Napoli-17.12.04

$$
\begin{gathered}
\text { A unitary S-Matisix } \\
\text { up to the } \\
\text { black-hole production thaseshold }
\end{gathered}
$$

based on hep-th/0410166 \& on much old stuffif

The problem at hand

(Super)-Planckian-energy collisions of light particles within a consistent quantum theory of gravity (superstring theory) in $d=D-1$ "large" dimensions

Since superstring theory is essentially an 5 -matrix theory, the description will be, naturally, quanifum and unifary

Three reasons for going about it

1. Weinberg's: "Because I can!"
2. Theoreticall: Information paradox:

* Is the S-matrix description breaking down in some regime?
* And, if not, is the final statie (close to) thermal?
"Phenomenologicalu: finding signatures of string/quantum gravity @ future colliders:
* In KK models with large extra dimensions

4 In brane-world scenarios
NB. Fufture collliders will be at best marginal for producing BHIs!

Outline

1. General considerations and two complementary approaches
2. The phase diagram of super-Planckian collisions
3. A unitary S-matrix for regions II and III
4. Analysis of the final statie, "aintil-scaling"
5. Implications for the information paradox
6. Summary

Outline

1. General considerations and two complementary approaches
2. The phase diagram of super-Planckian collisions
3. A unitary S-matrix for regions I and III
4. Analysis of the final statie, "antil-scaling"
5. Implications for information paradox
6. Summary

With very few exceptions, we do not have much of a handle on string theory in extreme regimes (strong coupling, strong curvature)

- Superplanckian collisions may help as gedanken experiments by providing:
\lrcorner A way to find out how QST is able to reproduce expectations from CGR at large distances
\lrcorner A way to find outi how QST modifies gravity at short distances
Two complementrary approaches (from 1987 on):

1. Gross-Mende + Mende-Ooguri (1987-1990)
2. 'T-Hooft"; Muzinich \& Soldate"; Amati, Ciafialoni \& GV: Verlingle \& V.; FPVV... Arcioni, de Haro ...(1987-04)

Gross-Mende-Ooguri (GMO)

- Genus by genus (ie. loop by loop) calculation (GM, 1987-'88) of elastic scattering at very high energy and fixed sc. angle $\theta(h=n u m b e r ~ o f ~ l o o p s): ~$

$$
A_{e l} \sim\left(g_{s}\right)^{2+2 h} \exp \left(-\frac{\alpha^{\prime} s f(\theta)}{1+h}\right)
$$

(from complex saddle trajectory)
All genus resummation (MO, 1990) only justified in an energy window, fails aft infinite energy

$$
\log \left(1 / g_{s}^{2}\right)<\frac{s}{M_{s}^{2}}<\log ^{3}\left(1 / g_{s}^{2}\right)
$$

Small, probably too conservative (result given below)

Amati, Ciafaloni, GV (ACV) et al.

Work in energy-impact parameter space, $A(E, b)$
Can go to arbitrarily high energy provided b is also increased accordingly,

$$
b>R_{S}(E) \sim\left(G_{N} E\right)^{\frac{1}{D-3}}
$$

- One then goes over to $A(E, q \sim \theta E)$ by FiT and trustis (leading?) contributions coming from the above region of b. In this way one can reach the regime of fixed $\theta \ll 1$

In gravity, fixed θ scaftitering aft very high E is dominatied by Jaige distance physics (opposite of QCD!). Reason explained below..

The comparison (to which we shall come back) is quite striking
$A_{G M O}(s, \theta) \sim \exp \left(-l_{s} q \sqrt{\log \left(1 / \theta^{2}\right) \log \left(1 / g_{s}^{2}\right)}\right)$
$A_{A C V}(s, \theta) \sim \exp \left(-l_{s} q \sqrt{\log \left(\alpha^{\prime} s\right) \log \left(1 / g_{s}^{2}\right)}\right)$
Cf. tree level fixed t vs, fixed, small θ

$$
\left(\alpha^{\prime} s\right)^{\alpha^{\prime} t} \text { vs. } \exp \left(\alpha^{\prime} t \log \left(1 / \theta^{2}\right)\right.
$$

Outline

1. General considerations and two complementary approaches
2. The phase diagram of super-Planckian collisions
3. A unifary S-matrix for regions I and III
4. Analysis of the final statie, "antil-scaling"
5. Implications for information paradox
6. Summary

CGR arguments for Collapse @ b < R_{s}

- Penrose 1974 (unpublished)

CTS arguments:
Eardley and Giddings, gr-qc/0201034,
2. Giddlings and Rychkov, hep-th/0409131

