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From hadronic B decays to the angles of the
unitarity triangle

M. Beneke
Napoli, April 8, 2005

Outline:

• Introduction

• Theoretical tools: Heavy quark expansion for exclusive processes – QCD factori-
zation, soft-collinear effective theory

• CP violation in hadronic 2-body decays: results and puzzles

– From hadronic B decays to the angles of the unitarity triangle –



2

Introduction
Flavour and CP violation in the Standard Mo-

del, Status of the unitarity triangle, Theoretical

challenges

– From hadronic B decays to the angles of the unitarity triangle –
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Flavour and CP violation in the SM
Fundamentally related to the scalar sector

L = −λDijQ̄iφDj − λUijQ̄iφ̃Uj + h.c.

At low energies (use mass basis): flavour-changing W -interactions

Observables: 6 diagonal elements (quark masses)

VCKM ≡ UULU
†
DL

(unitary, three angles, one CP-violating phase)
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– From hadronic B decays to the angles of the unitarity triangle –
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Fundamental goals of flavour physics

• determine constants of Nature

B physics: |Vcb|, |Vub|, δCKM, mb

• confirm (or falsify) CKM mechanism of CP violation:

Kaons (ε, ε′/ε, future: K → πνν̄)

B mesons (sin(2β), many other observables)

• probe new interactions at the TeV scale

high sensitivity, because flavour-changing interactions in the SM are suppressed by small CKM

couplings

λCKMGF �
g2

1 TeV2

– From hadronic B decays to the angles of the unitarity triangle –
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Status of the unitarity triangle
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• Very consistent picture. KM mecha-

nism has passed a decisive test with

the measurement of sin(2β).

• Knowledge about CKM phase comes

from BB̄ and KK̄ meson mixing

(∆F = 2 processes) – the top sector

(Vtd, β)

• Establish further consistency through

B decays (∆B = 1 processes) – the

bottom sector (Vub, γ) – and search

for anomalous effects in specific fla-

vour transitions.

– From hadronic B decays to the angles of the unitarity triangle –
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Heavy Flavour Physics in the B factory era
[after the sin(2β) measurement from B → J/ψKS]

• High statistics accesses branching fractions in the 10−6 range, “rare decays”.

Many exclusive decays to light hadrons:

– B → ππ, πK, πρ, . . . – about 40 different final states from the lightest pseudoscalar or

vector meson nonet observed to date,

– B → K∗γ, B → K(∗)l+l−, B → ργ

– Time-resolved studies of mixing and decay

• First precise explorations of b→ d FCNCs as well as b→ s hadronic and electroweak FCNCs.

Measurements of γ (α)

Opportunities to detect new flavour-changing or CP-violating interactions (probably very weak)

through a larger variety of observables than provided by meson mixing.

• New challenges for theory.

– From hadronic B decays to the angles of the unitarity triangle –
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Heavy Flavour Physics in the 1990’s

• Spectroscopy

B → D(∗)lν – |Vcb|
Inclusive heavy quark decays – |Vcb|, |Vub|, lifetimes

B → Xsγ – electromagnetic b→ s FCNC

• Theory is based on expansion in Λ/mb (heavy quark expansion):

- HQET for B → D matrix elements

- Operator product expansion for inclusive decays

• New challenge is exclusive B → light decays, i.e. detected light particles with large energy (like

jets or light hadrons in high-energy collisions)

– HQET and the OPE cannot be applied, because they assume that the light degrees of

freedom are soft, i.e. energy, momentum of order Λ
– Methods from jet physics cannot be applied because soft physics IS important (the

light degrees of freedom in the B meson)

– From hadronic B decays to the angles of the unitarity triangle –
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Theoretical tools
Weak effective Hamiltonian, QCD factorization,

Soft-collinear effective theory (SCET)

References:

– QCDF (MB, Buchalla, Neubert, Sachrajda)

