \left[S_2 - S_3 \right] - 2(\mathbf{N}_- + \mathbf{N}_+ - 2) \right] \end{split}$$

- Compact notation : $\mathbf{N}_{\pm}f(N) = f(N \pm 1)$, $\mathbf{N}_{\pm \mathbf{i}}f(N) = f(N \pm i)$

The Results

Anomalous dimensions in Mellin space

– One-loop : Gross, Wilczek '73

THE ONE THEY

LIKE IN STOCKHOLM: \Rightarrow $\gamma_{ns}^{(0)}(N) = C_F(2(N_- + N_+)S_1 - 3)$

- Two-loop : Floratos, Ross, Sachrajda '79 ; Gonzalez-Arroyo, Lopez, Ynduráin '79

$$\begin{split} \gamma_{\rm ns}^{(1)+}(N) &= 4C_A C_F \left(2\,\mathbf{N}_+ S_3 - \frac{17}{24} - 2S_{-3} - \frac{28}{3}S_1 + (\mathbf{N}_- + \mathbf{N}_+) \left[\frac{151}{18}S_1 + 2S_{1,-2} - \frac{16}{28} + 4C_F n_f \left(\frac{1}{12} + \frac{4}{3}S_1 - (\mathbf{N}_- + \mathbf{N}_+) \left[\frac{11}{9}S_1 - \frac{1}{3}S_2 \right] \right) + 4C_F^2 \left(4S_{-3} + 2S_1 + 2S_2 - \frac{3}{8} + \mathbf{N}_- \left[S_2 + 2S_3 \right] - (\mathbf{N}_- + \mathbf{N}_+) \left[S_1 + 4S_{1,-2} + 2S_{1,2} + 2S_{2,1} + S_3 \right] \right) \\ \gamma_{\rm ns}^{(1)-}(N) &= \gamma_{\rm ns}^{(1)+}(N) + 16C_F \left(C_F - \frac{C_A}{2} \right) \left((\mathbf{N}_- - \mathbf{N}_+) \left[S_2 - S_3 \right] - 2(\mathbf{N}_- + \mathbf{N}_+ - 2) \right] \end{split}$$

- Compact notation : $\mathbf{N}_{\pm}f(N) = f(N \pm 1)$, $\mathbf{N}_{\pm \mathbf{i}}f(N) = f(N \pm i)$

- Three-loop :

S.M., Vermaseren, Vogt '04

$$\begin{split} \gamma_{115}^{(2)+}(N) &= 16 C_{A} C_{F} n_{f} \Big(\frac{3}{2} \zeta_{3} - \frac{5}{4} + \frac{10}{9} S_{-3} - \frac{10}{9} S_{3} + \frac{4}{3} S_{1,-2} - \frac{2}{3} S_{-4} + 2S_{1,1} - \frac{25}{9} S_{2} + \frac{257}{27} S_{1} - \frac{2}{3} S_{-3,1} - N_{+} \Big[S_{2,1} - \frac{2}{3} S_{3,1} - (N_{+} - 1) \Big[\frac{23}{18} S_{3} - S_{2} \Big] - (N_{-} + N_{+}) \Big[S_{1,1} + \frac{1237}{216} S_{1} + \frac{11}{18} S_{3} - \frac{317}{108} S_{2} + \frac{16}{9} S_{1,-2} - \frac{2}{3} S_{1,-2,1} - \frac{1}{3} S_{1,-3} - \frac{1}{2} S_{1,3} - \frac{1}{2} S_{2,1} \\ &- \frac{1}{3} S_{2,-2} + S_{1} \zeta_{3} + \frac{1}{2} S_{3,1} \Big] \Big) + 16 C_{F} C_{A}^{2} \Big(\frac{1657}{576} - \frac{15}{4} \zeta_{3} + 2S_{-5} + \frac{31}{6} S_{-4} - 4S_{-4,1} - \frac{67}{9} S_{-3} + 2S_{-3,-2} + \frac{11}{3} S_{-3,1} + \frac{3}{2} S_{-2} \\ &- 6S_{-2} \zeta_{3} - 2S_{-2,-3} + 3S_{-2,-2} - 4S_{-2,-2,1} + 8S_{-2,1,-2} - \frac{1883}{54} S_{1} - 10S_{1,-3} - \frac{16}{3} S_{1,-2} + 12S_{1,-2,1} + 4S_{1,3} - 4S_{2,-2} - \frac{5}{2} S_{4} + \frac{176}{9} S_{2} + \frac{13}{3} S_{3} + (N_{-} + N_{+} - 2) \Big[3S_{1} \zeta_{3} + 11S_{1,1} - 4S_{1,1,-2} \Big] + (N_{-} + N_{+}) \Big[\frac{9737}{432} S_{1} - 3S_{1,-4} + \frac{19}{6} S_{1,-3} + 8S_{1,-3,1} + \frac{91}{9} S_{1} \\ &- 6S_{1,-2,-2} - \frac{29}{3} S_{1,-2,1} + 8S_{1,1,-3} - 16S_{1,1,-2,1} - 4S_{1,1,3} - \frac{19}{4} S_{1,3} + 4S_{1,3,1} + 3S_{1,4} + 8S_{2,-2,1} + 2S_{2,3} - S_{3,-2} + \frac{11}{12} S_{3,1} - S_{4} \\ &+ \frac{1}{6} S_{2,-2} - \frac{1967}{216} S_{2} + \frac{121}{72} S_{3} \Big] - (N_{-} - N_{+}) \Big[3S_{2} \zeta_{3} + 7S_{2,1} - 3S_{2,1,-2} + 2S_{2,-2,1} - \frac{1}{4} S_{2,3} - \frac{3}{2} S_{3,-2} - \frac{29}{6} S_{3,1} + \frac{11}{4} S_{4,1} + \frac{1}{2} S_{2} \\ &+ N_{+} \Big[\frac{28}{9} S_{3} - \frac{2376}{216} S_{2} - \frac{8}{3} S_{4} - \frac{5}{2} S_{5} \Big] \Big) + 16 C_{F} n_{f}^{2} \Big(\frac{17}{144} - \frac{13}{27} S_{1} + \frac{2}{9} S_{2} + (N_{-} + N_{+}) \Big[\frac{2}{9} S_{1} - \frac{11}{18} S_{2} + \frac{1}{18} S_{3} \Big] \Big) + 16 C_{F}^{-2} C_{A} \Big(\frac{45}{4} - \frac{151}{64} - 10S_{-5} - \frac{89}{6} S_{-4} + 20S_{-4,1} + \frac{139}{9} S_{-3} - 2S_{-3,-2} - \frac{31}{3} S_{-3,1} + 2S_{-3,2} - \frac{9}{2} S_{-2} + 18S_{-2} \zeta_{3} + 10S_{-2,-3} - 6S_{-2,-2} \\ &+ 8S_{-2,-2,-1} - 28S_{-2,1,-2} + 46S_{1,-3} + \frac{26}{3} S_{1,-2} - 48S_{1,-2,-1} + \frac{28}{3}$$

