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The Casimir effect is a manifestation of retarded Van der WWaals forces
between neutral macroscopic bodies, that arise from zero-point quantum
fluctuations of the e.m. field.

It is one of the rare quantum phoenomena that can be seen on a
macroscopic scale.

For two perfectly conducting parallel plates, at T=0, Casimir (1948)
obtained an force between the plates, of magnitude:

A = area of the plates

L= distance between the plates

The proportionality of F_ to h reveals the quantum origin of the effect

For A=1 cm? and L=1 pum F=13 107N




The scope of the Casimir effect is much broader than this, as it applies to all
Quantum Fields under the influence of external boundary conditions.

« Bag model of hadrons in QCD: the C.E. Of quarks and gluons make important
contributions to the nucleon energy.

 |In Kaluza-Klein models C.E. Provides an effective mechanism of spontaneous
compatification.

* In Gravitation and Cosmology (in space-times with nontrivial topology)
the vacuum energy resulting from the C.E. Can drive inflation.

* In Atomic Physics, the long range Casimir interaction modifies the energy levels
of Rydberg states.




In Naples reserch on Casimir effect goes on since several years.

Recently we investigated the possibility

of testing experimentally if the Equivalence
Principle of General Relativity holds also
for vacuum fluctuations:

“ Do virtual photons have a weight?”
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As the Casimir energy of a p.p.
cavity is negative, is should
contribute a negative weight!




Some experiments on the Casimir effect

e Sparnaay (1 95 8) Spring balance measurement of F_ in plane-parallel geometry. Not conclusive
e[ .amoreaux (1999) Torsion pendulum measurement of F_ in sphere-plane geometry. 5% error.
*Mohideen and ROy (1998) AFM measurement of F_ in sphere-plane geometry. 1% error
*Bressi et al. (2002) Plane-parallel geometry. 15% accuracy

The Mohideen-Roy experiment
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FIG. 4. The measured average Casimir force as a function
of plate-sphere separation for 26 scans is shown as square
dots.  The error bars show the range of experimental data
at representative points.  The theoretical Casimir force from
Eq. (4) with all corrections is shown as a solid line. The
rms deviation between the experiment and theory is 1.6 pN.
The dash-dotted line is the Casimir force without the finite

D . . conductivity, roughness, or temperature correction [Eq. (1)
FIG. 1. Schematic diagram ':'f_the experimental setup. - Appli- which rasu}lrts in a rms deviation ]::11" 6.3 pN. The dﬂs[hctnlj l'uu-]:
cation of voltage to the piezo results in the movemnent of the includes only the finite conductivity correction [Eq. (2)] which
plate towards the sphere. The experiments were done at a pres- results in a rms deviation of 5.5 pN. The dotted line includes
sure of 50 mTorr and at room temperature. only the roughness correction leading to a rms deviation of
48 pN.




Casimir forces are the dominant forces in nanomechanical devices

Recently the first actuator based on the Quantum Mechanical Actuation
Casimir force was developed by the of Microelectromechanical

researchers at Bell labs. . s
_ _ Systems by the Casimir Force
H.B. Chan, V.A. Aksyuk, R.N. Kleiman, D.J. Bishop, F.

Capasso, Science 291 (2001) 1941. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. ]. Bishop,
Federico Capasso®

The Casimir force is the attraction between uncharged metallic surfaces as a
result of quantum mechanical vacuum fluctuations of the electromagnetic field.
We demonstrate the Casimir effect in microelectromechanical systems using
a micromachined torsional device. Attraction between a polysilicon plate and
a spherical metallic surface results in a torque that rotates the plate about two
thin torsional rods. The dependence of the rotation angle on the separation
between the surfaces isin agreement with calculations of the Casimir force. Qur
results show that quantum electrodynamical effects play a significant role in
such microelectromechanical systems when the separation between compo-
nents is in the nanometer range.

