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Filoni di ricerca principali

• Protein folding

• Interazione Proteina–Proteina / Proteina–DNA

• Dinamica del DNA e dell’RNA

• Annotazione del genoma

• Elaborazione di algoritmi (clustering, sequence
alignement)

• Studio di problemi legati alla mobilita’ cellulare

• ....
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Risorse

Didattica

Master

• ”Bioinformatica: Applicazioni Biomediche e
Farmaceutiche”, Università di Roma La Sapienza.
http://cassandra.bio.uniroma1.it/Master

• ”Bioinformatica”, Università di Torino
http://www.masterbioinformatica.it

• ”Bioinformatica”, Università di Milano Bicocca
http://www.btbs.unimib.it/
master/bioinformatica2003.htm

Dottorati

”Sistemi complessi applicati alla biologia post-
genomica”, Università di Torino

http://www.bioinformatica.unito.it
/complex

−
systems/welcome.html
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Preprints

Alla fine del 2003 e’ nato (a fianco di hep-th,hep-ph
ecc.) un nuovo archivio di “quantitative biology” che
si chiama q-bio.

Il link e’ http://xxx.lanl.gov/archive/q-bio

Congressi

• Intelligent Systems for Molecular Biology

ISMB 2004, Glasgow 31 luglio - 4 agosto

http://www.iscb.org/ismbeccb2004/

ISMB 2005, Detroit 25-29 giugno

http://www.iscb.org/ismb2005/

ECCB 2005, Madrid 27-30 settembre

http:/www.eccb05.org/
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• Research in Computational Biology

RECOMB 2004, S. Diego 27-31 marzo

CBrohttp://recomb04.sdsc.edu/

RECOMB 2005, Boston marzo 2005

Topics:

– Genomics

– Molecular sequence analysis

– Recognition of genes and regulatory elements

– Molecular evolution

– Protein structure

– Structural genomics

– Gene Expression

– Gene Networks

– Drug Design

– Combinatorial libraries

– Computational proteomics

– Structural and functional genomics
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FB11: Applicazione di metodi della fisica
teorica a sistemi biologici

Sezioni coinvolte e partecipanti

Sezione resp. locale partecipanti
BA S. Stramaglia 7
BO A. Bazzani 5
CT A. Rapisarda 7
FI S. Bagnoli 11
MI C. Destri 12
NA L. Peliti 6
PD A. Stella 6
Pr R. Burioni 4
RM2 S. Morante 3
SA S. Scarpetta 2
TO M. Caselle 5

Totale 68

6



Il gruppo di Torino

• M. Caselle, Dip. di Fisica Teorica

• F. Di Cunto, Dip. di Biologia Molecolare

• I. Pesando, Dip. di Fisica Teorica

• P. Provero, Fondazione per le Biotecnologie

• D. Cora’ (Dottorato: Sistemi complessi ...)

• E. Curiotto (Dottorato: Sistemi complessi ...)

• L. Martignetti (Dottorato: Sistemi complessi ...)

• I. Molineris (Dottorato: Sistemi complessi ...)

• A. Re (Dottorato: Sistemi complessi ...)

• G. Sales (Laureando)
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Collaborazioni con

• C. Dieterich Max Planck Inst. for Molecular
Genetics, Berlin

• C. Herrmann Laboratoire de Genetique et de
Physiologie du Developpement (LGPD) Marseille

• I. Sbrana Dipartimento di Biologia dell’Universita’
di Pisa
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Linee di ricerca

1] Studio della regolazione genica. In particolare:

• identificazione di nuovi fattori di trascrizione
in lievito usando Gene Ontology, Microarray e
correlazioni.

• uso di metodi di Genomica Comparativa (in
particolare il confronto tra topo ed uomo) per
l’identificazione di nuovi regolatori nell’uomo.

2] Ricerca di UTR in uomo mediante Genomica
comparativa e metodi statistici (catene di Markov)

3] Uso di tecniche di teoria dei grafi per studiare
networks di coespressionee di coregolazione.

4] Studio di siti fragili nei cromosomi umani.

