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Plan of the Talk

• String corrections in Wilson loop expectation values.

• String corrections in Polyakov loop correlators.

• Higher order corrections: the Nambu-Goto string.

• Comparison with MC data.

• Conclusions.
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Wilson loops

Wilson loops are classically expected to obey the
famous area-perimeter-constant law:

< W (R,L) >= e−(σRL+p(R+L)+k)

This law is indeed very well verified in the strong
coupling regime (before the roughening transition).

However in the rough phase it must be modified.
One must multiply it by the partition function of the
2d QFT describing the quantum fluctuations of the
flux tube.

< W (R,L) >= e−(σRL+p(R+L)+k)Zq(R,L)

For the free bosonic string Zq(R,L) is simply the
partition function of d − 2 free massless scalar fields
living on the rectangle defined by the Wilson loop:
R× T
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This partition function is given by a divergent,
infinite product of eigenvalues which must be
regularized. This regularization can be performed in
various different ways (ζ function,momentum space
cutoff, lattice cutoff....) leading to the following result:

Zq(R,L) ∝
[

η(τ)√
R

]−d−2
2

where η(τ) is the Dedekind η function and τ = iL/R.

The L↔ R simmetry is ensured by this identity

η

(

−1

τ

)

=
√
−iτ η(τ)

known as the “modular” transformation of the η.

Defining the free energy as

F (R,L) ≡ − log < W (R,L) >

4



and expanding the Dedekind function

η(τ) = q
1
24

∞
∏

n=1

(1 − qn) ; q = e2πiτ ,

(This expansion holds only if iτ < −1, i.e. L > R)
one finds

F (R,L) = σRL+ p(R+ L) + k

−(d− 2)

[

πL

24R
+

1

4
logR

]

+ ...
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The following ratio is particularly useful to single
out the effective string contribution from a collection
of Wilson loops (it requires a very precise knowledge
of σ):

R(L, n) ≡ 〈W (L+ n, L− n)〉
〈W (L,L)〉 exp(−n2σ)

It is easy to see that R(L, n) depends only on t = n/L:

R(L, n) = F (t) =







η(i)
√

1 − t

η
(

i1+t
1−t

)







1/2

and does not contain any adjustable parameters.
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This behaviour was succesfully tested in the 3d
Ising gauge case in

M.C. et al Nucl. Phys. B 486 (1997) 245
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Range of validity.

By varying L we can test the range of validity of
the free bosonic effective string.

Finite–size effects for small Wilson loop. The
prediction of the free string model is
R(L,L/2) = 1.09153 . . . (straight line).
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It turns out that L must be such that σL2 > 1.5.
The minimum value of the interquark distance, below
which the effective string picture breaks down is the
flux tube thickness Rc.

Independent observations, based on the study of
high T spacelike wilson loops suggest that Rc ∼ 1/Tc.
which gives σR2

c ∼ 1. The deviations that we observe
in the range

1 < σL2 < 1.5

are most probably due to the self-interaction terms in
the string action.
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Similar results are also found in d=4 SU(3) LGT.
The following figures are taken from the paper:

S. Necco and R. Sommer, Nucl.Phys. B622 (2002)
328
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Figure 1: The force in the continuum limit and for finite resolution,

where the discretization errors are estimated to be smaller than the statistical

errors. The full line is the perturbative prediction with Λ
MS

r0 = 0.602.

The dashed curve corresponds to the bosonic string model normalized by

r2
0F (r0) = 1.65.
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Figure 2: The static potential. The dashed line represents the bosonic

string model and the solid line the prediction of perturbation theory as detailed

in the text.

12



Polyakov loop correlators

The peculiar geometry of the Polyakov loop
correlators implies that they are perfect tools to explore
the range of scales where deviations with respect to
the free bosonic effective string appear.

Important observation:

In the Wilson loop geometry (T = 0) RL is simply
the area of the loop. One can always choose large
enough Wilson loops so as to reach the free string
limit.

