
Probabilistic Principal 
Surfaces For Yeast Gene 
Microarray Data Mining

Roberto Tagliaferri
Department of Mathematics and Informatics
University of Salerno, Italy
rtagliaferri@unisa.it



AstroNeural Collaboration

� Napoli
� Department of Physical 

Sciences
� Roberto Amato 
� Carmine Del Mondo
� Natalia Deniskina
� Ciro Donalek
� Giuseppe Longo 
� Gennaro Miele

� Telethon Institute for 
Genetics and Medicine
� Diego Di Bernardo

� Salerno
� Department of Mathematics 

and Informatics
� Angelo Ciaramella
� Giancarlo Raiconi
� Antonino Staiano
� Roberto Tagliaferri



Outline
� Introduction

� Knowledge Discovery in Databases
� Data Mining

� Latent Variable Models
� Probabilistic Principal Surfaces

� Spherical PPS
� PPS and Data Mining

� PPS for high-D data visualization
� A case study: Yeast gene microarray data

� Preprocessing: Noise Estimation Method and Nonlinear PCA
� Clustering: Neg-Entropy based algorithm

� Conclusions



Transformation

Transformed
Data

Data mining

Pattern

Data

Interpretation

Selection

Target 
Data

Preprocessing

Preprocessed
Data

Knowledge

Data mining

KDD Main Steps

Process involved in whatever data-rich field aimed to 
extract meaningful information from data

Introduction
Knowledge Discovery in Databases (KDD)



�Data Mining is a key step in KDD process 
aimed to find meaningful patterns in the data.

�Data Mining Methods
�Regression
�Classification
�Clustering
�Data Visualization

Introduction
Data Mining



Latent Variable Models

� Latent variable models are probabilistic models which generate a
probability density function underlying a set of data in a 
multidimensional input space. 

� The probability density function is a mixture of Gaussian 
expressed in terms of a smaller number of latent variables lying
in another space called “latent space”. 

� The latent space is usually 2 or 3 dimensional, therefore, by 
using the Bayes theorem, one can derive the input data density 
function in the latent space.  

� Hence, the data itself and the density function can be visualized 
in the latent space.



Latent Variable Models

� Goal: to express the distribution p(t) of the variable t=(t1,…,tD) in 
terms of a smaller number of latent variables x=(x1,…,xQ), Q<D. 
The link between the latent and data spaces is obtained by the 
nonlinear function y(x,w).

• RBF Neural Network 
• Generalized Linear         

Regression Model



Probabilistic Principal Surfaces
� Nonlinear latent variable model in which a mixture of 

Gaussians in the input space is built
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Each mixture component is a Gaussian Distribution with 
mean y(x,W) and covariance ΣΣΣΣ:



�The covariance has the following form

� {eq(x)}q=1,…,Q set of orthonormal
vectors tangential to 
the manifold at y(x;W)
�{ed(x)}d=Q+1,…,D set of orthonormal
vectors orthogonal to the 
manifold at y(x;W)
�α is called clamping factor
0<α<D/Q
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Probabilistic Principal Surfaces



Under a spherical Gaussian model, points 1 and 2 have equal 
influence on the center node y(x) (a) PPS have an oriented covariance 
matrix so point 1 is probabilistically closer to the center node y(x) than point 
2 (b)

Probabilistic Principal Surfaces
(a) (b)

2-α



� Based on a generalized EM for parameters 
W, α, β

� In practice, however, α is kept fixed, and only 
W and β are computed

� Computationally complex but fast 
convergence

Probabilistic Principal Surfaces



� Manifold composed by nodes regularly 
arranged on the surface of a sphere in 3D
space (Q=3)

� Use manifold as a classification reference 
template

� Use projections for visualizations

Probabilistic Principal Surfaces
Spherical PPS



(a) The spherical manifold in R3 latent space.  
(b) The spherical manifold in R3 data space.   
(c) Projection of data point t onto the latent spherical manifold.

Probabilistic Principal Surfaces
Spherical PPS



� Probabilistic Projection: the projected latent coordinate is computed as 
a linear combination of all latent nodes weighted by the responsibility 
matrix,

� Since ||xm||=1 for m=1,…,M and Σmrmn=1 for n=1,…,N,   all projections 
lie within the sphere, i.e. ||xm||≤1 and

� rmn is the responsibility of latent variable xm with respect to data point tn
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PPS & Data Mining
Spherical PPS for visualization
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� P. T. Spellman et al., Comprehensive Identification of Cell 
Cycle-regulated Genes of the Yeast Saccharomyces
cerevisiae by Microarray Hybridization, Molecular Biology of 
the Cell, Vol. 9, 3273-3297, December, 1998

� 6178 genes each one subject to 6 experiments:
� cln3
� clb2
� alpha factor arrest
� cdc15 temperature-sensitive mutant 
� cdc28
� elutriation

� 73 features associate to each gene. After a preprocessing phase 
the features were reduced to 32.

Case Study
Yeast Gene Microarray Data



Case Study
Computational Steps

2. DATA MINING: 3D Spherical PPS3D Spherical PPS
and and ClusteringClustering

1. PREPROCESSING: Noise EstimationNoise Estimation
MethodMethod and Nonlinear PCANonlinear PCA



The genes behaviour is periodic. The period is the cell 
cycle.

This implies that a gene behaviour, sampled for two cell 
cycles, can be considered as two measurements of the 
same thing.

This can be used to obtain an estimation for the 
uncertainty of the measurement.

Case Study
Gene Noise Estimation Method



Cell cycle  duration, i.e. period, depends on some 
parameters such as temperature, nutrient source, 
density of cells and so on (for our  experiments, periods 
were in the limits 90 ± 11 min).