5] Studio dell’interazione tra DNA e fattori di
trascrizione mediante simulazioni di Dinamica
Molecolare.
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1. Introduction

Genome Structure

• The density of protein-coding and RNA-coding
sequences becomes lower and lower as the
complexity of the organism increases. It is rather
high in Prokaryotes, low in S. Cerevisiae, very low
in the human genome: most of DNA in the human
genome is not coding (∼ 99%)

• The biological role of non-coding part of DNA
is poorly understood. The common lore is that
it should be involved in the regulation of gene
expression
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Gene regulation

Gene expression is tightly controlled and regulated:

• All cells in the body carry the full set of genes, but
only express about 20% of them at any particular
time

• Different proteins are expressed in different cells
(neurons, muscle cells....) according to the different
functions of the cell.

As more and more complete genomes are decoded
it is becoming of crucial importance to understand how
the gene expression is regulated.

The challenge is now to identify and fully
characterize the network of interactions among genes
and their products in an organism.
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The most important example of such interactions is
the transcriptional regulation of protein coding genes.
Even if this is not the only regulatory mechanism of
gene expression in eukaryotes it is certainly the most
widespread one.

The goal of our research project (as of many others
in the world) is to reconstruct these interactions by
comparing existing biological information (like the
coregulation of sets of genes) with the statistical
properties of the sequence data.
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Transcription factors.

TFs act by binding to specific, often short (5-10
bp) DNA sequences in the upstream noncoding region
of genes.
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Regulatory network

T.F.’s themselves are proteins produced by other
genes.

The Genome is a complex network of interactions
between genes and their products This network pattern
is ubiquitous in Postgenomic biology
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The problem.

However, computational detection of regulatory
sites is a difficult task, specially in eukaryotes:

• the consensus sequences recognized by transcriptional
factors are generally rather short (5-20 bp)

• they can be quite variable

• they are in general dispersed over large distances

• they are generally active in both orientations

A simple study of relative frequencies of sequences
can be meaningless
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2. Our Strategy.

We have a few tools to attack the problem:

• Binding sites are often overrepresented. One can
use this to separate the signal (binding site) from
the noise (background upstream sequence)

• Binding sites are often evolutionary conserved. One
can use comparative genomics to recognize them.

• Genes which share the same functions may also share
the same regulatory mechanisms. One may use
microarray experiments or functional annotations to
identify binding sites.

18



Overrepresented words

in the upstream regions

Many binding sites are effective only when repeated
many times in the upstream region of the gene they
regulate.

Example: the word GATAAG—CTTATC is a known
binding factor for nitrogen-regulated genes: Examine
the 500 bp’s upstream of two of them.
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>YPR138C upstream sequence, from -500 to -1

TCCACCTTATCTCGGCGCCAAATCCTTATC

TCTCGTAGCTGGTTTGCCCGCGATAAGGCG

GGCGAGTTATTTTGAAGTTTTCCATAAACT

GGTTTTCCATCTCGAGGTTTTTCCTCGCTT

TCCACGCTATGACCCTTTTTAGTTAAGGTA

CCCGATGGCATACTTTATATATTATATATA

TATGTTAAGTTAATATGTTTTAGCAGATTT

GATATGCTGATATGCAGCACGGACTTTCCC

TCTCCTTGTCTTATCGCATCTTATCGCAAC

AATTTGATAGATATCTTCTCCCTTTCCTAT

CTTGTAGAATAAGGTTGTGTGCTTTGAGTC

TGATAGCCGTCTTCTTTCGGTCGCTTCTTC

TCTCTTTTGGTTCTTTGATTGTCTATTACA

ATCAATGCAGGCTAGTTAAGGGTCCAATCA

CTTTTGAAATTGTTTTGTAAAAAGCGAAGG

CATTTTTTTTTTAGAAGATACAATTGAAAA

CATATAGATTTAGAGTTCAC
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>YIR028W upstream sequence, from -500 to -1

ATTCTCGGGTCTAATGTGGCTCGAGGGTAT

CTCTTATCGGTATTACTTTCTTATCAATGA

AAAATTTCTGCCAGGGAAAATGCGCCCGCT

TTTTTTCCGGCCATCCTTACTCGCTGTCGC

ATACAAAATAGCGCCTCTAATCTAGTTGCG

ATAAGGAATGTGTATGTGTAATTGAAGATC

CAGGATGTTTTCCTTTTCAGGGAGATGAGA

AGGAATAATAGGATGGATTGACCGCTTTGC

TGTCACGTCGATAAGGTTCCTTTAAAAATT

GTGTCCAATGATTAGCATAGAGAGGTAGAG

TATCAGAGAAACAAGTTTGTAATCGAGAAA

CTTGATCTGCTAGTGTTGAGCATAGAAGGC

TAGGAAAACATGGGGAAGAAAAAAAAAGTA

TAAATAATTAGCTTGATGAGTAGTTTGAAT

ATATATGTTACTTTAGTTTCCCTTTTTGAC

CTTTTATATTCATCTACATCTTGTGATATA

AAACATCAACAAAGACGAGA

21



Our Proposal

first step Grouping of genes based on the motifs that
are overrepresented in their upstream regions. To
each possible word w we associate the set Sw of all
the genes in whose upstream region the word w is
overrepresented

second step Select those sets which show some
kind of functional characterization using microarray
experiments or Gene Ontology annotations.