In the finite temperature geometry L = 1/T .
The free string limit is reached only for very
low temperatures. In particular at intermediate
temperatures (say, T ≥ Tc/3) higher order effects
(which encode the self-interaction of the bosonic fields)
become important and cannot be neglected.
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Let us define the free energy as

G(R) = 〈P (0)P †(R)〉 = exp [−F (R,L)]

F (R,L) depends on the inverse temperature L ≡ 1/T
(i.e. the lattice size in the compactified time direction)
and the distance R, and is given by a classical and a
quantum contribution:

F (R,L) = Fcl(R,L) + Fq(R,L)

The classical term corresponds to the area law:

Fcl(R,L) = σ0LR+ k(L)
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while the quantum term turns out to be:

Fq(R,L) = (d− 2) log η(τ) τ ≡ iL

2R

where η is again the Dedekind function

M. Minami, Prog. Theor. Phys. 59 (1978) 1709.

P. de Forcrand, G. Schierholz, H. Schneider and
M. Teper, Phys. Lett. B 160 (1985) 137.

M. Flensburg and C. Peterson, Nucl. Phys. B 283
(1987) 141.
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Important observation: Due to the modular
transformation

η

(

−1

τ

)

=
√
−iτ η(τ)

the asymptotic expansion is different in the two
regimes:

2R < L

Fq(R,L) = (d− 2)

[

− πL

24R
+

∞
∑

n=1

log(1 − e−πnL/R)

]

2R > L

Fq(R,L) = (d− 2)

[

−πR
6L

+
1

2
log

2R

L

]

+(d− 2)

[

∞
∑

n=1

log(1 − e−4πnR/L)

]
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Comments:

• For R > L/2 the string correction is linear in R and
acts as a finite temperature renormalization of the
string tension:

σ(T ) = σ0 − (d− 2)
πT 2

6

• For R ∼ L the log term cancels the linear one and
the string correction vanishes. This explains why
it is so difficult to observe string corrections in the
Polyakov geometry
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String self-interaction terms.

Simplest option: Nambu-Goto string.

A [φ] =

∫ L1

0

dx

∫ L2

0

dy

√

1 +

(

∂φ

∂x

)2

+

(

∂φ

∂y

)2

.

where φ denotes the transverse displacement of the
surface with respect to the plane joining the two
Polyakov loops. There are at least two arguments
in favour of this choice:

• Within the framework of the Nambu Goto action
one obtains (R. D. Pisarski and O. Alvarez, Phys.
Rev. D 26 (1982) 3735. P. Olesen, Phys. Lett. B
160 (1985) 408.)

T 2
c =

3σ0

(d− 2)π

which turns out to be in good agreement with MC
results for various LGT both in d=3 and d=4.
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• In the dual problem of the interface behaviour in
the 3d Ising spin model it correctly describes higher
order (short range) corrections in the interface free
energy (M.C et al. Nucl. Phys. B 432 (1994) 590)
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Next to leading order.

The next to leading order in 1/σ of the free energy
can be evaluated in the framework of the zeta function
regularization (K. Dietz and T. Filk, Phys. Rev. D 27
(1983) 2944.) the result in d = 3 is:

F (NLO)
q (R,L) = − π2L

1152 σR3

[

2E4(τ) −E2
2(τ)

]

where E2 and E4 are the second and fourth order
Eisenstein functions.

E2(τ) = 1 − 24
∞
∑

n=1

σ(n)qn (1)

E4(τ) = 1 + 240
∞
∑

n=1

σ3(n)qn (2)

q ≡ e2πiτ , (3)

where σ(n) and σ3(n) are, respectively, the sum of all
divisors of n (including 1 and n), and the sum of their
cubes.

20



Nambu–Goto action to all orders.

More than 20 years ago Arvis proposed the following
expression for the energy spectrum of the Nambu-Goto
string (with Dirichelet boundary conditions):

En = σR

√

1 − π

12σR2
+

2πn

σR2
(4)

(where we have fixed d = 2 + 1).

From the Arvis spectrum it is easy to construct (at
least formally) the partition function of the Nambu-
Goto string to all orders.

