Mesoni scalari: una panoramica perimentale

F. Ambrosino -Università e Sezione INFN, Napoli

- Mesoni scalari leggeri
- La regione delle glueballs
- •Recenti scoperte in mesoni con charm

(I) Il puzzle dei mesoni scalari leggeri

I mesoni come stati q-qbar

Fermioni ed antifermioni hanno parità intrinseche opposte per cui:

$$P = (-1)^{L+1}$$

I mesoni totalmente neutri sono autostati di C con:

$$\mathbf{C} = (-1)^{L+S}$$

Le "naturali" coppie spin-parità (J^{PC}) sono allora:

	S=0	S=1	Mesoni pseudoscalari
L=0	0-+	1	
L=1	1+-	0++ 2++	Mesoni scalari

I mesoni leggeri ed SU(3)

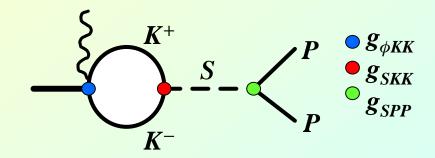
Nel limite di massa dei quark nulla i mesoni formerebbero un multipletto degenere 8+1 di SU(3) di sapore.

Ma siccome m_s>>m_{u,d} ci si aspetta uno splitting in massa collegato con il contenuto in quark s:

		Isospin
φ (1020)		I=0
K*(892)		I=1/2
$\omega(782)$		I=0
$\rho_{(770)}$		I=1

I mesoni scalari

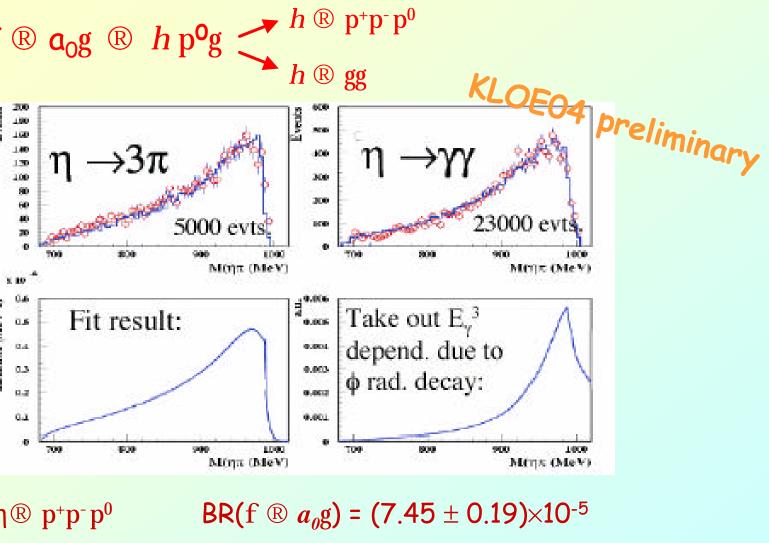
Lo spettro dei mesoni scalari leggeri è molto più difficile da interpretare :


	f0(1500)	 I=0
	$a_0(1450)$	I=1
	K*(1430)	 I=1/2
?	$f_0(1370)$	 I=0
	a ₀ (980) –	I=1
	f ₀ (980)	 I=0
??	k(800)	I=1/2
7	σ (600)	 I=0

Alcune questioni irrisolte

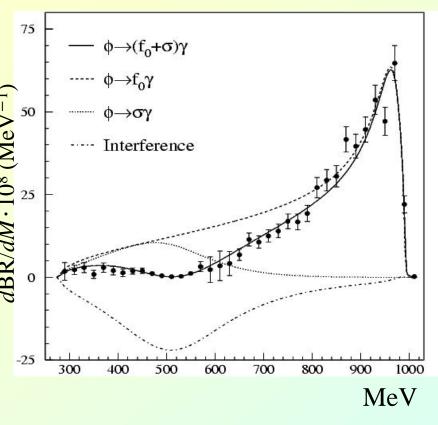
- •Perché ci sono così tanti mesoni scalari leggeri ?
- •Perché a₀ ed f₀ si accoppiano fortemente con KK?
- •Esistono le risonanze $\sigma(600)$ e k(800) ?
- •Se esistono, perché lo spettro risulta invertito?
- •Se f0(1500) è il partner SU(3) di f0(1370) perché la sua larghezza è inferiore per un fattore 2 5 ?
- •Esiste evidenza sperimentale per una glueball?

