

Luca Lista, Napoli, 25/2/05

INFN

- PEP-II and BaBar experiment
- CP Violation:
 - Direct CP violation
 - Measurements of sin2 β , α and γ
- Measurements of |Vub| and |Vcb|
- · Searches beyond the Standard Model
- Conclusions

• Many results skipped due to limited time...

PEP-II: Luminosity and Data Sample

- PEP-II is SLAC e⁺e⁻ B factory running at the Y(4S) c.m. energy
- Y(4S) resonance decays to charged and neutral B-anti-B pairs

Total: 244 fb⁻¹ (Jul 31st 04)

The Unitarity triangle

- CKM matrix measures Quarks mixing in weak interactions
- Unitarity relations lead to unitarity triangles in the complex plane

CP Violation (I, II)

CP violation in mixing

q and p are the mass eigenstates coefficients in the flavor eigenstate basis; M - i½ Γ is the 2×2 effective Hamiltonian

CP first observed in kaon decays

SM prediction for B mesons is very small:

Direct CP violation in the decay

If B decay amplitude to f is different from anti-B decay amplitude to anti-f. Requires a relative CP violating phase ϕ_2 and a CP conserving phase δ_2

CP Violation (III)

Time dependent CP violation

Time dependent CP Asymmetry:

$$A_{f_{CP}}(t) = \frac{\Gamma\left(\overline{B}_{phys}^{0}(t) \to f_{CP}\right) - \Gamma\left(B_{phys}^{0}(t) \to f_{CP}\right)}{\Gamma\left(B_{phys}^{0}(t) \to f_{CP}\right) + \Gamma\left(\overline{B}_{phys}^{0}(t) \to f_{CP}\right)}$$

$$A_{f_{CP}} = -C_{f_{CP}} \cos(\Delta mt) + S_{f_{CP}} \sin(\Delta mt)$$

 $C_{f_{CP}} \neq 0$ implies Direct *CP* Violation

B decay reconstruction and tagging

INFN

Direct CP Violation

INFN

$\cos 2\beta$ > 0 at 87% C.L.

Using an s- and p-wave interference in angular analysis of $B \rightarrow J/\psi K^{0}$ $(K_{\rm S}\pi^0)$

"sin 2β " channels probing new Physics

INFN

 $B^0 \rightarrow \phi K^0_S$

 $B^0 \rightarrow \eta' K^0_S$

 Decays dominated by loop diagrams can exhibit contributions from new physics

Comparison of $sin 2\beta$ modes

Luca Lista, Napoli, 25/2/05

Measurement of $sin2\alpha$

sin2 α with $B \rightarrow \pi \pi$

sin2 α with B $\rightarrow \rho\rho$

Combined $B \rightarrow \pi\pi$, $\rho\rho$, $\pi\rho$ (Dalitz)

Belle measurement with 275M $B\overline{B}$ pairs

 $Br(\pi^{0}\pi^{0}) = (2.3^{+0.4+0.2}_{-0.5-0.3}) \times 10^{-6}$ $A_{CP}(\pi^{0}\pi^{0}) = +0.44^{+0.53}_{-0.52} \pm 0.17$

hep-ex/0408101 submitted to PRL

BABAR measurement with 227M \overline{BB} pairs

 $Br(\pi^{0}\pi^{0}) = (1.17 \pm 0.32 \pm 0.10) \times 10^{-6}$ $A_{CP}(\pi^{0}\pi^{0}) = +0.12 \pm 0.56 \pm 0.06$

hep-ex/0412037 submitted to PRL

Belle: constraints on $\phi_2(\alpha)$

Different methods to measure γ GLW

• The phase between b \rightarrow c and b \rightarrow u transitions is γ

Size of CP asymmetry depends on:

$$r_B^{(*)} = \frac{\left|A(B^- \to \overline{D}^{(*)0}K^-)\right|}{\left|A(B^- \to D^{(*)0}K^-)\right|} \approx 0.1 - 0.3$$

- Gronau, London, Wyler, 1991: use $B^- \rightarrow D^0_{CP\pm}$ (small D^0 B.r., 8-fold ambiguity)
- Atwood, Dunietz, Soni, 2001: i
- use B⁻→D⁰_{CP±} (small D⁰ B.r., 8-fold ambiguity)
 interference in D and anti-D dec. to same final state