Fig. 20, Scanning electron micrographs of (4) the nancfabricated {orsional deviee
and (B) a clege-up of one of the {orsional rods anchored to the aubstrate, Courtesy
of Federico Capasso, Bell Labs, Lucent Technologies.



From a QFT point of view the C.E. is a one-loop radiative correction to the external
background provided by some boundary conditions.

However, a simple way to obtain the Casimir force between ideal conductors is to

consider the associated (free) energy E_, such that:

- _ _JE.
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E. can be obtained as the zero point energy of the quantized e.m. field within the cavity:

Ec = /l\linoo(z Shaw on

where w are the eigenfrequencies of the e.m. field, E, is the vacuum energy that would be
present in an empty volume equal to the volume of the cavity, and L is a smooth
ultraviolet cutoff. The use of a cutoff 1s physically sensible because at high frequencies all
material eventually become transparent.

The computation is easy for a plane-parallel geometry, and gives

Note the - sign




Though conceptually easy, the computation of Ec for an arbitrary disposition of the
perfect conductors is generally very hard. An important feature of the Casimir energy
I, due to the long range nature of the Van der Waals forces, i1s that it is not an
extensive quantity, and so is not proportional to the volume of the system.

Ec depends on the geometry of the cavity!

The dependence on the geometry is clear already in the plane parallel case, as E_ depends separately on A and L

In fact, the dependence on the shape reaches to the point that the Casimir force

can be even repulsive, in certain cases. A classic example of this is provided by

a perfectly conducting spherical shell (Boyer, 1950). Another nice example 1s

that of a parallelepiped. Here the sign of F_ depends on the ratios among the sides.
There is no simple intuitive explanation of the sign of the Casimir energy, as E_results by taking
a difference between two positive infinite numbers.

Whether the Casimir force between real materials can ever be repulsive is in fact
controversial (Barton 2000)




All experiments so far are force measurements, in the plane-parallel or in the sphere-
plate geometry.
No experiments yet available for geometries in which F_ 1s expected to be repulsive.

Questions

* [s 1t possible to measure the Casimir energy, rather than the Casimir force?

* [s it possible to observe in a laboratory the influence of the Casimir energy
on a phase transition?

 Isis possible to study the Casimir effect with rigid cavities, of arbitrary
shape?

We think that this is possible by using a superconducting cavity (G.B., E. Calloni,
G. Esposito, L. Milano and L.Rosa (2004)).




We consider a rigid cavity containing superconducting plates. For example, a
plane-parallel cavity formed by a thin film of a type I superconductor (S),
placed between two non superconducting (N) plates.
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The idea is simple: Since the Casimir energy depends on the reflective power of the
plates, there should be a change AE_ of Casimir energy as soon as the film
becomes superconducting, because of the sharp change in the reflective power (in
the IR region) of the film.

AE_ should be very small, because the largest contribution to E, is due to photons of
energy hc/L=20 eV, while the transition to superconductivity changes the reflective
power in the IR region, at the scale kT =104 eV

Is there a way to measure AE_?




For any T<T, the difference AF among the free energies
of the cavity, when the filmis N or S, is the sum of the
condensation energy E_,.q Of the film plus the AF - ECOhd + A EC

variation of Casimir energy AE_

fs(T) Helmoltz free energy in the n/s state

ECOHd =V (f” (T) B fS (T)) V=AxD volume of the film

(E.ong @nd AE_ are both proportional to the area A)

con

A simple direct way to measure AF 1s by measuring the critical
magnetic field H_, that destroys the superconductivity of the

film.




Magnetic properties of superconductors

> Meissner effect: s.c. show perfect
diamagnetsim.

> Superconductivity is destroyed by a
critical magnetic field H.