– SCET (Bauer, Pirjol, Stewart, Fleming and others; MB, Feldmann, Chapovsky, Diehl; Hill,
Neubert, Becher, Lange and others; Chay and Kim)

– From hadronic B decays to the angles of the unitarity triangle –
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Theory problem: computation of decay amplitudes

• Focus on hadronic 2-body decays

(such as B → ππ, applies also to radiative decays such as B → ργ)

• Basic theoretical strategies:

– “data-driven”: use SU(3) to relate different decays

– “theory-driven”: compute amplitudes in heavy quark expansion (QCD factorization [BBNS])

���

��

�

���

〈π−π+|B̄〉LSM
=

� �

�����

� �

– From hadronic B decays to the angles of the unitarity triangle –
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Multiple scales

• Construct heavy quark expansion by integrating out the various large scales – in practice we

keep the leading term in Λ/mb only, plus some corrections

– weak scale: p2 ∼M2
W

– heavy quark (hard) scale: p2 ∼ m2
b

– intermediate (hard-collinear) scale: p2 ∼ mbΛ

energy ∼ mb, p⊥ ∼
√
mbΛ

– QCD scale: p2 ∼ Λ2

collinear: energy ∼ mb, p⊥ ∼ Λ

soft: p ∼ Λ

The hard-collinear scale is a consequence of the relevance of soft AND collinear IR physics:

(ps + pc)
2 ∼ mbΛ

• Use a sequence of effective theories:

SM → QCD+QED → SCETI → SCETII

– From hadronic B decays to the angles of the unitarity triangle –
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Step I: Integrating out the weak scale

Standard procedure: Remove W , Z, top and highly virtual light fields to obtain the “effective

weak Lagrangian”

Heff =
GF√

2

X
p=u,c

λ
(D)
p

X
i

Ci(µW )Qi(µW ) + h.c.

[λ
(D)
p = VpbV

∗
pD, D = d, s]

Ci’s known to NNLL since 2004 (Bobeth, Misiak, Urban; Gambino, Gorbahn, Haisch)

New flavour violating interactions enter only here: modify the Ci, add more operators

What remains is QCD (× QED):

〈π−π+|Qi|B̄〉QCD×QED =
�����

���

�	�

– From hadronic B decays to the angles of the unitarity triangle –



12

Weak effective Hamiltonian [Colour indices dropped]

Tree operators

Q
p
1,2 = (p̄b)V−A(D̄p)V−A

QCD penguin operators

Q3−6 = (D̄b)V−A

X
q (q̄q)V∓A

Q8g = −
gs

8π2
mb D̄σµν(1 + γ5)G

µν
b

EW penguin operators

Q7−10 = (D̄b)V−A

X
q

3
2eq(q̄q)V±A

Q7γ = −
e

8π2
mb D̄σµν(1 + γ5)F

µν
b

�

�

�

�

�

�
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– From hadronic B decays to the angles of the unitarity triangle –
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Step II: Integrating out the heavy quark scale:

QCD → SCETI

• Integrate out fluctuations (modes) with virtuality m2
b � Λ2

Can be done perturbatively

• Identify long-distance degrees of freedom

hard-collinear (p ∼ (1,
√

Λ,Λ)), collinear (p ∼ (1,Λ,Λ2)) and soft (p ∼ (Λ,Λ,Λ))

• Find the operators that parameterize the long-distance part of the decay process.

• Can be done with diagrammatic methods (as in jet physics) or – more elegeantly – with soft

collinear effective theory (SCET)

– Fields have defined power counting in Λ.

– Write down the possible interactions.