• Microarray: For each set Sw we compare the
expression distribution within the set with the
genome wide one (using for example Kolmogorv-
Smirnov test).
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• Gene Ontology: For each set Sw we compute the
prevalence of all GO terms among the annotated
genes in the set, and the probability that such
prevalence would occur in a randomly chosen set
of the same size:
– hypergeometric distribution to assess the

significance of the intersection
– evaluation of false discovery rate through

comparison with randomly generated gene sets
(using only the best p-value for each set as
criterion for the comparison)

The words which survive this analysis are candidates
to be binding sites.

The Gene Ontology Consortium ”Gene Ontology:
tool for the unification of Biology” Nature Genetics 25

(2000) 25.
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The sets S(word)

• For each word (5 to 8 bp’s) compute the frequency
in the upstream sequences of the whole genome
considered as a single sample: these will be our
reference frequencies.

• Then count occurrences of the word in the upstream
region of each gene separately.

• If the number of occurencies of the word in the
upstream region of gene G is statistically significant
(compared to a binomial distribution based on
the above reference frequencies), then the gene
G belongs to the set S(word).

Choices in our study on yeast:

• upstream sequences length: 500 bp

• probability cutoff P = 0.01
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The Gene–Ontology filter.

For each set S(m) we computed the prevalence of
all Gene Ontology (GO) terms among the annotated
genes in the set, and the probability that such
prevalence would occur in a randomly chosen set of
genes of the same size.

For a given GO term t let K(t) be the total number of

ORFs annotated to it in the genome, and k(m, t) the number

of ORFs annotated to it in the set S(m). If J and j(m) denote

the number of ORFs in the genome and in S(m) respectively,

such probability is given by the right tail of the appropriate

hypergeometric distribution:

P (J, K(t), j(m), k(m, t)) =

min(j(m),K(t))
X

h=k(m,t)

F (J, K(t), j(m), h)

where

F (M, m, N, n) =

`

m

n

´

“

M−m

N−n

”

“

M

N

”

In this way a P-value can be associated to each pair made of a

motif and a Gene Ontology term.
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False discovery rate

Problem:

Given the huge number of P-values that we
compute (in principle equal to the number of GO
terms multiplied by the number of words analysed) it
is clear that very low P-values could appear simply by
chance.

The usual way of dealing with this issue, that is
the Bonferroni correction, is not appropriate, because
due to the hierarchical nature of the Gene Ontology
annotation scheme, the P-values we compute are very
far from being independent from each other.
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Our proposal

We randomly generated a large number NR of sets
of genes comparable in size to the typical size of the
sets associated to the motifs and ranked the random
sets based on their best P-values.

In this way we can determine a false discovery
probability pf(C) as a function of the cutoff on P-
values C

Warning:

The lower is the FDR required, the higher is the
precision required in determining the function pf(C)
and hence the number NR of sets to be generated
randomly. For instance a FDR of 0.01 requires the
generation of 3.5 × 106 randomly chosen sets.
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The microarray filter

DNA microarrays can estimate genome-wide gene
expression levels by measuring the amount of mRNA
levels in the cell. Thousands of genes can be
simultaenously studied in a single microchip.
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The result of the experiment is a slide of this type:

The fluorescence level is proportional to the amount
of mRNA produced in the experimental condition under
study (usually one studies the ratio with respect to the
expression level in some “reference” state of the cell).
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Example : Microarray samples in S.

Cerevisiae

The diauxic shift

DeRisi et al., Science 278 (1997) 680

• a yeast culture is inoculated into a glucose-rich
medium

• rapid anaerobic growth fueled by fermentation, with
production of ethanol, insues

• upon glucose depletion, the yest cells turn to ethanol
as a carbon source for aerobic growth (respiration)
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Expression data from DNA microarrays

• samples of cells are harvested at seven time-points
during the diauxic shift

• using DNA microarray techniques mRNA levels for
all the genes can be measured and compared to
their initial values

• therefore the experiment answers the question:
which genes are switched on, and which are switched
off, as the available glucose becomes progressively
scarcer?

