Neutrinos and Cosmological Perturbations

Napoli, 3rd December 2004 Julien Lesgourgues (LAPTH, Annecy, France) collaborations with Sergio Pastor (U. Valencia) +Patrick Crotty (LAPTH) +Laurence Perotto (PCC, CdF)

I) a powerful tool: cosmological perturbations brief review of observations / theory 2) effect of neutrino masses perturbations damped by neutrino free-streaming 3) current cosmological bounds on the masses using CMB, redshift surveys, Lyman - α ... 4) future prospects future CMB experiments, weak lensing ...

Observing cosmological perturbations) Large Scale Structure (LSS)

Observing cosmological perturbations 1) Large Scale Structure (LSS)

Observing cosmological perturbations

2) Cosmic Microwave Background (CMB) anisotropies

Theory of cosmological perturbations

inhomogeneities decomposed in Fourier space

Dephysical wavelengths grow with scale factor : $\lambda(t) = (2\pi/k) a(t)$

Before decoupling: gravity / photon pressure acoustic oscillations of γ , b

After equality: gravity only structure formation for cdm, b

Cosmological neutrino background

• thermalization before decoupling,
then collisionless :

$$\begin{aligned}
\Gamma_{dec}(v_{e}) &\approx 2.3 \text{ MeV} \\
T_{dec}(v_{\mu,\tau}) &\approx 3.5 \text{ MeV}
\end{aligned}$$

$$f_{V} = [e^{p/T} + 1]^{-1}$$
• relativistic regime : $\langle p \rangle = 3 \text{ K}_{B} T_{V} \rangle \rangle m_{V}$

$$\rho_{V} = N_{V} (7/8) (\pi^{2}/30) T_{V}^{4} \propto a^{-4} \begin{cases} N_{V} = 3.04 \text{ et al. oze} \\
T_{V} = (4/11)^{1/3} T_{V}
\end{aligned}$$
• non-relativistic regime :

$$\rho_{V} = m_{V} n_{V} \qquad \propto a^{-3}$$

Effect of neutrino mass

since collisionless after decoupling
 couple only through Einstein equations

□ Background :

$a(t) \Leftrightarrow \Sigma_i \rho_i(t)$

(Friedmann eq.)

> can change characteristic times and scales

□ Perturbations :

 $\delta g_{\mu\nu} \Leftrightarrow \delta T_{\mu\nu}$

inside horizon :

$$\Delta \phi_{\text{grav}} = 4\pi G a^2 (\Sigma_i \delta \rho_i)$$
 (Poisson eq.)

can change growth of matter perturbations

Effect of neutrino mass

Effect of neutrino mass background effect : **I)** v masses change total density for t>t_{n.r.} \Rightarrow change geometry or for $\Omega_0 = 1$: \Rightarrow change $\Omega_{\rm m}$, Ω_{Λ} , matter/vacuum density and t_{equality}

 $\Omega_v \sim (\Sigma m_v) / (50 \text{ eV}) \rightarrow \text{SMALL for } \Sigma m_v < 1 \text{ eV}$

Effect of neutrino mass

2) perturbation effect :

> situation taking neutrino oscillation data into account:

> experiments sensitive to absolute neutrino mass scale :

Cosmology	$\sim \sum_{i} m_{i}$	next slides		
Tritium beta decay	$\left(\sum_{i}\left U_{ei}\right ^{2}m_{i}^{2}\right)^{1/2}$	< 2.3 eV	KATRIN: 0.2 eV ?? (20)	
Neutrinoless double beta decay	$\left \sum_{i} U_{ei}^2 m_i\right $	< 0.3-1.2 eV		
dep. on CP phases, Dirac/Majorana				

□ mass bounds for 3-v scenarios :

THERE IS NOT A UNIQUE « COSMOLOGICAL BOUND » !!!

>depends on the exact data set and priors

>depends on the underlying cosmological model

□ mass bounds for 3-V scenarios :

>method for given data:

- 1) compute $\mathcal{L}(\theta_1, \theta_2, ..., m_v)$ around its maximum
- 2) marginalize over the other parameters
- 3) bounds on m_v

>final uncertainty depends on :

- 1) experimental errors
- 2) cosmic variance
- 3) parameter degeneracies (external priors: HST, SN,...)
- 4) underlying model (criterium of simplicity)

mass bounds for 3-V scenarios :
 minimal model fitting most CMB+LSS data: flat ΛCDM
 cosmological parameters { H, Ω_B, Ω_{CDM}, A_S, T, n } + bias

(even 5: n=1) $\Omega_{\Lambda} + \Omega_{B} + \Omega_{CDM} = 1$ $m_{v} = 0$ WMAP only: $\chi^{2} = 1430 \text{ for } 1341 \text{ points}$

 $(\chi^2 / #dof = 1.07)$

□ mass bounds for 3-v scenarios : 7-parameter fits

	∑m _v (eV) at 95%CL	Data used
SDSS Coll. PRD 69 (2004) 103501	< 1.8	WMAP, SDSS
Hannestad JCAP 0305 (2003) 004	< 1.01	WMAP, other CMB, 2dF, HST
Crotty, JL & Pastor PRD 69 (2004) 123007	0.6	WMAP, other CMB, 2dF, SDSS, HST
WMAP Coll. ApJ Suppl 148 (2003) 17	< 0.7	WMAP, other CMB, 2dF, HST + bias
Seljak et al. astro-ph/0407372	< 0.42	WMAP, SDSS + <u>bias</u> , <u>Ly-α</u> from SDSS

□ mass bounds for 3-v scenarios (7-parameter fits)

	∑m _v (eV) at 95	7%CL vsed
SDSS Coll. PRD 69 (2004) 103501	< 1.8	WMAP,
Hannestad JCAP 0305 (2003) 004	< 1,01	extra parameters
Crotty, JL & Pastor PRD 69 (2004) 123007	< 0.6	
WMAP Coll. ApJ Suppl 148 (2003) 17	< 0.7	degeneracies
Seljak et al. astro-ph/0407372	< 0.42	(e.g. \square extra rel. d.o.f., tilt running,)

Iower bound from Heidelberg-Moscow experiment :

using current techniques:

CMB primary anisotropies+galaxy survey

Fisher matrix analysis:

- a) assume various « fiducial models » (NH or IH with given M)
- b) given experimental specifications, compute $\sigma(M)$

Planck + SDSS

 2σ detection threshold around M ~ 0.2 - 0.3 eV

2) using galaxy weak lensing

 $d - d_s/2$

deflection field measurable statistically !! r no bias uncertainty

small scales close to linear regime

tomography: 3D reconstruction

3) using CMB weak lensing

 $dT/T_{obs}(n) = dT/T(n + \nabla \phi)$ gravitational potential integrated along line - of - sight with window function centered on

Z-3

deflection field measurable statistically !!

- r no bias uncertainty
- small scales much closer to linear regime
- L makes CMB alone sensitive to masses < 0.3eV</pre>

 \Box summary of IS expected errors on M= Σm_v (eV)

	none	SDSS	shear survey
none	-	1.3	0.21
Planck	0.31	0.13	0.05
Planck (lens. extr.)	0.15	0.10	0.05
CMBpol	0.07	0.07	0.03
CMBpol (lens. extr.)	0.04	0.03	0.02
Cos. var.	0.05	0.05	0.03
Cos. var. (lens. extr.)	0.02	0.02	0.01

Abazajian & Dodelson 03, Song & Knox 03, Kaplinghat et al. 03, JL et al. 2004 ...