Z =
∞
∑

n

wne
−EnL (5)

where the weights wn are the number of partitions of
the integer n.
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Comparison with MC simulations

• Ising model

We studied the 3d gauge Ising model at

β = 0.75180 which corresponds to Tc = 8

For this value of β the string tension is known
with very high precision σ = 0.0105241(15). We
performed simulations at T = Tc

3 ,
Tc
2 ,

2Tc
3

4Tc
5

corresponding to L = 24, 16, 12, 10 respectively
with a new algorithm based on dual transformations.
For a wide range of values of R we studied two types
of ratios:

Qq(R) ≡ ln
G(R)

G(R + 1)
− σ0(β)L

which is chosen so as to cancel the classical part of
the free energy.

Qq(R) = Fq(R+ 1, L) − Fq(R,L)

22



We also studied the combination

Γ(R) − ΓLO(R)

where

Γ(R) ≡ G(R)

G(R + 1)

and ΓLO(R) is its prediction in the free bosonic
string approximation.
This observable is the best tool to magnificate the
next to leading corrections and test if they agree
with the Nambu-Goto expectation.
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• SU(2) model

We studied the 3d SU(2) model at

β = 9.0 which corresponds to Tc ∼ 6

For this value of β the string tension is known
with very high precision σ = 0.025900(12).
We performed simulations at T = Tc

10 and 3Tc
4

corresponding to L = 60, 8 respectively.

• SU(3) model

For the SU(3) model we used the data reported in

M. Lüscher and P. Weisz,
“Quark confinement and the bosonic string”
JHEP 0207 (2002) 049.

In this cases we studied the ratio:

Q(R) = − 1

L
log

(

G(R + 1)

G(R)

)
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Figure 3: Qq for Nt = 24 (i.e. T = Tc/3) at β = 0.75180.

The continuous line corresponds to the free bosonic string

prediction, while the two dashed lines correspond to the first

Nambu-Goto corrections. The difference between the two dashed

lines keeps into account the uncertainty in the estimate of σ
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Figure 4: Same as above, but for Nt = 16(i.e. T = Tc/2)
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Figure 5: Same as above, but for Nt = 12(i.e. T = 2Tc/3)
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Figure 6: Same as above, but for Nt = 10(i.e. T = 4Tc/5)
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Figure 7: Same as above, but for a fixed R = 24
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Figure 8: Differences between the values of Γ(R) for the full

Nambu–Goto action (dashed line), the NLO approximation (solid

line) and the Monte Carlo results (crosses) with respect to the LO

approximation for the sample at β = 0.75180, L = 80 in the

Ising gauge model. Notice that for this value of L the NLO and

full Nambu–Goto results almost coincide and cannot be separated

in the figure.
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Figure 9: Same as the previous figure but for the data at

L = 12. In this case the difference between NLO and full

Nambu–Goto predictions is perfectly detectable.
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Figure 10: Same as previous figures, but for the data at

R = 32. The Monte Carlo results interpolate between the full

Nambu–Goto behaviour at low temperature (dashed line) and the

NLO one (solid line) at high temperature.
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Figure 11: Values of Q(R) for the full Nambu–Goto action

(dashed line), the NLO approximation (solid line), the LO

approximation (dotted line) and the Monte Carlo results (crosses)

for the sample at β = 9.0, L = 8 in the SU(2) model.
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Conclusions

• MC simulations strongly support the conjecture
that the effective string theory which describes
confinement in the infrared regime of various LGT’s
(3d gauge Ising model, SU(2), SU(3) in d=3 and
d=4) at large enough distances and low enough
temperatures is a simple free bosonic string theory.

• At smaller distances and/or higher temperatures the
effective string picture still holds, but corrections,
presumably due to the self-interaction terms in the
string action, appear.

• The peculiar geometry of the Polyakov loop
correlators implies that they are perfect tools to
explore this regime. In particular at intermediate
temperatures (say, T ≥ Tc/3) higher order effects
(which encode the self-interaction of the bosonic
fields) become important and cannot be neglected.
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• This fact can be used to better understand the
nature of the underlying effective string. In principle
there could be various different classes of effective
string theories. All of them with the same large
distance limit (the free bosonic string)
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As a first step in this direction we studied the
“Nambu-Goto” action and compared it with high
precision MC data for the Z2, SU(2) and SU(3)
gauge models in d = 3 with the following results:

• The Nambu-Goto action describes well the
Montecarlo data for large values of L and R.