$$+16S_{1,-2,-2} + \frac{103}{3}S_{1,-2,1} - 2S_{1,-2,2} - 36S_{1,1,-3} + 56S_{1,1,-2,1} + 8S_{1,1,3} - \frac{109}{9}S_{1,2} - 4S_{1,2,-2} + \frac{43}{3}S_{1,3} - 8S_{1,3,1} - 11S_{1,1,-2} + 21S_{2,-3} - 30S_{2,-2,1} - 4S_{2,1,-2} - 5S_{2,3} - S_{4,1} + \frac{31}{6}S_{2,-2} - \frac{67}{9}S_{2,1} + (N_{-} - N_{+}) \left[9S_{2}\zeta_{3} + 2S_{2,-3} + 4S_{2,-2,1} - 12S_{2,1,1} + 13S_{4,1} + \frac{1}{2}S_{2,-2} + \frac{11}{2}S_{4} - \frac{33}{2}S_{3,1} + \frac{59}{9}S_{3} + \frac{127}{6}S_{2,1} - \frac{1153}{72}S_{2} + N_{+} \left[8S_{3,-2} + \frac{4}{3}S_{3,1} - 2S_{3,2} + 14S_{5} + \frac{23}{6}S_{4} + \frac{73}{3}S_{3,1} + \frac{59}{9}S_{3} + \frac{127}{6}S_{2,1} - \frac{1153}{72}S_{2} + N_{+} \left[8S_{3,-2} - \frac{8}{3}S_{1,1} - \frac{4}{3}S_{1,2} + N_{+} \left[\frac{25}{9}S_{3} - \frac{4}{3}S_{3,1} - \frac{1}{3}S_{2} + 16C_{F}^{2}n_{f} \left(\frac{23}{16} - \frac{3}{2}\zeta_{3} + \frac{4}{3}S_{-3,1} - \frac{59}{36}S_{2} + \frac{4}{3}S_{-4} - \frac{20}{9}S_{-3} + \frac{20}{9}S_{1} - \frac{8}{3}S_{1,-2} - \frac{8}{3}S_{1,1} - \frac{4}{3}S_{1,2} + N_{+} \left[\frac{25}{9}S_{3} - \frac{4}{3}S_{3,1} - \frac{1}{3}S_{2} + 16C_{F}^{2}n_{f} \left(\frac{23}{16} - \frac{3}{2}\zeta_{3} + \frac{4}{3}S_{-3,1} - \frac{59}{36}S_{2} + \frac{4}{3}S_{-4} - \frac{20}{9}S_{-3} + \frac{20}{9}S_{1} - \frac{8}{3}S_{1,-2} - \frac{8}{3}S_{1,1} - \frac{4}{3}S_{1,2} + N_{+} \left[\frac{25}{9}S_{3} - \frac{4}{3}S_{3,1} - \frac{1}{3}S_{2} + \frac{1}{9}S_{3} + 16C_{F}^{2}n_{f} \left(\frac{23}{16} - \frac{3}{2}\zeta_{3} + \frac{4}{3}S_{3}\right\right] + (N_{-} + N_{+}) \left[S_{1}\zeta_{3} - \frac{325}{144}S_{1} - \frac{2}{3}S_{1,-3} + \frac{32}{9}S_{1,-2} - \frac{4}{3}S_{1,-2,1} + \frac{4}{3}S_{1,1} + \frac{16}{9}S_{1,2} - \frac{4}{3}S_{3,1} - \frac{4}{3}S_{3,1} + \frac{16}{9}S_{1,2} - \frac{4}{3}S_{3,1} - \frac{4}{3}S_{3,1} + \frac{16}{9}S_{1,2} - \frac{4}{3}S_{3,1} + \frac{16}{9}S_{1,2} - \frac{4}{3}S_{2,2} + \frac{1}{3}S_{2,2} + \frac{1}{3}S_{2,2} - \frac{8}{9}S_{3}\right] \right) + 16C_{F}^{2} \left(12S_{-5} - \frac{29}{32} - \frac{15}{2}\zeta_{3} + 9S_{-4} - 24S_{-4,1} - 4S_{-3,-2} + 6S_{-3} + \frac{118}{8}S_{2,-2} + \frac{15}{8}S_{2,-2} + \frac{15}{8}S_{2,-2} + \frac{15}{8}S_{2,-2} + \frac{15}{2}S_{2,-2} + \frac{15}{8}S_{2,-2} + \frac{15}{8}S_$$

THEORETICAL ISSUES: RESUMMATION

AT $O(\alpha_s^n)$, $O\left[ln(\frac{1}{x})^n\right]$ AND $O\left[(ln(1-x))^{2n-1}\right]$ CONTRIBUTIONS ARISE: IS A FIXED-ORDER PERTURBATIVE CALCULATION SUFFICIENT?

$x_{ ext{cut}}:$	0	0.0002	0.001	0.0025	0.005	0.01
# DATA POINTS	2097	2050	1961	1898	1826	1762
$\chi^2(x > 0)$	2267					
$\chi^2(x > 0.0002)$	2212	2203				
$\chi^2(x > 0.001)$	2134	2128	2119			
$\chi^2(x > 0.0025)$	2069	2064	2055	2040		
$\chi^2(x > 0.005)$	2024	2019	2012	1993	1973	
$\chi^2(x > 0.01)$	1965	1961	1953	1934	1917	1916
Δ_i^{i+1}	0.	19 0.10	0.24	0.28	0.02	

DATA-THEORY AGREEMENT FOR EVOLUTION OF F_2 IMPROVES IF SMALL x DATA REMOVED (MRST 2003) χ^2 improves with fixed # of pts (same row)

THEORETICAL ISSUES: RESUMMATION

AT $O(\alpha_s^n)$, $O\left[ln(\frac{1}{x})^n\right]$ AND $O\left[(ln(1-x))^{2n-1}\right]$ CONTRIBUTIONS ARISE: IS A FIXED-ORDER PERTURBATIVE CALCULATION SUFFICIENT?