Finite-size effects:
Yurtsever, 1988
2. Kohlprath and GV, gr-gc/0203093

$R_{S}>b+l_{s}$

In string theory the collapse criterion should be amended!
We shall take the string coupling fixed and very small (g_{s} «1). Our def's.
$l_{s}=\sqrt{2 \alpha^{\prime}}=M_{s}^{-1}, 8 \pi G_{D}=l_{D}^{D-2}=M_{D}^{2-D}, \hbar=1$
$l_{s}=\left(g_{s}\right)^{-\frac{2}{D-2}} l_{D} \gg l_{D}$, ie. $M_{D}=M_{s}\left(g_{s}\right)^{-\frac{2}{D-2}} \gg M_{s}$

String/Black-Hole correspondence

Three regimes in super-Planckian scattering

- I) Small angle scattering (relatively easy)
II) Laige angle and collapse (very hard, all attempts have failed so far)
III) Stringy (easy again) This is where GMO and ACV can be compared with amazingly good agreement given the completely diffiferent approaches (q~ θ E)
$A_{G M O}(s, \theta) \sim \exp \left(-l_{s} q \sqrt{\log \left(1 / \theta^{2}\right) \log \left(1 / g_{s}^{2}\right.}\right)$
$A_{A C V}(s, \theta) \sim \exp \left(-l_{s} q \sqrt{\log \left(\alpha^{\prime} s\right) \log \left(1 / g_{s}^{2}\right)}\right)$
Cf. tree level fixed t vs. fixed, small θ
$\left(\alpha^{\prime} s\right)^{\alpha^{\prime} t} v s . \exp \left(\alpha^{\prime} t \log \left(1 / \theta^{2}\right)\right.$

Outline

1. General considerations and two complementary approaches
2. The phase diagram of super-Planckian collisions
3. A unitary S-matrix for regions I and III
4. Analysis of the final statie, "antil-scaling"
5. Implications for information paradox
6. Summary

Approximate (but exactly unitary) S-matrix in regions I and III

 Operator formula encoding previous ACV results:$$
\begin{gathered}
S=\exp (i \hat{I}), \hat{I}=\left(\hat{\delta}+\hat{\delta}^{\dagger}\right)+\sqrt{-2 i\left(\hat{\delta}-\hat{\delta}^{\dagger}\right)}\left(C+C^{\dagger}\right)=\hat{I}^{\dagger} \\
{\left[C, C^{\dagger}\right]=1,\left[\hat{\delta}, \hat{\delta}^{\dagger}\right]=[C, \hat{\delta}]=\left[C, \hat{\delta}^{\dagger}\right]=0} \\
S=e^{2 i \hat{\delta}} e^{i \sqrt{-2 i\left(\hat{\delta}-\hat{\delta}^{\dagger}\right)}} C^{\dagger} e^{i \sqrt{-2 i\left(\hat{\delta}-\hat{\delta}^{\dagger}\right)} C} \\
\delta(E, b)=\frac{1}{(2 \pi)^{D-2}} \int d^{D-2} q \frac{A_{\text {tree }}(s, t)}{4 s} e^{-i q b}, s=E^{2}, t=-q^{2} \\
\hat{\delta}(E, b)=\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} d \sigma_{u} d \sigma_{d}: \delta\left(E, b+\hat{X}_{u}\left(\sigma_{u}\right)-\hat{X}_{d}\left(\sigma_{d}\right)\right):
\end{gathered}
$$

$$
\begin{aligned}
& b+\Delta x \\
& (E,-p)
\end{aligned}
$$

Inserting tree-level amplitude (and forgetting ^s!) we get

$$
\operatorname{Im} \delta \sim \frac{G_{D} s l_{s}^{2}}{\left(Y l_{s}\right)^{D-2}} e^{-b^{2} / b_{l}^{2}}, b_{I}^{2} \equiv l_{s}^{2} Y^{2}, Y=\sqrt{\log \left(\alpha^{\prime} s\right)}
$$

Therefore, for $b \gg b_{I}$ (Region I), we can forget $a b o u t C^{\prime}, c^{+}$. In this region we also find:

$$
\delta=\left(\frac{b_{c}}{b}\right)^{D-4} \equiv G_{D} s b^{4-D}
$$

Inserting this phase shiftt, and going over to scaftering angle θ, we find a saddle point at

$$
b_{s}^{D-3}=\frac{8 \pi G_{D} \sqrt{s}}{\Omega_{D-2} \theta}
$$

$$
\theta=\frac{8 \pi G_{D} \sqrt{s}}{\Omega_{D-2} b^{D-3}}
$$

corresponding precisely to the relation between impact parameter and scaftering angle in the (AS) metric of a relativistic particle: clearly, fixed θ, large E probe large b