– Match to QCD.
[p ∼ (n+p, p⊥, n−p), n

2
∓ = 0, n−n+ = 2]

– From hadronic B decays to the angles of the unitarity triangle –
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SCETI Lagrangian [pure Yang-Mills terms not shown]

L = L(0) + L(1) + .... [expansion in
p

Λ/mb]

L(0)
= ξ̄c

„
in−D + i 6D⊥c

1

in+Dc

i 6D⊥c
« 6n+

2
ξc + q̄i 6Dsq + h̄vivDshv

L(1)
= ξ̄c(x

µ
⊥n

ν
−WcgsF

s
µνW

†
c )
6n+

2
ξhc + q̄ W

†
c i 6D⊥cξc − ξ̄c i

←−6D⊥cWcq

Wc ≡ P exp

„
igs

Z 0

−∞
ds n+Ac(x+ sn+)

«
“collinear Wilson line”

6n−ξc = 0 “collinear quark field”

SCET is a non-local EFT, because n+p(h)c ∼ mb is large→ factorization in convolutions (rather

than products) just as in DIS (+ many further technicalities such as light-front multipole

expansion of fields ...)

– From hadronic B decays to the angles of the unitarity triangle –
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Hard factorization [omit Dirac and colour structures]

Basic result of the second step:

〈π−π+|(ūb)(d̄u)|B̄〉QCD = F
Bπ × T I

? Φπ + Ξ
Bπ
? T

II
? Φπ

• T I,II involve virtualities m2
b (perturbati-

ve)

• Below the scale mb the second pion has

factorized (see figure).

Strong (rescattering phases) appear only

in T I,II – perturbative!

• Φπ is a light-cone distribution amplitu-

de: 〈π|ξ̄c(sn+)ξc(0)|0〉SCET

• FBπ(q2 = 0) is a standard heavy-to-light form factor (from QCD sum rules or lattice

extrapolations). In SCETI this is related to 〈π|ξ̄c(0)Γhv(0)|B̄〉SCET

• ΞBπ(q2 = 0, τ) is a complicated non-local form factor. In SCETI this is related to

〈π|ξ̄c(0)ΓAc(rn+)hv(0)|B̄〉SCET

���
��

���

�	�
�

– From hadronic B decays to the angles of the unitarity triangle –
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Step III: Integrating out the hard-collinear scale:

SCETI → SCETII

To remove the unknown non-local form factor, integrate out hard-collinear modes (virtualities

mbΛ→ perturbative, though at comparatively lower scale).

Basic result of the third step:

Ξ
Bπ

(q
2
= 0, τ) ∼ FT

ˆ
〈π|ξ̄c(0)ΓAc(rn+)hv(0)|B̄〉SCET

˜
= ΦB ? J

II
? Φπ,

where J II is a perturbative hard-collinear function and ΦB the B meson light-cone distribution

amplitude related to 〈0|q̄s(tn−)hv(0)|B̄〉SCET – essentially only one new non-perturbative

parameter

Note:
Contrary to ΞBπ(q2 = 0, τ) the standard form factor FBπ(q2 = 0) does not factorize into

ΦB ? J
I ? Φπ, because the matrix element is dominated by a non-factorizable soft overlap

contribution [MB, Feldmann; Lange, Neubert].

Hence keep the standard QCD form factor as an input parameter.

– From hadronic B decays to the angles of the unitarity triangle –
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Final QCD factorization formula
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A(B →M1M2) = factor×
X
terms

C(µh)×
n
F
BM1 × T I

(µh, µs) ? fM2
ΦM2

(µs)

+ fBΦB(µs) ?
h
T

II
(µh, µI) ? J

II
(µI, µs)

i
? fM1

ΦM1
(µs) ? fM2

ΦM2
(µs)

o
+ first term with M1 ↔M2 if allowed

+ Λ/mb corrections

– From hadronic B decays to the angles of the unitarity triangle –
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Phenomenological implementation

• Currently NLO, i.e.

T
I ∼ 1 + αs T

II ∼ 1 J
II ∼ αs

• This means LO for strong phases of the amplitudes. [NLO calculation of phases is in progress,

important for direct CP asymmetries.]