$x_{ ext{cut}}$:	0	0.0002	0.001	0.0025	0.005	0.01
# DATA POINTS	2097	2050	1961	1898	1826	1762
$\chi^2(x > 0)$	2267					
$\chi^2(x > 0.0002)$	2212	2203				
$\chi^2(x > 0.001)$	2134	2128	2119			
$\chi^2(x > 0.0025)$	2069	2064	2055	2040		
$\chi^2(x > 0.005)$	2024	2019	2012	1993	1973	
$\chi^2(x > 0.01)$	1965	1961	1953	1934	1917	1916
Δ_i^{i+1}	0.	.19 0.10	0.24	0.28	0.02	

DATA-THEORY AGREEMENT FOR EVOLUTION OF F_2 IMPROVES IF SMALL x DATA REMOVED (MRST 2003) χ^2 improves with fixed # of pts (same row)

RESUMMED SPL. FCTN. CLOSER TO LO THAN TO NNLO Altarelli, Ball, S.F.

(see also Ciafaloni, Salam et al.)

DOES IT ALL MATTER?

IMPACT OF HADR. COLL. DATA

PDF UNCERTAINTIES

 $Q^2 = 9 \text{ GeV}^2$

top \rightarrow DIS only middle \rightarrow DIS + Drell-Yan E866 bottom \rightarrow DIS+DY (E866+LHC)

Alekhin 2004 prelim.

DOES IT ALL MATTER?

IMPACT OF HADR. COLL. DATA

PDF UNCERTAINTIES

IMPACT OF NNLO CORRECTIONS GLUON DISTRIBUTION

Alekhin 2004 prelim.

NuTeV 2001 $\sin^2 \theta_W(OS) = 0.2272 \pm 0.0013(\text{stat}) \pm 0.0009(\text{syst}) \pm 0.0002(M_t, M_H)$ Global Fit 2003 $\sin^2 \theta_W(OS) = 0.2229 \pm 0.0004$

...VS. THEORY

$$R^{-} = \frac{\sigma_{NC}(\nu) - \sigma_{NC}(\bar{\nu})}{\sigma_{CC}(\nu) - \sigma_{CC}(\bar{\nu})}$$
$$= \left(\frac{1}{2} - \sin^{2}\theta_{W}\right)$$

NuTeV 2001 $\sin^2 \theta_W(OS) = 0.2272 \pm 0.0013(\text{stat}) \pm 0.0009(\text{syst}) \pm 0.0002(M_t, M_H)$ Global Fit 2003 $\sin^2 \theta_W(OS) = 0.2229 \pm 0.0004$

... VS. THEORY

$$R^{-} = \frac{\sigma_{NC}(\nu) - \sigma_{NC}(\bar{\nu})}{\sigma_{CC}(\nu) - \sigma_{CC}(\bar{\nu})}$$
$$= \left(\frac{1}{2} - \sin^{2}\theta_{W}\right) + 2\left[\frac{(u - \bar{u}) - (d - \bar{d})}{u - \bar{u} + d - \bar{d}}\right] \times \left(\frac{1}{2} - \frac{7}{6}\sin^{2}\theta_{W}\right)$$
$$+ O(\delta(u - d)^{2})$$

U,D...DENOTE MOMENTUM FRACTIONS CARRIED BY CORRESP. QUARK FLAVORS

• ISOSPIN VIOLATION \rightarrow corrn. for non-isoscalar target included, but not $u^p \neq d^n$

NuTeV 2001 $\sin^2 \theta_W(OS) = 0.2272 \pm 0.0013(\text{stat}) \pm 0.0009(\text{syst}) \pm 0.0002(M_t, M_H)$ Global Fit 2003 $\sin^2 \theta_W(OS) = 0.2229 \pm 0.0004$

...VS. THEORY

$$R^{-} = \frac{\sigma_{NC}(\nu) - \sigma_{NC}(\bar{\nu})}{\sigma_{CC}(\nu) - \sigma_{CC}(\bar{\nu})}$$

= $\left(\frac{1}{2} - \sin^{2}\theta_{W}\right) + 2\left[\frac{(u - \bar{u}) - (d - \bar{d})}{u - \bar{u} + d - \bar{d}} - \frac{s - \bar{s}}{u - \bar{u} + d - \bar{d}}\right] \times \left(\frac{1}{2} - \frac{7}{6}\sin^{2}\theta_{W}\right)$
+ $O(\delta(u - d)^{2}, \, \delta s^{2})$

U,D...DENOTE MOMENTUM FRACTIONS CARRIED BY CORRESP. QUARK FLAVORS

- ISOSPIN VIOLATION \rightarrow corrn. for non-isoscalar target included, but not $u^p \neq d^n$
- STRANGE ASYM. \rightarrow strangeness must vanish, but not valence mom. fract.!

NuTeV 2001 $\sin^2 \theta_W(OS) = 0.2272 \pm 0.0013(\text{stat}) \pm 0.0009(\text{syst}) \pm 0.0002(M_t, M_H)$ Global Fit 2003 $\sin^2 \theta_W(OS) = 0.2229 \pm 0.0004$

....VS. THEORY

$$R^{-} = \frac{\sigma_{NC}(\nu) - \sigma_{NC}(\bar{\nu})}{\sigma_{CC}(\nu) - \sigma_{CC}(\bar{\nu})}$$

= $\left(\frac{1}{2} - \sin^{2}\theta_{W}\right) + 2\left[\frac{(u - \bar{u}) - (d - \bar{d})}{u - \bar{u} + d - \bar{d}} - \frac{s - \bar{s}}{u - \bar{u} + d - \bar{d}}\right] \times \left[\left(\frac{1}{2} - \frac{7}{6}\sin^{2}\theta_{W}\right) + \frac{4}{9}\frac{\alpha_{s}}{2\pi}\left(\frac{1}{2} - \sin^{2}\theta_{W}\right) + O(\alpha_{s}^{2})\right] + O(\delta(u - d)^{2}, \,\delta s^{2})$

U,D...DENOTE MOMENTUM FRACTIONS CARRIED BY CORRESP. QUARK FLAVORS

- ISOSPIN VIOLATION \rightarrow corrn. for non-isoscalar target included, but not $u^p \neq d^n$
- STRANGE ASYM. \rightarrow strangeness must vanish, but not valence mom. fract.!
- QCD CORRECTIONS \rightarrow tiny (only enter through sym. violating terms)

NuTeV 2001 $\sin^2 \theta_W(OS) = 0.2272 \pm 0.0013(\text{stat}) \pm 0.0009(\text{syst}) \pm 0.0002(M_t, M_H)$ Global Fit 2003 $\sin^2 \theta_W(OS) = 0.2229 \pm 0.0004$