To find the exact period length of each experiment we 
divided the gene time series in two parts and searched 
for (moving the cutting point in the interval 90 ± 11) the 
point of best correlation between the two parts.

Case Study 
Gene Noise Estimation Method



Once obtained the period length, we have computed 
the noise/signal ratio of each gene, considering:

the difference between the two periods of each gene as an 
estimation of its noise;

the mean of the two periods as the “real” signal of the gene.

This value was used to exclude too noisy genes.

This estimation is accomplished independently for  
each experiment.

Case Study 
Gene Noise Estimation Method
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Consider a generic gene signal over an experiment

Case Study
Gene Noise Estimation Method
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We estimate the 
signal time period

Case Study
Gene Noise Estimation Method
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The signals (before and after the cutting point) are superimposed: the average 
between them it’s the “true” signal. The difference is our estimate of the noise



Case Study
Gene Noise Estimation Method
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Case Study
Preprocessing (nonlinear PCA)

� The data of the experiments are unevenly sampled;  

� To extract the features from the experiments we 
apply a non-linear Principal Component Analysis; 

� In details, we apply for each experiment the non-
linear PCA to extract the components (1 in our case) 
to obtain the features. 



Case Study
Neg-entropy based Clustering (NEC)

� Starting from the PPS density function we cluster its 
Gaussian components using information based on 
entropy.

� Several approaches have been introduced based on 
the hypothesis test or Kullback-Leibler divergence 

� We introduce an approach based on the Neg-entropy

� The algorithm permits to agglomerate automatically the 
clusters  using non-Gaussianity information 



� Neg- entropy is based on the information- theoretic 
quantity of differential entropy

� It is used to obtain a measure of non- Gaussianity that is 
zero    for a Gaussian variable:

where xGauss is a Gaussian random variable of the same 
correlation (and covariance) matrix as x

� Neg- entropy is always non- negative and it is zero if and 
only if  x has a Gaussian distribution
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Case Study
NEC: neg-entropy



� The classical method to approximate neg-entropy is using high-order 
cumulants

where kurt is the kurtosis 

� A different and more robust approximation of the neg-entropy is

where υ is a standardized Gaussian variable and x has zero mean and 
unit variance

� We note that choosing a G that does not grow fast, one obtains more 
robust  estimators. The following choices of G have proved very useful:
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Case Study
NEC: approximate neg-entropy



� Starts from M clusters (one for each PPS 
mixture component);

� Agglomerates two components, i and j: 
� if the new cluster candidate Neg-entropy value of 

is less of a fixed threshold 
� then i U j replaces clusters i and j. i U j becomes cluster i

and j=j+1;
� else j=j+1

� the steps are repeated until all the components 
are processed

� Ends with the final number of clusters.

Case Study
NEC: algorithm



Case Study
NEC: Gaussians not merged by the algorithm

NegE=750



Case Study
NEC: two merged Gaussian distributions

NegE=4



Case Study
3D PCA of Yeast Gene Microarray Data
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Case Study
PPS: data point projections



Case Study
PPS: pdf



Case Study
PPS: pdf and data point projections









Case Study
NEC Results

Front view Back view

P-Value: 8x10-7

P-Value: 2x10-3

P-Value: 1.5x10-9



Case Study
About the threshold
� Choosing of the right value for the threshold is

critical.
� A value too high can produce few clusters but with

a multimodal distribution of the distances

Cluster 34



Case Study
About the threshold…

� A right value, instead, produce clusters with a mean
distance consistent with the noise estimation we
found in the first step



Cluster Comparisons
Rows: PPS Clusters
Col: Spellman Clusters

ij- th entry: 
fraction of Spellman’s 
cluster j falling in the 
PPS cluster i



P-Value: 1.6 x 10-21

Case Study
Cluster 49…



Case Study
Cluster 49

� 56 genes (many of them not cell- cycle regulated).
� No interesection with Spellman's cluster.
� 26 out of 56 genes are the components of nucleus and 

membrane- bound organelles, and are involved in two 
processes, cytoplasm organization and biogenesis and 
ribosome biogenesis and assembly.
� 46% of these 26 genes have the functions of RNA 

binding and catalysing the  ATF separation  reactions 
during unwinding RNA helix.

� Some of 24 rested genes  are involved in biopolymer 
metabolism.

� There are half of  genes among these 24 rested genes 
with unknown functions (could be object of further 
analysis).



Case Study
Cluster 23

� 29 genes
� p-value = 8x10-7
� 48,98% intersection with Spellman CLN2 cluster.

� Most of these genes are strongly cell-cycle 
regulated, peak expression occurs in mid–G1 phase

� strongly induced by GAL-CLN3 but are strongly 
repressed by GAL-CLB2.

� All these genes are involved in DNA replication.
� The rest of cluster contains some genes with  unknown 

functions



Conclusions …

� Spherical PPS exhibits a number of attractive 
abilities for classification and visualization of 
high-D data

� The spherical manifold is able to better 
characterize and represent the periphery and 
the sparsity of high-D data due to  the curse 
of dimensionality

� Overcome border effects as in rectangular 
manifold (GTM) and grid (SOM)



Conclusions …

� Visualization is an important tool in data 
mining applications for all types of user

� The domain expert must be involved in the 
process

� Interaction with the plots allows the user to 
query the data more effectively.



Conclusions
� We built a graphical user interface which allows to interact 

with the data projected on a unit sphere surface

� A user is allowed to
� Interact with data by selecting points on the latent manifold 

retrieving the corresponding source in the original catalog

� The user is able to localize clusters of data on the sphere 
which correspond to clusters of similar data in the input 
space

� Useful for genetic data mining, but general enough to 
address a large number of application fields
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