• (Unfortunately) power corrections cannot be entirely ignored:

– Add calculable Λ/mb correction to the form factor term (from “scalar penguins”)

– Phenomenological model for power correction from weak annihilation used to estimate errors

from power corrections.

No systematic treatment of all power corrections is known.

– From hadronic B decays to the angles of the unitarity triangle –
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Applications: Results and Puzzles
Selective:

B → πK(∗), B → ππ, πρ, ...

Determinations of γ

References:
– (MB, Buchalla, Neubert, Sachrajda)
– (MB, Neubert, hep-ph/0308039)

– From hadronic B decays to the angles of the unitarity triangle –



20

Observables

Decay amplitude can always be decomposed into a CP-even and CP-odd term. In the SM,

Af = A(B → f) = A1 + A2e
i(δ+γ)

(A1,2 > 0)

Āf̄ = A(B̄ → f̄) = A1 + A2e
i(δ−γ)

• CP-averaged branching fractions

1

2
(Br(f̄) + Br(f) = A

2
1 + A

2
2 + 2A1A2 cos δ cos γ

Sensitive to magnitudes of amplitudes. For γ ∼ 70◦ and small strong phases δ large sensitivity

to γ if A1 and A2 are comparable.

• (Direct) CP-asymmetries

ACP(f̄) =
Br(f̄)− Br(f)

Br(f̄) + Br(f)
∝ 2A1A2 sin δ sin γ

Proportional to CP phases. For γ ∼ 70◦ and small strong phases δ smaller sensitivity to γ.

– From hadronic B decays to the angles of the unitarity triangle –
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• Mixing-induced CP asymmetries, if f is a common final state of B and B̄.

Interference of e
iΦBdAf and Āf̄ . Theoretically clean, if one of A1,2 is negligible (cf.

B → J/ψK).

• Decay angle distributions in B → V V

Three independent helicity amplitudes with

A0 � A− � A+ (large energy, left-handed weak interactions)

Sensitive to handedness of new flavour-violating interactions.

– From hadronic B decays to the angles of the unitarity triangle –
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Flavour amplitudes

AB−→π−K̄0 = AπK̄

h
δpu β2 + α

p
4 − 1

2α
p
4,EW + βp3 + βp3,EW

i
,

√
2AB−→π0K− = AπK̄

h
δpu (α1 + β2) + α

p
4 + α

p
4,EW + β

p
3 + β

p
3,EW

i
+ AK̄π

h
δpu α2 + 3

2α
p
3,EW

i
,

AB̄0→π+K− = AπK̄

h
δpu α1 + α

p
4 + α

p
4,EW + β

p
3 − 1

2β
p
3,EW

i
,

√
2AB̄0→π0K̄0 = AπK̄

h
−αp4 + 1

2α
p
4,EW − β

p
3 + 1

2β
p
3,EW

i
+ AK̄π

h
δpu α2 + 3

2α
p
3,EW

i
.

AM1M2
= i

GF√
2
m2
BF

B→M1
0 (0)fM2

VpbV
∗
ps

Sum over p = u, c. For ∆S = 1 decays p = u is CKM-suppressed. Generically, these decays are

therefore penguin-dominated.

α1,2 tree, α3,4 QCD penguin, α3,4,EW electroweak penguin, βpi weak annihilation.

Same coefficients for SU(2) isospin related decays, but different for πK vs ππ or πK∗.

– From hadronic B decays to the angles of the unitarity triangle –
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Overall comparison

Branching fractions are correctly predicted for modes whose branching fractions vary over three

orders of magnitude.

– From hadronic B decays to the angles of the unitarity triangle –
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– From hadronic B decays to the angles of the unitarity triangle –
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Penguin-dominated decays B → πK(∗)
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• Good agreement of the calculated PP QCD penguin amplitude

→ account for magnitude of πK BR’s contrary to LO prediction

• Predicted phase is small in agreement with data (from ACP(π+K̄−)) but preferentially the

wrong sign.