....VS. THEORY

$$R^{-} = \frac{\sigma_{NC}(\nu) - \sigma_{NC}(\bar{\nu})}{\sigma_{CC}(\nu) - \sigma_{CC}(\bar{\nu})}$$

= $\left(\frac{1}{2} - \sin^{2}\theta_{W}\right) + 2\left[\frac{(u - \bar{u}) - (d - \bar{d})}{u - \bar{u} + d - \bar{d}} - \frac{s - \bar{s}}{u - \bar{u} + d - \bar{d}}\right] \times \left[\left(\frac{1}{2} - \frac{7}{6}\sin^{2}\theta_{W}\right) + \frac{4}{9}\frac{\alpha_{s}}{2\pi}\left(\frac{1}{2} - \sin^{2}\theta_{W}\right) + O(\alpha_{s}^{2})\right] + O(\delta(u - d)^{2}, \,\delta s^{2})$

U,D...DENOTE MOMENTUM FRACTIONS CARRIED BY CORRESP. QUARK FLAVORS

- ISOSPIN VIOLATION \rightarrow corrn. for non-isoscalar target included, but not $u^p \neq d^n$
- STRANGE ASYM. \rightarrow strangeness must vanish, but not valence mom. fract.!
- QCD CORRECTIONS \rightarrow tiny (only enter through sym. violating terms)
- $s \bar{s} \approx 0.004$ (or 2% isospin vln.) enough to remove anomaly: CAN WE TEST IT?
DISENTANGLING STRANGENESS

Charm is copiously produced in $W^+ + s \rightarrow c$

easily tagged through dimuon signal, 2nd muon from subsequent c decay

 \Rightarrow ACCURATE EXTRACTION OF THE STRANGE DISTRIBUTION

DISENTANGLING STRANGENESS

Charm is copiously produced in $W^+ + s \rightarrow c$

easily tagged through dimuon signal, 2nd muon from subsequent c decay

 \Rightarrow ACCURATE EXTRACTION OF THE STRANGE DISTRIBUTION $Q^2=20GeV^2$

CCFR/NUTEV $s - \bar{s}$ determination

5000 ν & 1500 $\bar{\nu}$ DIMUON EVENT SAMPLE: ASSUMED PARM.: $s(x) = \kappa \frac{\bar{u}(x) + \bar{d}(x)}{2} (1 - x)^{\alpha}$ NEGATIVE $s - \bar{s}$ AT SMALL x \Rightarrow MOM. FRACT. $s - \bar{s} = -0.003 \pm 0.001$ NUTEV ANOMALY WORSE!

DISENTANGLING STRANGENESS

Charm is copiously produced in $W^+ + s \rightarrow c$

easily tagged through dimuon signal, 2nd muon from subsequent c decay

 \Rightarrow ACCURATE EXTRACTION OF THE STRANGE DISTRIBUTION $Q^2 = 20 \text{GeV}^2$

CCFR/NUTEV $s - \bar{s}$ determination

5000 ν & 1500 $\bar{\nu}$ DIMUON EVENT SAMPLE: ASSUMED PARM.: $s(x) = \kappa \frac{\bar{u}(x) + \bar{d}(x)}{2} (1 - x)^{\alpha}$ NEGATIVE $s - \bar{s}$ AT SMALL x \Rightarrow MOM. FRACT. $s - \bar{s} = -0.003 \pm 0.001$ NUTEV ANOMALY WORSE!

HOWEVER, BPZ GLOBAL FIT TO NEUTRINO INCLUSIVE DIS (Barone et al 2003) \Rightarrow POSITIVE (TINY) ASYMMETRY

COMBINING INCLUSIVE AND EXCLUSIVE INFORMATION

CTEQ DEDICATED DIMUON ANALYSIS (April 2004)

- $\int_0^1 (s(x) \bar{s}(x)) dx = 0$ in proton \Rightarrow Either $s(x) - \bar{s}(x)$ has a node or it vanishes everywhere
- $[s(x) \bar{s}(x)] < 0$ for small $x \lesssim 0.05$ constrained by dimuon

COMBINING INCLUSIVE AND EXCLUSIVE INFORMATION

CTEQ DEDICATED DIMUON ANALYSIS (April 2004)

- $\int_0^1 (s(x) \bar{s}(x)) dx = 0$ IN PROTON \Rightarrow EITHER $s(x) - \bar{s}(x)$ HAS A NODE OR IT VANISHES EVERYWHERE
- $[s(x) \bar{s}(x)] < 0$ for small $x \leq 0.05$ constrained by dimuon
- LARGE x REGION WEIGHS MORE IN MOMENTUM FRACTION
- POSITIVE MOM. FRACTION $s \bar{s} \approx 0.02$: the end of the NuTeV anomaly

ISOSPIN VIOLATION

QED EFFECTS LEAD TO ISOSPIN VIOLATION: $u - \bar{u}$ radiate more photons than $d - \bar{d}$: $\frac{d}{dt}q_i \propto e_i^2 q_i$ \Rightarrow MORE PHOTON MOMENTUM IN PROTON THAN NEUTRON

 $\Rightarrow |u(x) - \bar{u}(x)| < |d(x) - \bar{d}(x)| \text{ at large } x$

- SIGN OF EFFECT AS REQUIRED TO EXPLAIN NUTEV
- SIZE OF EFFECTS WITH REASON-ABLE ASSUMPTIONS ABOUT 1/2 OF NUTEV ANOMALY
- THEORETICAL RESULTS AGREES WITH FIT IF ISOSPIN VIOLATION AL-LOWED

MRST 2005

PARTONS WITH ERRORS

GIVEN A SET OF DATA POINTS MUST DETERMINE A SET OF FUNCTIONS WITH ERRORS

WHAT'S THE PROBLEM? D. Kosower, 1999

- FOR A SINGLE QUANTITY, WE QUOTE 1 SIGMA ERRORS: VALUE \pm ERROR
- FOR A PAIR OF NUMBERS, WE QUOTE A 1 SIGMA ELLIPSE
- FOR A FUNCTION, WE NEED AN "ERROR BAR" IN A SPACE OF FUNCTIONS

MUST DETERMINE THE PROBABILITY DENSITY (MEASURE) $\mathcal{P}[f_i(x)]$ IN THE SPACE OF PARTON DISTRIBUTION FUNCTIONS $f_i(x)$ (*i*=quark, antiquark, gluon)

WHAT'S THE PROBLEM? D. Kosower, 1999

- FOR A SINGLE QUANTITY, WE QUOTE 1 SIGMA ERRORS: VALUE \pm ERROR
- FOR A PAIR OF NUMBERS, WE QUOTE A 1 SIGMA ELLIPSE
- FOR A FUNCTION, WE NEED AN "ERROR BAR" IN A SPACE OF FUNCTIONS