- This also explains why
- Because of eikonal exponentiation, Re δ also gives the average loop-number. Thus the total huge momentum transfer $q=\theta E$ is shared among Re δ gravitons to give:

$$
q_{\text {ind. }}=\frac{q}{G s b_{s}^{4-D}} \sim \frac{\theta}{R_{S}^{D-3} b_{s}^{4-D}} \sim 1 / b_{s}
$$

meaning that the process is soft at large b_{s}

- Lesson: while in QCD it is better to get a large transverse momentum via the exchange of as few gluons as possible, in QSE it is bettier to share it among as many as possible gravitons!

We still have to take into account the operators in δ

Physically, they describe "diffractive excitation" (DE) via graviton exchange. As a result, the elastic amplitude is found to be suppressed:

$$
\left|A_{e l}\right| \sim e^{-2 \delta_{D E}}, \delta_{D E}=\frac{G_{D} s l_{s}^{2}}{b^{D-2}}
$$

This introduces a second critical value of b, $b_{D E}$, below which diffifractive excitation takes over the elastic process:

$$
b_{D E}^{D-2}=G_{D} s l_{s}^{2} \quad \begin{gathered}
b_{D E}=b_{I} \text { at } s=M_{*}^{2} \\
\text { NBi: } M_{*}^{2} \sim M_{s} M_{t h}
\end{gathered}
$$

This new scalle $M_{*}\left(M_{*}=M_{p}\right.$ in $D=4, M_{*}>M_{p}$ for $\left.D>4\right)$ will play an important role in the following. Does it have a deep meaning?
For the moment let us look att what it does to our ph, diagram

Region III

Let us forget for a moment that $\operatorname{Im} \delta \neq 0, C$ and C^{+}

$$
\operatorname{Re} \delta=-\frac{G_{D} s b^{2}}{\left(Y l_{s}\right)^{D-2}}
$$

The saddle point condition now gives the relation:

$$
\theta=G_{D} \rho b, \rho=\frac{E}{\left(Y l_{S}\right)^{D-2}}
$$

corresponding to deflection from an homogeneous beam of transverse size $I_{s} y$:

Outline

1. General considerations and two complementary approaches
2. The phase diagram of super-Planckian collisions
3. A unifary 5 -matrix for regions I and III
4. Analysis of the final state, "anti-scaling"
5. Implications for information paradox
6. Summary

Region III: diffractive excitation

While still neglecting $\operatorname{Im} \delta \neq 0$ (C and C^{+}), let us consider DE Like in region I one finds:

$$
\left|A_{e l}\right| \sim e^{-2 \delta_{D E}}
$$

but instead of $\delta_{D E}=\frac{G_{D} s l_{s}^{2}}{b^{D-2}}$ we now find

$$
\delta_{D E}=\frac{G_{D} s l_{s}^{2}}{\left(l_{s} Y\right)^{D-2}}, b<b_{I}
$$

In other words, diffiractive absorption saturates $a f t b=b_{I}$

Region III: effects of $\operatorname{Im} \delta \neq 0$

The operators C and C^{+}are now "activated" , recall:

$$
S=e^{2 i \hat{\delta}} e^{i \sqrt{-2 i\left(\hat{\delta}-\hat{\delta}^{\dagger}\right)} C^{\dagger}} e^{i \sqrt{-2 i\left(\hat{\delta}-\hat{\delta}^{\dagger}\right)} C}
$$

The elastic amplitude, $\langle 0| S|0\rangle$, is now suppressed as exp $(-2 \operatorname{Im} \delta)$ and therefore:

$$
\sigma_{e l} \sim \exp (-4 \operatorname{Im} \delta)=\exp \left[-\frac{G_{D} s l_{s}^{2}}{\left(Y l_{s}\right)^{D-2}}\right]
$$

This elamping adds to the one already discussed due to DE:

$$
\left|A_{e l}\right| \sim e^{-2 \delta_{D E}} \delta_{D E}=\frac{G_{D} s l_{s}^{2}}{\left(l_{s} Y\right)^{D-2}}, b<b_{I}
$$

and combined effect simply doubles the exponent! Note that the exponent is of order $-\left(s / M *{ }^{2}\right)=g_{s}^{-2}=S$ @ $E=E_{\text {th }}$

Which final states saturate unitarity?