• Suppression of PV penguin amplitude is predicted but magnitude falls short of data by about

(20-50)% (but data maybe controversial).

– From hadronic B decays to the angles of the unitarity triangle –
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(ρ̄, η̄) fit from B → πK, ππ
Global fit to six CP-averaged branching fractions (using the same fit procedure as in the standard

fit by Höcker et al.)
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(BBNS, 2001; update from Neubert, 2003)

• Consistent with “standard” fit. Favours slightly larger γ. (See also CKMfitter next slide.)

• Establishes CP-violation in the bottom sector (phase of Vub) – but maybe it is more difficult to

quantify the theoretical uncertainty than in the standard fit ...

– From hadronic B decays to the angles of the unitarity triangle –
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γ = (62
+6
−9)
◦

(charmless)

versus

γ = (62
+10
−12)

◦
(standard fit)

– From hadronic B decays to the angles of the unitarity triangle –
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A B → πK puzzle?

Construct ratios with little dependence on γ, but sensitive to electroweak penguins.

R00 =
2Γ(B̄0 → π0K̄0)

Γ(B− → π−K̄0)
= |1− rEW|2 + 2 cos γ Re rC + . . .

RL =
2Γ(B̄0 → π0K̄0) + 2Γ(B− → π0K−)

Γ(B− → π−K̄0) + Γ(B̄0 → π+K−)
= 1 + |rEW|2 − cos γ Re(rT r

∗
EW) + . . .

rEW =
3

2
RπK

αc3,EW(πK̄)

α̂c4(πK̄)
≈ 0.12− 0.01i

rC ≈ 0.03− 0.02i, rT ≈ 0.18− 0.02i

theory data

R00 0.79± 0.08 1.04± 0.11

RL 1.01± 0.02 1.12± 0.07

- To explain data need rEW ≈ 0.3e±90◦ – a (2-

3) fold enhancement of the EW b → s penguin

amplitude with a large CP-violating phase.

- Hints of new physics or a persistent problem with

the B → π0K0 measurement? [> dozen papers]

– From hadronic B decays to the angles of the unitarity triangle –
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Another πK problem:

δACP ≡ ACP(π
0
K
±
)− ACP(π

∓
K
±
) = −2 sin γ

“
Im(rC)− Im(rT rEW)

”
+ . . .

where the second term is negligible in the SM.

theory data

δACP 0.03± 0.03 0.15± 0.04

– From hadronic B decays to the angles of the unitarity triangle –
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B → ππ, πρ (tree-dominated)

Mode Theory Br (top) and ACP (bottom) S1 S2 S3 S4 Experiment

B− → π−π0 6.0+3.0 +2.1 +1.0 +0.4
−2.4−1.8−0.5−0.4 5.8 5.5 6.0 5.1 5.5± 0.6

B̄0 → π+π− 8.9+4.0 +3.6 +0.6 +1.2
−3.4−3.0−1.0−0.8 6.0 4.6 9.5 5.2 4.5± 0.4

B̄0 → π0π0 0.3+0.2 +0.2 +0.3 +0.2
−0.2−0.1−0.1−0.1 0.7 0.9 0.4 0.7 1.5± 0.3

B− → π−π0 −0.02+0.01 +0.05 +0.00 +0.01
−0.01−0.05−0.00−0.01 −0.02 −0.02 −0.02 −0.02 −2± 7

B̄0 → π+π− −6.5+2.1 +3.0 +0.1 +13.2
−2.1−2.8−0.3−12.8 −9.6 −9.1 5.6 10.3 37± 28

B̄0 → π0π0 45.1+18.4 +15.1 + 4.3 +46.5
−12.8−13.8−14.1−61.6 23.0 21.7 5.6 −19.0 28± 40

• Results for ππ counter to naive expectations.

In particular Br(π+π−)/Br(π−π0) too small, Br(π0π0) and ACP(π+π−) too large.

For πρ reasonable agreement, but still large experimental errors.