MUST DETERMINE THE PROBABILITY DENSITY (MEASURE) $\mathcal{P}[f_i(x)]$ IN THE SPACE OF PARTON DISTRIBUTION FUNCTIONS $f_i(x)$ (*i*=quark, antiquark, gluon)

EXPECTATION VALUE OF $\sigma[f_i(x)] \Rightarrow$ FUNCTIONAL INTEGRAL

$$\left\langle \sigma\left[f_{i}(x)\right]\right\rangle = \int \mathcal{D}f_{i}\,\sigma\left[f_{i}(x)\right]\,\mathcal{P}[f_{i}],$$

WHAT'S THE PROBLEM? D. Kosower, 1999

- FOR A SINGLE QUANTITY, WE QUOTE 1 SIGMA ERRORS: VALUE \pm ERROR
- FOR A PAIR OF NUMBERS, WE QUOTE A 1 SIGMA ELLIPSE
- FOR A FUNCTION, WE NEED AN "ERROR BAR" IN A SPACE OF FUNCTIONS

MUST DETERMINE THE PROBABILITY DENSITY (MEASURE) $\mathcal{P}[f_i(x)]$ IN THE SPACE OF PARTON DISTRIBUTION FUNCTIONS $f_i(x)$ (*i*=quark, antiquark, gluon)

EXPECTATION VALUE OF $\sigma[f_i(x)] \Rightarrow$ FUNCTIONAL INTEGRAL

$$\left\langle \sigma\left[f_{i}(x)\right]\right\rangle = \int \mathcal{D}f_{i}\,\sigma\left[f_{i}(x)\right]\,\mathcal{P}[f_{i}],$$

MUST DETERMINE AN INFINITE–DIMENSIONAL OBJECT FROM A FINITE SET OF DATA POINTS

THE STANDARD SOLUTION: FUNCTIONAL PARTON FITTING

• CHOOSE A FIXED FUNCTIONAL FORM:

- MRST: 24 parms., some fixed \rightarrow 15 parms.

 $xq(x,Q_0^2) = A(1-x)^{\eta}(1+\epsilon x^{0.5}+\gamma x)x^{\delta}, \quad x[\bar{u}-\bar{d}](x,Q_0^2) = A(1-x)^{\eta}(1+\gamma x+\delta x^2)x^{\delta}.$

$$xg(x,Q_0^2) = A_g(1-x)^{\eta_g} (1+\epsilon_g x^{0.5} + \gamma_g x) x^{\delta_g} - A_-(1-x)^{\eta_-} x^{-\delta_-},$$

- CTEQ: 20 PARMS.

$$x f(x, Q_0) = A_0 x^{A_1} (1-x)^{A_2} e^{A_3 x} (1+e^{A_4} x)^{A_5}$$

with independent params for combinations $u_v \equiv u - \bar{u}$, $d_v \equiv d - \bar{d}$, g, and $\bar{u} + \bar{d}$, $s = \bar{s} = 0.2 (\bar{u} + \bar{d})$ at Q_0 ; NORM. FIXED BY SUM RULES

- ALEKHIN: 17 PARMS.

$$\begin{aligned} xu_{\rm V}(x,Q_0) &= \frac{2}{N_{\rm u}^{\rm V}} x^{a_{\rm u}} (1-x)^{b_{\rm u}} (1+\gamma_2^{\rm u} x); \quad xu_{\rm S}(x,Q_0) = \frac{A_{\rm S}}{N_{\rm S}} \eta_{\rm u} x^{a_{\rm S}} (1-x)^{b_{\rm S} {\rm u}} \\ xd_{\rm V}(x,Q_0) &= \frac{1}{N_{\rm d}^{\rm V}} x^{a_{\rm d}} (1-x)^{b_{\rm d}}; \quad xd_{\rm S}(x,Q_0) = \frac{A_{\rm S}}{N^{\rm S}} x^{a_{\rm S}} (1-x)^{b_{\rm S} {\rm d}}, \\ xs_{\rm S}(x,Q_0) &= \frac{A_{\rm S}}{N^{\rm S}} \eta_{\rm s} x^{a_{\rm S}} (1-x)^{(b_{\rm Su}+b_{\rm Sd})/2}; \quad xG(x,Q_0) = A_{\rm G} x^{a_{\rm G}} (1-x)^{b_{\rm G}} (1+\gamma_1^{\rm G} \sqrt{x}+\gamma_2^{\rm G} x), \end{aligned}$$

THE STANDARD SOLUTION: FUNCTIONAL PARTON FITTING

• CHOOSE A FIXED FUNCTIONAL FORM:

- MRST: 24 parms., some fixed \rightarrow 15 parms.

 $xq(x,Q_0^2) = A(1-x)^{\eta}(1+\epsilon x^{0.5}+\gamma x)x^{\delta}, \quad x[\bar{u}-\bar{d}](x,Q_0^2) = A(1-x)^{\eta}(1+\gamma x+\delta x^2)x^{\delta}.$

$$xg(x,Q_0^2) = A_g(1-x)^{\eta_g}(1+\epsilon_g x^{0.5}+\gamma_g x)x^{\delta_g} - A_-(1-x)^{\eta_-} x^{-\delta_-}$$

- CTEQ: 20 PARMS.

$$x f(x, Q_0) = A_0 x^{A_1} (1-x)^{A_2} e^{A_3 x} (1+e^{A_4} x)^{A_5}$$

with independent params for combinations $u_v \equiv u - \bar{u}$, $d_v \equiv d - \bar{d}$, g, and $\bar{u} + \bar{d}$, $s = \bar{s} = 0.2 (\bar{u} + \bar{d})$ at Q_0 ; NORM. FIXED BY SUM RULES

- ALEKHIN: 17 PARMS.

$$xu_{\rm V}(x,Q_0) = \frac{2}{N_{\rm u}^{\rm V}} x^{a_{\rm u}} (1-x)^{b_{\rm u}} (1+\gamma_2^{\rm u} x); \quad xu_{\rm S}(x,Q_0) = \frac{A_{\rm S}}{N_{\rm S}} \eta_{\rm u} x^{a_{\rm S}} (1-x)^{b_{\rm S} {\rm u}}$$

$$xd_{\rm V}(x,Q_0) = \frac{1}{N_{\rm d}^{\rm V}} x^{a_{\rm d}} (1-x)^{b_{\rm d}}; \quad xd_{\rm S}(x,Q_0) = \frac{A_{\rm S}}{N^{\rm S}} x^{a_{\rm S}} (1-x)^{b_{\rm sd}},$$

$$xs_{\rm S}(x,Q_0) = \frac{A_{\rm S}}{N^{\rm S}} \eta_{\rm s} x^{a_{\rm S}} (1-x)^{(b_{\rm Su}+b_{\rm Sd})/2}; \quad xG(x,Q_0) = A_{\rm G} x^{a_{\rm G}} (1-x)^{b_{\rm G}} (1+\gamma_1^{\rm G}\sqrt{x}+\gamma_2^{\rm G}x),$$