• For large values of L, as R decreases we observe a
remarkably universal pattern: all the three models
that we studied show a clear discrepancy with
respect to the N–G expectation. This discrepancy
increases as R decreases and is worsened by the
addition of higher perturbative orders (i.e. moving
from the truncated approximation to the whole N-G
estimates)

• For lower values of L (i.e. as we approach
the deconfinement temperature) the situation
drastically changes: The N-G action seems to
describe better and better the Montecarlo data as
T approaches Tc.
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From the Nambu-Goto action to the free

bosonic string.

The Nambu string action is given by the area of
the world–sheet:

S = σ

∫ T

0

dτ

∫ R

0

dς
√
g ,

where g is the determinant of the two–dimensional
metric induced on the world–sheet by the embedding
in Rd:

g = det(gαβ) = det ∂αX
µ∂βX

µ .

(α, β = τ, ς, µ = 1, . . . , d)

and σ is the string tension.

The reparametrization and Weyl invariances of the
action require a gauge choice for quantization.
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We choose the ”physical gauge”

X1 = τ

X2 = ς

so that g is expressed as a function of the transverse
degrees of freedom only:

g = 1 + ∂τX
i∂τX

i + ∂ςX
i∂ςX

i

+∂τX
i∂τX

i∂ςX
j∂ςX

j − (∂τX
i∂ςX

i)2

(i = 3, . . . , d) .

The fields Xi(τ, ς) satisfy Dirichlet boundary
conditions on M :

Xi(0, ς) = Xi(T, ς) = Xi(τ, 0) = Xi(τ, R) = 0 .

Due to the Weyl anomaly this gauge choice can be
performed at the quantum level only in the critical
dimension d = 26. However, the effect of the anomaly
is known to disappear at large distances, which is the
region we are interested in.

38



Expanding the square root in the action we obtain,
discarding terms of order X4 and higher

S = σRT +
σ

2

∫

d2ξXi(−∂2)Xi

∂2 = ∂2
τ + ∂2

ς .
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The partition function of the free

bosonic string.

The partition function for the free bosonic action
is

Zq(R, T ) ∝
[

det(−∂2)
]−d−2

2 .

The determinant must be evaluated with Dirichlet
boundary conditions.

The spectrum of −∂2 with Dirichlet boundary
conditions is given by the eigenvalues

λmn = π2

(

m2

T 2
+
n2

R2

)

corresponding to the normalized eigenfunctions

ψmn(ξ) =
2√
RT

sin
mπτ

T
sin

nπς

R
.
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The determinant can be regularized with the ζ-function
technique: defining

ζ−∂2(s) ≡
∞
∑

mn=1

λ−s
mn

the regularized determinant is defined through the
analytic continuation of ζ ′

−∂2(s) to s = 0:

det(−∂2) = exp
[

−ζ ′−∂2(0)
]

.

The series can be transformed, using the Poisson
summation formula which states that:

∞
∑

n=−∞

f(nr) =
1

r

∞
∑

m=−∞

f̃
(m

r

)

where the Fourier transform f̃ is defined as

f̃(y) =

∫ ∞

−∞

dx e−2πixyf(x)
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we obtain:

ζ−∂2(s) = −1

2

(

R2

π2

)s

ζR(2s) +

√
πImτΓ(s− 1/2)

2Γ(s)

(

R2

π2

)s

ζR(2s− 1) +

2
√
π

Γ(s)

(

T 2

π2

)s ∞
∑

n=1

∞
∑

p=1

( πp

nImτ

)s−1/2

Ks−1/2(2πpnImτ)

where τ = iT/R, ζR(s) is the Riemann ζ function and
Kν(x) is a modified Bessel function. The derivative
ζ ′
−∂2(s) can be analytically continued to s = 0 where

it is given by

ζ ′
−∂2(0) = log(

√
2R) − iπτ

12
−

∞
∑

n=1

log(1 − qn)

where we have defined

q ≡ e2πiτ .
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Introducing the Dedekind η-function

η(τ) = q1/24Π∞
n=1(1 − qn)

we obtain finally

det(−∂2) = exp[−ζ ′
−∂2(0)] =

η(τ)√
2R

and

Zq(R, T ) ∝
[

η(τ)√
R

]−d−2
2

.
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