H. is related to the free-energy
difference between the N and
the S states:

Normal

H,(T) follows an approximate H¥ (T)=H (0)1-] —
Parabolic law i ¢ T

Superconducting




p takes account of incomplete field expulsion, and nucleation

&=correlation length, A=penetration depth

AE, causes a shift of H_ of the order of:

We can get high sensitivities because E

¢ Is very small, and E_ is large.

con

For a Be film with A=1 cm? D=5 nm T/T_=0.97

For a cavity with A=1 cm? L=10 nm E. =0.43 erg

E. is 10 million times larger than E__, /!

So even a tiny fractional change of E_ can be large compared with E
and cause a measurable shift of H,

cond?’




Computation of AE_: the Casimir effect in real materials.

The theory for a dispersive cavity was developed by Lifshitz (1956). He computed the
Casimir energy by evaluating the v.e.v. of the e.m. stress-energy tensor in the empty space
between the bodies. Alternative methods exist today (summation on evanescent modes).
The basic assumption of the theory is that one can describe the propagation of e.m. waves
inside the plates by a complex permittivity €(w,q), depending on the frequency w and on
the wave-vector q.

Space dispersion can be neglected in the computation of AE _because:

1) Despite the fact that typical cavity modes have short wavelengths (L=10 nm) for which space
dispersion is important, the computation of AE_ only involves long-wavelength modes of energy kT,
because the reflective power of a supercondcuting film are indistinguishable from those of a normal film

for photon energies larger than a few times kT, (Glover and Tinkkam, 1958).
Then, the relevant range of frequencies is the far infrared.

2) In the far IR, space non-local effects are negligible in thin films (D << ¢,A).




For a film of thickness D, placed between two plates, AE, can be written as:
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Note that all permittivities €(iC) are evaluated at imaginary frequencies i¢

AE, has been evaluated numerically

For the normal plates and for the film in the n state, we used the Drude formula

y=1/t  t=relaxation time
Q, plasma frequency




For € film(w) we used the Mattis-Bardeen
complex permittivity of BCS theory
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A 1s the temperature dependent gap

Using dispersion relations £(1)
can be written in terms of Im(g(w))

FIG. 1: Plots of w e’ (w) /(8227 for T/T. = 0.3 (sdlid line),
T/T. = 0.9 {dashed line) and T = T. (point-dashed line).

On the abscissa, the frequency w is in reduced units o =

hu/(2A(0))

« Im( €(aw))
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AE. is positive.

This is an intuitive result, because one would
think that a superconducting mirror is better
than a normal one, leading to a stronger
Casimir effect, i.e. to a more negative Casimir

energy.

As a result we predict a shift of
critical field towards larger values

The effect should be larger for small L
and close to T, because

2

OHX(T) O 1—T1
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TABLEI: Values of AE') {in erg) for T/T. = 0.9, 0.95, 0.99,

and for three values of 7, (dlbplaved in the first column).
D=%nm L=10nm, A=1cm*

Tn (56C) 0.9 7. 0,95 7. 0,99 7.
1t 1.0 =107 % 5.6 %1077 1.2 <107

5w 10718 1.9 =108 1.0 <108 2.2 %1079
1012 2.15 %1078 1.2 %108

0.24 0.95 0.956 0.97 0.98 0.99

FIG. 2: Comparison between the parallel critical fields of a Be
film in a Casimir cavity (solid curve) and a single Be film of
same thickness (dashed line), for 0.93 < T/7. < 0,995, The
magnetic field is expressed in Oe. D = 5 nm, L = 10 nm,
Tp = 0 = 1071 sec.




Aladin

The experiment
ALADIN aiming at at
verification of this
effect has been

recently sponsored
by INEN (Gruppo V).
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Conclusions

We propose to use superconducting cavities to measure variations
of Casimir energy across phase transitions. This is a novel
approach, since all experiments so far are force measurements.

Use of rigid cavities allows realization of many different geometries.

Possibility of checking controversial statements about the sign of the
Casimir energy.

Possibility of an experimental verification of the effects of a form of
dark energy on a phase transition