- EVOLVE TO DESIRED SCALE & COMPUTE PHYSICAL OBSERVABLES
- DETERMINE BEST-FIT VALUES OF PARAMETERS
- DETERMINE ERROR BY PROPAGATION OF ERROR ON PARMS ('HESSIAN METHOD') OR BY PARM. SCANS ('LAGRANGE MULTIPLIER METHOD')

PROBLEM PROJECTED ONTO THE FINITE-DIMENSIONAL SPACE OF PARAMETERS

HOW WELL DOES IT WORK? ALEKHIN 2003 PARTONS (DIS only)

 $Q^2 = 9 \text{ GeV}^2$

TOTAL ERROR BANDS FOR LO (DOTS), NLO (DASHES), NNLO (SOLID) PARTON DISTRIBUTIONS

valence
$$u^v \equiv u - \bar{u}, d^v \equiv d - \bar{d},$$

sea $u^s = \bar{u}^s = d^s = \bar{d}^s$

BUT CAN WE TRUST THESE ERRORS?

PDF ERRORS COMPARABLE TO OR EVEN LARGER THAN THEORY ERRORS

W PRODUCTION CROSS-SECTION TEVATRON

PDF SET	XSEC [NB]	PDF UNCERTAINTY	
ALEKHIN	2.73	± 0.05 (tot)	
MRST2002	2.59	\pm 0.03 (EXPT)	
CTEQ6	2.54	\pm 0.10 (expt)	

THORNE 2003

• Alekhin VS. MRST/CTEQ \rightarrow W production xsect at Tevatron do not agree Within respective errors

BUT CAN WE TRUST THESE ERRORS?

PDF ERRORS COMPARABLE TO OR EVEN LARGER THAN THEORY ERRORS

W PRODUCTION CROSS-SECTION TEVATRON

PDF SET	XSEC [NB]	PDF UNCERTAINTY
ALEKHIN	2.73	± 0.05 (TOT)
MRST2002	2.59	\pm 0.03 (EXPT)
CTEQ6	2.54	\pm 0.10 (expt)

THORNE 2003

- Alekhin VS. MRST/CTEQ \rightarrow W production xsect at Tevatron do not agree Within respective errors
- ALEKHIN VS. MRST/CTEQ \rightarrow PREDICTIONS FOR ASSO-CIATE HIGGS W PRODUCTION LHC DO NOT AGREE WITHIN RESPECTIVE ERRORS

HIGGS PRODUCTION AT LHC

DJOUADI AND FERRAG, 2004

BUT CAN WE TRUST THESE ERRORS?

PDF ERRORS COMPARABLE TO OR EVEN LARGER THAN THEORY ERRORS

W PRODUCTION CROSS-SECTION TEVATRON

PDF SET	XSEC [NB]	PDF UNCERTAINTY	
ALEKHIN	2.73	± 0.05 (TOT)	
MRST2002	2.59	\pm 0.03 (EXPT)	
CTEQ6	2.54	\pm 0.10 (expt)	

THORNE 2003

- Alekhin VS. MRST/CTEQ \rightarrow W production xsect at TEVATRON DO NOT AGREE WITHIN RESPECTIVE ERRORS
- ALEKHIN VS. MRST/CTEQ \rightarrow PREDICTIONS FOR ASSO-CIATE HIGGS W PRODUCTION LHC DO NOT AGREE WITHIN RESPECTIVE ERRORS

HIGGS PRODUCTION AT LHC

DJOUADI AND FERRAG, 2004

PARTON SETS DO NOT AGREE WITHIN RESPECTIVE ERRORS

HOW ARE PDF ERRORS DETERMINED?

MRST 2003

HOW ARE PDF ERRORS DETERMINED?

GLOBAL χ^2 MINIMUM DOES NOT CORRESPOND TO LOCAL MINIMA 200 40 CDF1B jet (31 pts) $\chi^2 - \text{no. pts}$ 180 20 Total jet (113 pts) Total (1384 pts) 0 160 D0 jet (82 pts) -20 _____ 140 0.1125 0.115 0.1175 0.12 0.1125 0.115 0.1175 0.12 55 BCDMS $F_2^{\mu d}$ (154 pts) 60 50 no. pts 40 45 20 E605 (136 pts) I BCDMS $F_{2}^{\mu p}$ (161 pts) ×⁵ 0 40 -20 35 0.1125 0.115 0.1175 0.12 0.1125 0.115 0.1175 0.12 60 SLAC $F_2^{eu}(12 \text{ pts})$ 20 χ^2 – no. pts 40 CCFR $F_2^{v^N}$ (54 pts) 20 0 SLAC F₂^{ep}(12 pts ZEUS (139 pts) NMC $F_{2}^{\mu\nu}$ (56 pts) 0 H1 (282 pts) NMC $F_2^{\mu d}$ (56 pts) -20 0.1125 0.115 0.1175 0.12 0.1125 0.115 0.1175 0.12 $\alpha_{\rm s}(M_{\rm z}^2)$ $\alpha_{a}(M_{7}^{2})$

MRST 2003

E866 DY DATA DISAGREE WITH DIS DATA: $\sigma_{DY} \sim q(x_1)q(x_2)$ disagrees with DIS QUARK AT SAME x and Q^2

ALEKHIN 2005

PROBLEM: INCONSISTENT EXPERIMENTS

PARAMETRIZATION BIAS?

PARAMETRIZATION BIAS?

SIMILAR	PAR-			
TONS				
\rightarrow SIMILAR				
RESULTS				

THE W XSECT. AGAIN					
PDF SET	COMMENT	XSEC [NB]	PDF UNCERTAINTY		
ALEKHIN	TEVATRON	2.73	$\pm \ 0.05$ (tot)		
MRST2002	TEVATRON	2.59	\pm 0.03 (expt)		
CTEQ6	TEVATRON	2.54	\pm 0.10 (expt)		
ALEKHIN	LHC	215	± 6 (тот)		
MRST2002	LHC	204	\pm 4 (expt)		
CTEQ6	LHC	205	\pm 8 (EXPT)		

PARAMETRIZATION BIAS?

