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Introduction
Knowledge Discovery in Databases (KDD)

2oKDD Main steps,

Knowledge
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Process involved in whatever data-rich field aimed to

extract meaningful information from data




Introduction
Data Mining

dData Mining is a key step in KDD process
aimed to find meaningful patterns in the data.

IData Mining Methods
» Regression
» Classification
» Clustering
» Data Visualization




\ |atent Variable Models

= Latent variable models are probabilistic models which generate a
probability density function underlying a set of data in a
multidimensional input space.

= The probability density function is a mixture of Gaussian
expressed in terms of a smaller number of latent variables lying
iIn another space called “/atent space”.

= The latent space is usually 2 or 3 dimensional, therefore, by
using the Bayes theorem, one can derive the input data density
function in the latent space.

= Hence, the data itself and the density function can be visualized
In the latent space.




\Latent Variable Models

= Goal: to express the distribution p(t) of the variable t=(t,,...,t5) in
terms of a smaller number of latent variables x=(x;, ...,xq), Q<D.
The link between the latent and data spaces is obtained by the
nonlinear function y(x,w).
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Probabilistic Principal Surfaces

= Nonlinear latent variable model in which a mixture of
Gaussians in the input space is built

p(t|w,z>:klﬂzp(t|x,w,z)

Each mixture component is a Gaussian Distribution with
mean y(x,W) and covariance .

p(tx) = exp(—;(t—y(x,w»Tz1(t—y(x,w»j
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Probabilistic Principal Surfaces

= The covariance has the following form

_as T (D-a0Q) <
2(x) = 3 qz_l:eq (x)e, (x) + BD-0) d%‘fd (X)e; (x)
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Probabilistic Principal Surfaces

(a) (b)

Under a spherical Gaussian model, points 1 and 2 have equal
iInfluence on the center node y(x) (a) PPS have an oriented covariance
matrix so point 1 is probabilistically closer to the center node y(x) than point

2 (b)




Probabilistic Principal Surfaces

0 Based on a generalized EM for parameters
W, a, 3

a In practice, however, a Is kept fixed, and only
W and [3 are computed

o Computationally complex but fast
convergence




Probabilistic Principal Surfaces
Spherical PPS

o Manifold composed by nodes regularly
arranged on the surface of a sphere in 3D
space (Q=3)

0 Use manifold as a classification reference
template

0 Use projections for visualizations




Probabilistic Principal Surfaces
Spherical PPS

(a) Manifald in () Manifald in (c) t projected onto
latent space R® feature space R 2 manifold in latent space R :
O x x t *_ E[x|t]
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(a) The spherical manifold in R3 latent space.
(b) The spherical manifold in R® data space.
(c) Projection of data point t onto the latent spherical manifold.




'PPS & Data Mining

Spherical PPS for visualization

o Probabilistic Projection: the projected latent coordinate is computed as
a linear combination of all latent nodes weighted by the responsibility
matrix,

xrﬁ’mj_<x|tn> jxp(x|tn)dx ZrmnXm

a Since ||X,||=7 for m=1,...,Mand 2_r. =1 for n=1,...,N, all projections

lie within the sphere, i.e. ||x ||<7 and

a r,,Is the responsibility of latent variable x,, with respect to data point t,

p(tn | xin, W, ) p(xm)
-, P(ta | xi, W, B)p(xim')

p(xin | tn) =




Case Study

Yeast Gene Microarray Data

= P.T. Spellman et al., Comprehensive Identification of Cell
Cycle-regulated Genes of the Yeast Saccharomyces
cerevisiae by Microarray Hybridization, Molecular Biology of
the Cell, Vol. 9, 3273-3297, December, 1998

= 6178 genes each one subject to 6 experiments:
cIn3

clb2

alpha factor arrest

cdcl15 temperature-sensitive mutant

cdc28

o elutriation

= 73 features associate to each gene. After a preprocessing phase
the features were reduced to 32.

o O 0 0O O




 Case Study

Computational Steps
1. PREPROCESSING: Noise Estimation

Method and Nonlinear PCA

features (73) features(32)
Experiments alpha cdcls cdc28 elu gxperiments alpha cdcls cdc2d elu
tirma points 118 | 1.2 | 117 | 1...14 time points 1..8 1..8 1.8 1..8
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2. DATA MINING: 3D Spherical PPS
and Clustering




Case Study

Gene Noise Estimation Method

The genes behaviour is periodic. The period is the cell
cycle.

This implies that a gene behaviour, sampled for two cell
cycles, can be considered as two measurements of the
same thing.

This can be used to obtain an estimation for the
uncertainty of the measurement.




Case Study
Gene Noise Estimation Method

Cell cycle duration, i.e. period, depends on some
parameters such as temperature, nutrient source,
density of cells and so on (for our experiments, periods
were In the limits 90 £ 11 min).

To find the exact period length of each experiment we
divided the gene time series in two parts and searched
for (moving the cutting point in the interval 90 £ 11) the
point of best correlation between the two parts.




Case Study

Gene Noise Estimation Method

Once obtained the period length, we have computed
the noise/signal ratio of each gene, considering:

the difference between the two periods of each gene as an
estimation of its noise;

the mean of the two periods as the “real” signal of the gene.

This value was used to exclude too noisy genes.

This estimation is accomplished independently for
each experiment.