Recall once more:

$$
S=e^{2 i \hat{\delta}} e^{i \sqrt{-2 i\left(\hat{\delta}-\hat{\delta}^{\dagger}\right)} C^{\dagger}} e^{i \sqrt{-2 i\left(\hat{\delta}-\hat{\delta}^{\dagger}\right)} C}
$$

\Rightarrow The final state, $S|0\rangle$, is a coherent statie of quanta associated with C, C^{+}. What are they? In order to arrive at above expression for 5 one had to use the AGK rules of Gribov's Reggeon Calculusi: C (C') annihilates (creates) a cut gravi-Reggeon*) (CGR) The probability of producing in CGRs obeys a Poisson distribution with an average given by:

$$
\left\langle N_{C G R}\right\rangle=4 \operatorname{Im} \delta=\frac{G_{D} s l_{s}^{2}}{\left(Y l_{s}\right)^{D-2}}=O\left(\frac{s}{M_{*}^{2}}\right)
$$

*) The $G R$ is the stringy graviton; a CGR is whatever is dual to it in the sense of old DHS duality

At this point we can compute the average energy of a final state associated with a single CGR:
$\langle E\rangle_{C G R}=\frac{\sqrt{s}}{\left\langle N_{C G R}\right\rangle} \sim M_{s} Y^{D-2}\left(\frac{l_{s}}{R_{S}}\right)^{D-3} \sim T_{e f f} \equiv \frac{M_{*}^{2}}{E}=\frac{M_{s}^{2}}{g_{s}^{2} E}$
We have thus found that the final-state energies obey a sort of «antiji-scaling>> Iaw

$$
\langle E\rangle_{C G R} \sqrt{s}=M_{*}^{2}=M_{s}^{2} g_{s}^{-2}
$$

This antiscaling is very unlike what we are familiar with in HEP
It is however similar to what we expect in BH physics! In pariticulars: For $D=4 T_{\text {eff }} \sim T_{\text {Haw }}$ even att $E<E_{\text {th }}$, while for $D>4 T_{\text {eff }} \rightarrow T_{\text {Haw }}$ for $E \rightarrow E_{\text {th }}$

Typical final state via the optical theorem

An interesting question raised by S. Giddings (p.c.)
GMO (and also ACV in the region of overlap) had found:

$$
\langle 1+h\rangle \sim E
$$

And NOT $\sim E^{2}$ as I claimed at fixed $b<b_{I \text { I }}$. The answer is simple and instructive. Actually, in the energy window:

$$
\langle 1+h\rangle_{G M O / A C V} \sim \frac{\theta}{\theta_{\max }}\langle 1+h\rangle_{G V}>\langle 1+h\rangle_{G V}
$$

since in region being considered $\theta>\theta_{\text {max }}$
On the other hand, $\theta_{\text {max }} \sim E$ explains the diffferent E-dependence

Outline

1. General considerations and two complementary approaches
2. The phase diagram of super-Planckian collisions
3. A unitary S-matrix for regions II and III
4. Analysis of the final statie, "antit-scaling"
5. Implications for information paradox
6. Summary
7. Our results show that, at least (much) below $E_{\text {th }}$, there is no loss of quantum coherence. However the spectra are not thermal
8. When we go above $E_{\text {th }}$ we can no-longer neglect "classical" corrections. They correspond to interactions among our CGRs: hopefully, they will turn their Poisson distribution into a (approximately) thermal one for their decay products, but there is no reason to expect a breakdown of unitrarity
9. The diffreactive staties may carry out conserved global quantum numbers (if there are any)

Outline

1. General considerations and two complementary approaches
2. The phase diagram of super-Planckian collisions
3. A unitary S-matrix for regions II and III
4. Analysis of the final stafte, "antil-scaling"
5. Implications for information paradox
6. Summary

Summarizing the main points:
\# We have been able to recast the main results of ACV in the form of an approximate, but exactly unitary, Smatrix whose range of validity covers a large region of the kinematic energy--angular-momentum plane;

We have studlied the nature of the dominant final staftes in a window of energy and impact parameter at whose boundary we expect black-hole formation to begin;

We have found a sort of precocious black-hole behaviours, in particular' an ' "antij-scaling" dependence of the average energy of the final particles from the initial energy, quite reminiscent of the inverse relation between black-hole mass and temperafture;

85 This anti-scaling behaviour introduces, through the variable $x=\omega E / M_{*}{ }^{2}$, a new energy scale $M_{*}=M_{s} / g_{s}$, whose physical origin we have tried to trace back
(3) These results may have a twofold application:

- a conceptual one within the search for an explicit resolution of the information paradox,
- a more phenomenological one in the context of the string/quantum-gravity signals expectied ait colliders in models with Jaige extra dimensions.