• Discrepancies can be blamed on hadronic physics: Large colour-suppressed tree (α2), smaller

B → π form factor or large strong phase of penguin amplitude?

Not completely understood, Γ(B → πlν) at q2 = 0 should help.

• Focus on quantities insensitive to FB→π, α2 and depending only on cos δP .

– From hadronic B decays to the angles of the unitarity triangle –
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Time-dependent CP asymmetries

|Af(t)|2 ≡ |〈f |B(t)〉|2 =
e−Γt

2

`
|Af |2 + |Āf |2

´n
1 +Cf cos(∆mB t)−Sf sin(∆mB t)

o
,

ρf =
Āf
Af
, Cf =

1− |ρf |2

1 + |ρf |2
, Sf = −2

Im (e−2iβρf)

1 + |ρf |2

Focus on Sππ and S ≡ 1
2 (Sπ−ρ+ + Sπ+ρ−), because it is very sensitive to γ and less sensitive to

hadronic uncertainties. To see this, expand in the penguin-to-tree ratio

S =
2R

1 + R2
sin 2α−

2R

1 + R2


a cos δa

„
2 sin 2α

1 + R2
cos γ + sin(2β + γ)

«

− b cos δb

 
2R2 sin 2α

1 + R2
cos γ + sin(2β + γ)

!ff
+ . . . (α = π − β − γ)

AρπTρπ/(AπρTπρ) = Re
iδT R = 0.91

+0.26
−0.21, δT ≈ 0

Pπρ/Tπρ = a e
iδa, Pρπ/Tρπ = −b eiδb, a ≈ b ≈ 0.1, cos δa,b ≈ 1

For Sππ put R = 1, δT = 0, a = −b ≈ 0.3, δa = δb.

– From hadronic B decays to the angles of the unitarity triangle –
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from S = −0.13± 0.13:

γ = (70
+8
−8)
◦

or γ = (153
+6
−6)
◦

from Sππ = −0.50± 0.12:

γ = (66
+13
−12)

◦
or γ = (174

+5
−5)
◦

The first ranges are mutually consistent

and consistent as well with the global

fit to the BR’s and the standard mixing-

based fit.

– From hadronic B decays to the angles of the unitarity triangle –
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sin(2β) from b → s transitions
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Average (s-penguin)

0.722 ± 0.040 ± 0.023

0.728 ± 0.056 ± 0.023

0.726 ± 0.037

0.50 ± 0.25
 + 0.07

– 0.04

0.06 ± 0.33 ± 0.09

0.30 ± 0.14 ± 0.02

0.65 ± 0.18 ± 0.04

0.95
 + 0.23

– 0.32 ±
 0.10

–0.47 ± 0.41 ± 0.08

0.35
 + 0.30

– 0.33 ±
 0.04

0.30 ± 0.59 ± 0.11

0.50
 + 0.34

– 0.38 ±
 0.02

0.75 ± 0.64
 + 0.13

– 0.16

0.55 ± 0.22 ± 0.12

0.49 ± 0.18
 + 0.17

– 0.04

0.71
 + 0.32

– 0.38 ±
 0.04

–1.26 ± 0.68 ± 0.18

0.43 ± 0.07 0.43 ± 0.07
�

H F A GH F A G
Moriond 2005

Mixing-induced (time-dependent) CP

asymmetry Sf in B → J/ψKS and

B → ΦKS should both be nearly the

same, sin(2β) ≈ 0.7, as b → cc̄s

and b → ss̄s have (nearly) the same

weak phase.