We do not seem to have the optimum parameterization for both finding the best fit and also investigating fluctuations about this best fit (...) This might then influence our error analysis...(MRST 2004)

CONSERVATIVE SOLUTIONS CTEQ TOLERANCE CRITERION

SINGLE OUT INCONSISTENT DATA

- how many parameters are significantly determined by each dataset?
- how consistent are the data from one set with the rest?

```
STUDY MINIMUM ALLOWED \chi_i^2
```

FOR i-TH EXP. AS

```
GLOBAL \chi^2 ALLOWED TO INCREASE
```


Collins, Pumplin 2001

CCFR, BCDMS INCOMPATIBLE WITH THE REST

CONSERVATIVE SOLUTIONS CTEQ TOLERANCE CRITERION

SINGLE OUT INCONSISTENT DATA

- how many parameters are significantly determined by each dataset?
- how consistent are the data from one set with the rest?

```
STUDY MINIMUM ALLOWED \chi^2_i
```

FOR i-TH EXP. AS

GLOBAL χ^2 ALLOWED TO INCREASE

Collins, Pumplin 2001

CCFR, BCDMS INCOMPATIBLE WITH THE REST

OPTIONS

- discard incompatible experiments
- reweight individual contributions
- INCORPORATE IN ERROR, TOLERATING FIXED MAX DEVIA-TION FOR EACH EXPERIMENT & EACH FIT PARAMETER

CONSERVATIVE SOLUTIONS CTEQ TOLERANCE CRITERION

SINGLE OUT INCONSISTENT DATA

- how many parameters are significantly determined by each dataset?
- how consistent are the data from one set with the rest?

```
STUDY MINIMUM ALLOWED \chi^2_i
```

FOR i-TH EXP. AS

```
GLOBAL \chi^2 ALLOWED TO INCREASE
```


Collins, Pumplin 2001

CCFR, BCDMS INCOMPATIBLE WITH THE REST

OPTIONS

- discard incompatible experiments
- reweight individual contributions
- INCORPORATE IN ERROR, TOLERATING FIXED MAX DEVIA-TION FOR EACH EXPERIMENT & EACH FIT PARAMETER

 $\Delta\chi^2 = 100$ (CTEQ6)

CONSERVATIVE SOLUTIONS

IMPOSE RESTRICTIVE KINEMATIC CUTS

cut in Q^2 raised from 2 to 10 GeV²; cut off x < 0.005; cut in W^2 raised from 12.5 to 15 GeV²

MRST 2003 CONSERVATIVE PARTONS

- About 800 datapoints removed out of about 2000
- $\Delta \chi^2 = 5$ SUFFICIENT FOR REASONABLE 1σ CONSERVATIVE/PLAIN

 $\begin{array}{c} \text{conservative partons unreliable} \\ \text{for total xsect.} \\ \text{because small } x \text{ region important} \\ \text{ partly stabilized by NNLO} \end{array}$

CONSERVATIVE SOLUTIONS

SELECT COHERENT SET OF DATA

ALEKHIN PARTONS

- ONLY DIS DATA INCLUDED
- $\Delta \chi^2 = 1$ provides good 1- σ curves

- ALEKHIN 2003 PARTON UNCERTAINTIES (SOLID, DASHED) COMPARABLE TO CTEQ6 (DOTTED)
- CANNOT SEPARATE ACCU-RATELY ANTIQUARK DISTNS.
- ERROR ON σ_W COMPARABLE TO CTEQ, MRST

ERROR RESCALING

HOW CAN DATA FROM INCONSISTENT SETS BE INCLUDED? ASSUME INCONSISTENCY DUE TO UNDERESTIMATED (SYST.) ERROR:

For the experiments with $\chi^2 > 1$ the statistical errors in data were rescaled in order to get $\chi^2 = 1$

ALEKHIN 2005 (PRELIM.)

THE BAYESIAN MONTE CARLO APPROACH (GIELE, KOSOWER, KELLER 2001)

- generate a Monte-Carlo sample of fcts. with "reasonable" prior distn. (e.g. an available parton set) \rightarrow representation of probability functional $\mathcal{P}[f_i]$
- calculate observables with functional integral
- update probability using Bayesian inference on MC sample: better agreement with data \rightarrow more functions in sample
- iterate until convergence achieved

THE BAYESIAN MONTE CARLO APPROACH (GIELE, KOSOWER, KELLER 2001)

- generate a Monte-Carlo sample of fcts. with "reasonable" prior distn. (e.g. an available parton set) \rightarrow representation of probability functional $\mathcal{P}[f_i]$
- calculate observables with functional integral
- update probability using Bayesian inference on MC sample: better agreement with data \rightarrow more functions in sample
- iterate until convergence achieved

PROBLEM IS MADE FINITE-DIMENSIONAL BY THE CHOICE OF PRIOR, BUT RESULT DO NOT DEPEND ON THE CHOICE IF SUFFICIENTLY GENERAL HARD TO HANDLE "FLAT DIRECTIONS" (Monte Carlo replicas which lead to same agreement with data); COMPUTATIONALLY VERY INTENSIVE; DIFFICULT TO ACHIEVE INDEP. FROM PRIOR

RESULT: FERMI PARTONS

 F_2^{singlet} AND GLUON RATIOS FERMI/MRST

ONLY SUBSET OF DATA FITTED (H1, E665, BCDMS DIS DATA)

GOOD AGREEMENT WITH TEVATRON W XSECT TROUBLE WITH VALUE OF α_s

THE NEURAL MONTE CARLO APPROACH (S.F., GARRIDO, LATORRE, PICCIONE 2002)

BASIC IDEA: USE NEURAL NETWORKS AS UNIVERSAL UNBIASED INTERPOLANTS

THE NEURAL MONTE CARLO APPROACH (S.F., GARRIDO, LATORRE, PICCIONE 2002)

BASIC IDEA: USE NEURAL NETWORKS AS UNIVERSAL UNBIASED INTERPOLANTS

- GENERATE A SET OF MONTE CARLO REPLICAS $\sigma^{(k)}(p_i)$ OF THE ORIGINAL DATASET $\sigma^{(\text{data})}(p_i)$ (p_i values of the kin. variables where σ is measured) \Rightarrow REPRESENTATION OF $\mathcal{P}[\sigma(p_i)]$ AT DISCRETE SET OF POINTS p_i
- TRAIN A NEURAL NET FOR EACH PDF ON EACH REPLICA, THUS OBTAINING A NEURAL REPRESENTATION OF THE PDFS $f_i^{(net),(k)}$
- THE SET OF NEURAL NETS IS A REPRESENTATION OF THE PROBABILITY DENSITY:

$$\left\langle \sigma\left[f_{i}\right]\right\rangle = \frac{1}{N_{rep}}\sum_{k=1}^{N_{rep}}\sigma\left[f_{i}^{(net)(k)}\right]$$