The output of the experiment is, for each gene, the
ratio between initial expression level and expression
level at each of the seven timepoints during the diauxic
shift.

The idea is to look for statistical correlation between
these numerical data and the presence of binding sites
in the upstream region of each gene.
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Studying expression level for each set

For each set S(word) we compute the average
expression level of the genes in the set at the seven
timepoints of the diauxic shift experiment.
More precisely, the average log2 of the ratio between measured

mRNA at each timepoint and measured initial mRNA.

This value is then compared to the average expression
taken over the whole genome at each timepoint.

If the difference is larger than six standard deviations
the word defining the set is a candidate binding site
for the regulations of the genes in the set.
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3. Example: Yeast

Identification of TF binding sites in yeast using Gene–
Ontology

Output of the analysis:

• With the false discovery rate set at 0.01 we find a
total of 108 associations between 80 different words
(of 5-8 letters) and 41 Gene Ontology terms.

• The words can be organized in 12 different groups.
Within each group the motifs are very similar to
each other and are associated to the same or to
very similar Gene Ontology terms. For each group
we construct a consensus sequence (“motifs”) by
aligning the words.
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motif C F P

AGGGTGC - - siderophore

transport

AGGGTGCA - - siderophore

transport

TGGGTGCA - - siderophore

transport

GGGTGCA - - siderophore

transport

GGGTGC - - siderophore

transport

GGTGCA - heavy metal siderophore

ion porter transport

GGTGC cell wall - -

(sensu Fungi) - -

AGGGTGCACC

CGGCGCC - - tricarboxylic

acid cycle

CGGCGCCG - - tricarboxylic

acid cycle

GGCGCCGA - - tricarboxylic

acid cycle

GCGCCGAG - - tricarboxylic

acid cycle

CGGCGCCGAG

Table 1: Two examples of motifs.
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Validation:

• Comparison with known TF’s and binding sites
(Transfac + literature survey)

• Comparison with the genome wide ChIP experiment
of: T.I. Lee et al., Transcriptional regulatory
networks in Saccharomyces cerevisiae. Science 298,
(2002) 799.

motif C F P TF

TGAAAC - - sexual reproduction DIG1

STE12

TGAAACA - - sexual reproduction DIG1

STE12

TGAAACA

ACTGTG - - sulfur amino MET4

acid transport

TGTGGC - - sulfur metabolism MET4

MET31

ACTGTGGC

Table 2: Two examples of motifs with significant

intersection with ChIP data

36



Results:

• All the motifs we find correspond to known binding
sites. (No false positive!)

• For some of the motifs we are able to

– refine the putative binding sequences.
– identify candidates for combinatorial regulation

(example: PAC and RRPE))
– Refine the functional annotation of already known

TF’s
– identify new potential targets of known TF’s

(example: Hcm1p)
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MPS1 (YDL028C)
CIN8 (YEL061C)
PDS1 (YDR113C)
SPC98 (YNL126W)
VIK1 (YPL253C)
SPC25 (YER018C)
ESP1 (YGR098C)
STU2 (YLR045C)
SLI15 (YBR156C)

Table 3: Candidate targets of regulation by the Hcm1p

transcription factor
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motif C F P

GATGAGA nucleolus - ribosome biogenesis

GATGAGAT nucleolus - ribosome biogenesis

ATGAGAT nucleolus - ribosome biogenesis

ATGAGATG - - ribosome biogenesis

TGAGATG - - ribosome biogenesis

and assembly

TGAGATGA - - ribosome biogenesis

and assembly

GAGATG - - ribosome biogenesis

and assembly

GAGATGAG nucleolus - ribosome biogenesis

and assembly

GAGATGA nucleolus - ribosome biogenesis

and assembly

AGATGAG nucleolus - ribosome biogenesis

GATGAG nucleolus - ribosome biogenesis

GATGA - - ribosome biogenesis

ATGAGCT nucleolus - ribosome biogenesis

TGAGCT nucleolus - rRNA processing

GATGAGATGAGCT

AAAAATT nucleolus - ribosome biogenesis

AAAAATTT nucleolus - transcription

complex from Pol I promoter

AAAATT nucleolus - ribosome biogenesis

AAAATTT nucleolus - ribosome biogenesis

AAAATTTT nucleolus - ribosome biogenesis

AAATT nucleolus - 35S primary

transcript processing

AAATTTTC small nucleolar - 35S primary

ribonucleoprotein transcript processing

complex

AAAAATTTTC
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4. Binding site identification in human.