 $\begin{array}{ccc} & \begin{array}{c} & suppressed \\ B^- \to D^0 K^- & D^0 \to K^+ \pi^- \\ suppressed \\ B^- \to \overline{D}^0 K^- & \end{array} \begin{array}{c} & D^0 \to K^+ \pi^- \\ \overline{D}^0 \xrightarrow{favored} & \overline{A} \\ \hline D^0 \xrightarrow{favored} & \overline{A} \\ \hline D^0 \xrightarrow{favored} & \overline{A} \\ \hline \end{array} \left[K^+ \pi^- \right]_D K^- \end{array} \begin{array}{c} \text{input:} \\ & r_D = \frac{|A(D^0 \to K^+ \pi^-)|}{|A(D^0 \to K^- \pi^+)|} \\ = 0.060 \pm 0.003 \\ \hline \end{array} \right] \\ \begin{array}{c} & \text{BABAR measurement,} \\ & \text{Phys.Rev.Lett.91:171801,2003} \end{array} \right]$

S

Giri, Grossman, Soffer, Zupan, 2003: $B^- \rightarrow D^{(*)0}K^-$, $D^0 \rightarrow K_S \pi^+ \pi^-$ Dalitz analysis

$B^- \rightarrow D^{(*)0}K^-$, $D^0 \rightarrow K_S \pi^+ \pi^-$ Dalitz analysis

INFN

Belle: **y**

 $sin(2\beta + \gamma)$ using $B^0 \rightarrow D^{(*)}\pi^+/\rho^+$

• Time-dependent CP violation in the mixing/decay interference

INIEN

Vub measurements

 Inclusive: measure total Br(b→ulv)

- Exclusive: measure selected decays (B $\rightarrow \pi Iv, \rho Iv, ...$)
 - Innovative technique: fully reconstruct one of the B $B^{+} \rightarrow \rho^{-}l^{+}\nu$

Luca Lista, Napoli, 25/2/05

Radiative penguin decays

Studies of D_{sJ} properties

 $D_{sJ}(2460)^+ \rightarrow D_s^+ \gamma$ elicity $D_{sJ}^{*}(2317)^{+}$ and $D_{sJ}(2460)^{+}$ discovered in 2003 Detailed studies properties and mass meas. J=2 $B \rightarrow D_{s}^{(*)+} D^{(*)}$ angular analysis \Rightarrow spin 30 Branching fraction measurements Entries/0.4 MeV/c^2) 120 D_{s1}(2536)+ RARAR 100 Preliminary 123 fb⁻ D_{sJ}(2460)+ 10 / (3 80 Candidates ⁶D^{|-}_{sJ*}(2317)+ 0 -0.5 0 0.5 -1 $\cos(\theta_{\rm h})$ 40 $m(D_{s,J^*}(2317)^+ \rightarrow D_s^+ \pi^0) =$ 20 2318.9±0.3±0.9 MeV/c² 0 ⊾ 2.₹ 2.5 2.45 2.352.4 $m(D_{sJ}(2460)^+ \rightarrow D_s^+\gamma, D_s^+\pi^0\gamma, D_s^+\pi^+\pi^-) =$ m(D_s⁺π⁺ π⁻), GeV/c² 2459.4+0.3+1.0 MeV/c² $m(D_{s1}(2536)^+ \rightarrow D_{s}^+\pi^+\pi^-) =$ 2534.3±0.4±1.2 MeV/c² Luca Lista, Napoli, 25/2/05

- BaBar is exploring different aspects of CP violation in B meson
 - Recent first evidence of direct CP violation
 - sin2β is becoming a precision measurement
 - First quantitative estimates of α
 - Technology for extracting γ is being established
- Some channels may probe new physics
 - b→sss penguins?
- The increase of statistics in the following years will improve the experimental precision and will make more rare channels accessible

- SELEX claims evidence of a state $D_{sJ}(2632)^+$ decaying to $D_s^+\eta$ and $D^0K^+(hep-ex/0406045)$
- BaBar doesn't observe such signal

Selex $D_{sJ}(2632)^+$ state ($\rightarrow D_s^+\eta$)

No evidence of $D_{sJ}(2632)^+$ in $D_s^+\eta$, D^0K^+ , $D^{*+}K_s$ in125 fb⁻¹

 $\mathcal{B}(\mathbf{B}^{-} \rightarrow \mathbf{X}(\mathbf{3872})\mathbf{K}^{-}) \cdot \mathcal{B}(\mathbf{X}(\mathbf{3872}) \rightarrow \mathbf{J}/\psi\pi^{+}\pi^{-}) = (\mathbf{1.28} \pm \mathbf{0.41}) \cdot \mathbf{10}^{-5}$

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.