• CHECK GOODNESS OF FIT THROUGH STATISTICAL INDICATORS $(\chi^2, \text{CORRELATION}, ...)$

THE NEURAL MONTE CARLO APPROACH (S.F., GARRIDO, LATORRE, PICCIONE 2002)

BASIC IDEA: USE NEURAL NETWORKS AS UNIVERSAL UNBIASED INTERPOLANTS

- GENERATE A SET OF MONTE CARLO REPLICAS $\sigma^{(k)}(p_i)$ OF THE ORIGINAL DATASET $\sigma^{(\text{data})}(p_i)$ (p_i values of the kin. variables where σ is measured) \Rightarrow REPRESENTATION OF $\mathcal{P}[\sigma(p_i)]$ AT DISCRETE SET OF POINTS p_i
- TRAIN A NEURAL NET FOR EACH PDF ON EACH REPLICA, THUS OBTAINING A NEURAL REPRESENTATION OF THE PDFS $f_i^{(net),(k)}$
- THE SET OF NEURAL NETS IS A REPRESENTATION OF THE PROBABILITY DENSITY:

$$\left\langle \sigma\left[f_{i}\right]\right\rangle = \frac{1}{N_{rep}}\sum_{k=1}^{N_{rep}}\sigma\left[f_{i}^{(net)(k)}\right]$$

• CHECK GOODNESS OF FIT THROUGH STATISTICAL INDICATORS $(\chi^2, \text{CORRELATION}, ...)$

THE NNPDF COLLABORATION

L. DEL DEBBIO, S.F. J. LATORRE, A. PICCIONE, J. ROJO

NEURAL NETWORKS AS INTERPOLATORS

- START WITH RANDOM NETWORK & COMPUTE OUTPUT FOR GIVEN INPUT (F_2 FOR GIVEN (x, Q^2))
- COMPARE COMPUTED OUTPUT TO DESIRED OUTPUT BY MEANS OF ENERGY FUNCTION (e.g. $\chi^2)$
- VARY WEIGHTS AND THRESHOLDS (BACK-PROPAGATION OR GENETIC ALGORITHM)
- ITERATE

AS TRAINING PROGRESSES, SMOOTHNESS OF NET DECREASES

NEURAL NETWORKS AS INTERPOLATORS

- START WITH RANDOM NETWORK & COMPUTE OUTPUT FOR GIVEN INPUT (F_2 FOR GIVEN (x, Q^2))
- COMPARE COMPUTED OUTPUT TO DESIRED OUTPUT BY MEANS OF ENERGY FUNCTION (e.g. χ^2)
- VARY WEIGHTS AND THRESHOLDS (BACK-PROPAGATION OR GENETIC ALGORITHM)
- ITERATE
- AS TRAINING PROGRESSES, SMOOTHNESS OF NET DECREASES

TRAINING CAN BE STOPPED BEFORE OVERLEARNING ON THE BASIS OF STATISTICAL CRITERIA

PRELIMINARY RESULT: NEURAL STRUCTURE FUNCTIONS

SET ASIDE INTRICACIES OF FULL THE PARTON FIT & FIT STRUCTURE FUNCTION...

- FULL NEURAL FIT TO WORLD DATA F_2 FOR PROTON, DEUTERON & NONSINGLET AVAILABLE
- ERRORS AND CORRELATIONS FAITHFULLY REPRODUCED, BUT STAT. UNCERTAINTIES OPTIMALLY COMBINED \Rightarrow FIT CAN BE USED IN LIEU OF DATA, BUT BETTER THAN THEM
- FITS WITH FIXED FUNCTIONAL FORM UNDERESTIMATE ERROR ON EXTRAPOLATION
NEURAL HANDLING OF INCOMPATIBLE DATA

- FOR PROTON FITS (PRE-HERA DATA), CONVERGENCE ACHIEVED, BUT $E^{(0)} \ge 1.4$ EVEN W. VERY LONG TRAINING
- for NMC data $E^{(0)} \gtrsim 1.6$ (training with all data)
- for NMC data $E^{(0)} \gtrsim 2.2$ (training with NMC only)
- ALL OTHER STATISTICAL INDICATORS OK

NMC proton data/nets Blow-up of proton data/nets 0.26<x<0.29 0.26<x<0.29 1.65 1.65 1.60 1.60 1.55 1.55 1.50 a∾ E 1.50 ч Ч \times NMC 90 GeV + NMC data NMC 120 GeV □ BCDMS data 1.45 NMC 200 GeV 1.45 ♦ Neural Networks **¤ NMC 280 GeV** 1.40 40 50 60 70 20 30 10 100 5 50 ۵² ດ²

SOME NMC DATA ARE INCOMPATIBLE WITH OTHER DATA

NEURAL NET DISCARDS INCONSISTENT DATA & PROVIDES GOOD FIT TO THE REST

TOWARDS NEURAL PARTONS: THE NONSINGLET CASE (NNPDF 05)

- x space partons, N space evolution: determine interpolated evolution kernels
- FULL NNLO EVOLUTION IMPLEMENTED, PRELIMINARY NLO FITS AVAILABLE

- FITS WITH FIXED FUNCTIONAL FORM **SUBSTANTIALLY** UNDERESTIMATE ERROR ON EXTRAPOLATION
- NO EVIDENCE FOR "WELL-KNOWN" SMALL x RISE OF NONSINGLET

CONCLUSIONS

- THE NEEDS OF PRECISION PHENOMENOLOGY AT THE LHC HAS STIMULATED DRAMATIC PROGRESS IN THE PHYSICS OF STRUCTURE FUNCTIONS
- PARTON DISTRIBUTIONS WITH ERRORS ARE NOW BEING DEVELOPED THANKS TO THE AVAILABILITY OF A WIDE VARIETY OF DATA AND OF RAPID THEORETICAL PROGRESS IN PERTURBATIVE QCD
- "STANDARD" METHODS OF PDF DETERMINATION ARE STRETCHED TO THEIR LIMIT AND MOTIVATE THE DEVELOPMENT OF NEW TECHNIQUES
- NEURAL PARTON DISTRIBUTIONS ARE BEHIND THE CORNER

HIGGS PRODUCTION AT THE LHC

Higgs decay in $e^+e^- + 2$ jets at CMS