– From hadronic B decays to the angles of the unitarity triangle –
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Theoretical results (sin(2β) = 0.726± 0.037)

Mode Theory δ sin(2β)f [Range]? Experiment

πKS 0.07+0.05
−0.04 [+0.02, 0.13] −0.39+0.27

−0.29

ρKS −0.08+0.08
−0.12 [−0.24, 0.02] —

η′KS 0.01+0.01
−0.01 [−0.01, 0.03] −0.32± 0.11

ηKS 0.10+0.11
−0.07 [−1.45, 0.27] —

φKS 0.02+0.01
−0.01 [+0.01, 0.04] −0.39± 0.20

ωKS 0.13+0.08
−0.08 [+0.03, 0.19] 0.02± 0.64+0.13

−0.16

? Range from a random scan of 104 input parameter sets and requiring that experimental branching fractions are
reproduced within ±3σ.

• δ sin(2β)f is positive except for ρKS and ηKS.

• The large range for ηKS disappears once a lower limit on Br(ηK) is imposed.

• Smallest deviations and uncertainties for η′KS and φKS.

⇒ Many speculations on anomalous CP violation in b→ ss̄s.

– From hadronic B decays to the angles of the unitarity triangle –
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Used-to-be puzzles

• B → η(′)K(∗)
(MB, Neubert; 2002)

Interesting pattern Br(η′K) ≈ 20 Br(ηK) but Br(η′K∗) < Br(ηK∗)

QCD factorization explains this as an interference of QCD b→ s penguin amplitudes which are

different for PP and PV final states and can have different signs for η and η′.

QCD factorization accounts for the large B → η′K branching fraction because penguin

amplitudes are enhanced by short-distance radiative corrections.

No need to invoke anomalous b→ sg interactions

• Polarization in B → V V (Kagan 2004; MB, Rohrer, Yang; others)

For mb →∞ both vector mesons are longitudinally polarized. Expect

A0 � A− [1/mb]� A+ [1/m2
b], hence

fL = |A0|2/
X
0,±
|Ai|2 = 1 +O(1/m

2
b) but ...

– From hadronic B decays to the angles of the unitarity triangle –
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fL data theory

ρ+ρ− 0.99+0.05
−0.04

ρ−ρ0 0.97+0.05
−0.07

ΦK∗− 0.50± 0.07

ΦK∗0 0.48± 0.04

• Agreement with expectations for tree-dominated decays (ρρ).

• For b→ s penguin dominated modes (φK∗), however

A0 ∼ A− (no 1/mb suppression!)

On the other hand, as predicted

A− ∼ A+ (no evidence for anomalous right-handed interactions)

⇒ “Polarization puzzle” (2003)

– From hadronic B decays to the angles of the unitarity triangle –
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fL data theory

ρ+ρ− 0.99+0.05
−0.04 0.95+0.02

−0.03

ρ−ρ0 0.97+0.05
−0.07 0.96+0.02

−0.03

ΦK∗− 0.50± 0.07 0.81+0.23
−0.44

ΦK∗0 0.48± 0.04 0.81+0.23
−0.45

• Agreement with expectations for tree-dominated decays (ρρ).

• For b→ s penguin dominated modes (φK∗), however

A0 ∼ A− (no 1/mb suppression!)

On the other hand, as predicted

A− ∼ A+ (no evidence for anomalous right-handed interactions)

• Theoretical calculation: The VV penguin amplitude may receive a large contribution from

weak annihilation, which precludes a reliable prediction of fL. No contradiction (but also no

prediction).

– From hadronic B decays to the angles of the unitarity triangle –
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Conclusion

• Over the past five years the theoretical description of hadronic exclusive B decays has advanced

from models to theory based on the heavy quark expansion, QCD factorization and soft-collinear

effective theory.

• Overall the comparison with data is successful and seems to imply

γ ∼ (60− 70)
◦

based on B decays in very good agreement with the standard unitarity triangle fit based mainly

on meson mixing. After sin(2β) this is the second major accomplishment of the B factory

experiments (and theory).

• There are persistent intriguing anomalies mostly related to hadronic b→ s FCNSs. Individually

neither significant nor conclusive.

Nevertheless the source of many theoretical speculations.

– From hadronic B decays to the angles of the unitarity triangle –