‘Case Study
Gene Noise Estimation Method

C

90 t'

Consider a generic gene signal over an experiment




‘Case Study

Gene Noisé Estimation Method
C

We estimate the
signal time period

90 t'

90 t'
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point
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90 t

The signals (before and after the cutting point) are superimposed: the average
between them it's the “true” signal. The difference is our estimate of the noise




‘Case Study

Gene Noise Estimation Method

Let T', f* and m be:

e 1" = period for the current experiment;

e f% = time course for gene a;

e m = number of time points for the current experiment
respectively. Let we define:

o fi=f%)fori=1,....m—T - first period for gene a

o [0=fi+T)fori=1,..,m—T -second period for gene a

o F(i) = LW _ getual signal of gene a at time i

o Jfi) = ﬁ - amplitude of the error for gene a at time i
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‘ Case Study

Preprocessing (nonlinear PCA)

= The data of the experiments are unevenly sampled,;

= To extract the features from the experiments we
apply a non-linear Principal Component Analysis;

= In detalls, we apply for each experiment the non-
linear PCA to extract the components (1 in our case)
to obtain the features.




Case Study
Neg-entropy based Clustering (NEC)

= Starting from the PPS density function we cluster its
Gaussian components using information based on
entropy.

= Several approaches have been introduced based on
the hypothesis test or Kullback-Leibler divergence

= We introduce an approach based on the Neg-entropy

= The algorithm permits to agglomerate automatically the
clusters using non-Gaussianity information




‘ Case Study
NEC.: neg-entropy

= Neg atropy is based on the information theoretic
guantity of differential entropy

= Itis used to obtain a measure of non @ussianity that is
zero for a Gaussian variable:

J(x) = H (X)) —H (X)

where Xg,,ss IS @ Gaussian random variable of the same
correlation (and covariance) matrix as x

= Neg eatropy is always non regative and itis zero if and
only if x has a Gaussian distribution




‘ Case Study
NEC: approximate neg-entropy

= The classical method to approximate neg-entropy is using high-order
cumulants

1 2 1
J(x) = —Eix’ " + = Kkurt(x)?
(= x}  kurt(x)
where kurt is the kurtosis

= A different and more robust approximation of the neg-entropy is

J(x) D[E{G(x} -H G |

where v is a standardized Gaussian variable and x has zero mean and
unit variance

= We note that choosing a G that does not grow fast, one obtains more
robust estimators. The following choices of G have proved very useful:
2

Gl:ilogcosh(ax) - GZ:£X4 - (33:_£e_az
a 4 a




Case Study
NEC: algorithm

m Starts from M clusters (one for each PPS
mixture component);

= Agglomerates two components, | and |:

o If the new cluster candidate Neg-entropy value of
IS less of a fixed threshold
= theni U jreplaces clustersiand|. i U] becomes cluster i
and |=]+1;
= else|=j+1
o the steps are repeated until all the components
are processed

= Ends with the final number of clusters.




Case Study
NEC: Gaussians not merged by the algorithm

1

0D.9F

NegE=750




Case Study
NEC: two merged Gaussian distributions

NegE=4 [




'Case Study

3D PCA of Yeast Gene Microarray Data

6~




‘Case Study

PPS: data point proiections

Frojected Data

HLN




‘Case Study
PPS: pdf

Frobability density in latent space

0.02

-40.015

0.07

0.003




‘Case Study
PPS: pdf and data point projections

Frobability density in latent space and data points
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‘Case Study
NEC Results

Front view

P-Value: 8x10-7 @ 05 ’

05

Back view

1.
4 .
1
s D P-Value: 1.5x10°
05 05 :

1 -1




‘Case Study
About the threshold

= Choosing of the right value for the threshold is
critical.

= A value too high can produce few clusters but with
a multimodal distribution of the distances

B

= B OB B B B B B OB

| Cluster 34




‘Case Study
About the threshold...

400

|' 1 1 L 1
Dz 0 02 04 0E OB 1 12 14 16 1B

= Aright value, instead, produce clusters with a mean
distance consistent with the noise estimation we
found in the first step
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\ Case Study
Cluster 49

= 56 genes (many of them not cell- gcle regulated).
= No interesection with Spellman's cluster.

= 26 out of 56 genes are the components of nucleus and
membrane- ound organelles, and are involved in two
processes, cytoplasm organization and biogenesis and
rlbosome biogenesis and assembly.

0 46% of these 26 genes have the functions of RNA
binding and catalysing the ATF separation reactions
during unwinding RNA helix.

= Some of 24 rested genes are involved in biopolymer
metabolism.

= There are half of genes among these 24 rested genes
with unknown functions (could be object of further
analysis).




‘Case Study
Cluster 23

= 29 genes
= p-value = 8x10-7
= 48,98% intersection with Spellman CLN2 cluster.

a0 Most of these genes are strongly cell-cycle
regulated, peak expression occurs in mid—G1 phase

a strongly induced by GAL-CLN3 but are strongly
repressed by GAL-CLB2.

a All these genes are involved in DNA replication.

= The rest of cluster contains some genes with unknown
functions

ra L O — ra
T T T




\Conclusions

0 Spherical PPS exhibits a number of attractive
abilities for classification and visualization of
high-D data

0 The spherical manifold is able to better
characterize and represent the periphery and
the sparsity of high-D data due to the curse
of dimensionality

o Overcome border effects as in rectangular
manifold (GTM) and grid (SOM)




'Conclusions ...

0 Visualization i1s an important tool in data
mining applications for all types of user

0 The domain expert must be involved in the
process

0 Interaction with the plots allows the user to
guery the data more effectively.




'Conclusions

o We built a graphical user interface which allows to interact
with the data projected on a unit sphere surface

o A useris allowed to

> Interact with data by selecting points on the latent manifold
retrieving the corresponding source Iin the original catalog

> The user is able to localize clusters of data on the sphere
which correspond to clusters of similar data in the input
space

o Useful for genetic data mining, but general enough to
address a large number of application fields
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