The extension of our algorithm to the human
genome is not straightforward. At least 15.000 bp
long upstream regions must be taken into account
leading to a very small signal to noise ratio.

It is mandatory to perform a comparative analysis
selecting only those parts of the upstream regions
which are conserved between men and mouse.

This can be done using the CORG database:

C. Dieterich et al., CORG: a database for
comparative regulatory genomics. Nucleic Acid Res.,
31, (2003) 374.
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The CORG database.

CORG is a collection of conserved sequence blocks
in the non-coding, upstream regions of orthologous
genes from man and mouse.

These blocks are obtained by searching statistically
significant local suboptimal alignments of 15kb regions
upstream of the translation start site.

The database contains more than 10,000 pairs of
orthologous genes. The alignments were obtained using
the Waterman-Eggert algorithm. We used two different
choices of the PAM matrix: PAM1 and PAM10 to test
the robustness of the results.

An important role in the following analysis is played
by the fact that more than half of the genes in the
database are annotated in the GO database.
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The two releases are very different:

• PAM1

– number of genes in the database: 10999
– mean number of conserved blocks for gene: ∼ 20
– mean length of the union of conserved blocks:

∼ 500
– number of genes with a GO annotation 6187

• PAM10

– number of genes in the database: 12943
– mean number of conserved blocks for gene: ∼ 40
– mean length of the union of conserved blocks:

∼ 900
– number of genes with a GO annotation 7260
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Results.

In the PAM10 case, out of the 43250 possible words
of 5,6,7 and 8 letters

• 154 different words survive the G–O filter

• 331 words survive the Microarray filter

• the intersection between the two sets is 109 words
which corresponds to a p–value e−201

• similar results are obtained with PAM1. Despite the
fact that the PAM1 and PAM10 CORG databases
are very different our results seems to be very robust:
most of the words are present in both releases.
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Clustering of words.

Due to the larger amount of words and to the higher
motif’s variability, clustering of words is more delicate
than in the yeast case. To decide if two words belong
to the same motif we make a two steps analysis.

• First step: we check if at least one of the following
conditions is met:

– at least one GO term is significant for both motifs
– there is at least one time point in the cell

cycle MA experiment in which both motifs are
simultaneously significant.

– the intersection of the two sets of genes (labeled
by the two words that we are testing) is
statistically significant.

• Second step: we check if an alignment can be found
between the two words with no gaps, at least 4 bases
correctly aligned and at most 1 mismatch.
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Validation.

Comparing our finding with the data collected in
the Transfac database we were able to recognize some
well known TF’s.

Example: NF–kB

motif C F P

GGAAATTC - chemoattractant -

GGRAAKTCCC Transfac consensus

Table 4: The putative NF–kB motif.

Example: E2F

motif C F P

TTTCGCGC - - DNA replication initiation

TTTSGCGC Transfac consensus

Table 5: The putative E2F motif.
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Example: A putative new motif

motif C F P

A ATGTTG Golgi lumen - -

TGTTGA Golgi lumen - -

ATGTTGA Golgi lumen - -

T T ATGTA Golgi lumen - -

TWATGTTGA

Table 6: A putative motif with no reference in Transfac.
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Conclusions.

We propose a new method to extract relevant
biological information on the Transcription Factors
(and more generally on the mutual interactions
among genes) from the statistical distribution of
oligonucleotides in the upstream region of the genes.

• The method requires a complete knowledge of the
upstream oligonucleotide sequences and thus it can
be applied for the moment only to those organisms
for which the complete genome has been sequenced.

• It does not require any external bias. The
significance criterion only depends on the statistical
distribution of oligonucleotides in the upstream
region

• It can be easily implemented and could be used as
a standard preliminary test, to guide more refined
analysis
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• It makes use of G–O annotations and/or Microarray
data to assess the significance of the results. Both
these tools are becoming more and more precise.
This should lead to improved performances of future
releases of our analysis.

We studied its performances in two cases: yeast
and human. In both cases we found some already
known TFs which we used as a validation test of
the method. In the human case we also found some
previuosly unknown candidates binding sites, which we
expect to be of biological relevance.
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