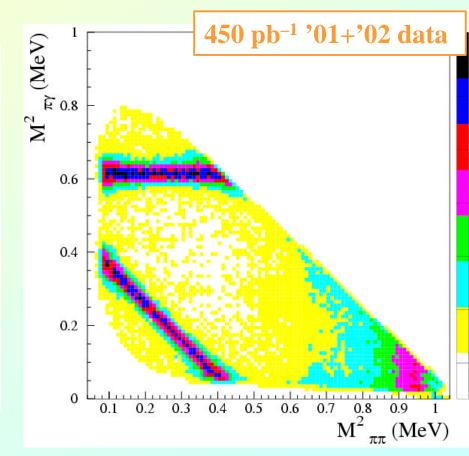
ao ed fo a KLOE


KLOE ha studiato i decadimenti $\phi \rightarrow a_0 \gamma$ e $\phi \rightarrow f_0 \gamma$ nel quadro di un modello di decadimento detto "Kaon loop":

$$(g_{SKK}/4\pi)^2 \approx 0.15 \text{ GeV}^2$$

$f \otimes a_0(980) g \otimes hp^0 g$

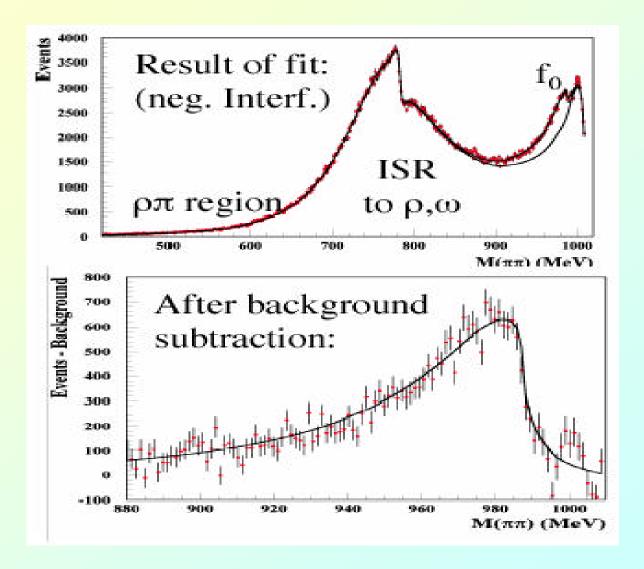




 $R = R(f \otimes a_0 g) = (7.25 \pm 0.15) \times 10^{-5}$

$\phi \rightarrow f_0 \gamma \rightarrow \pi^0 \pi^0 \gamma$

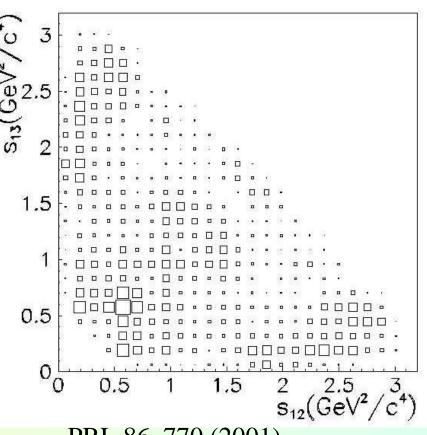
KLOE '02: 17 pb⁻¹ '00 data



BR(
$$\phi$$
 ® $\pi^0\pi^0\gamma$)
KLOE '02 (1.09±0.03±0.05)·10⁻⁴
PDG '04 (1.09±0.06)·10⁻⁴

f_0 (980) $g \otimes p^+p^- g$

Risultati di KLOE

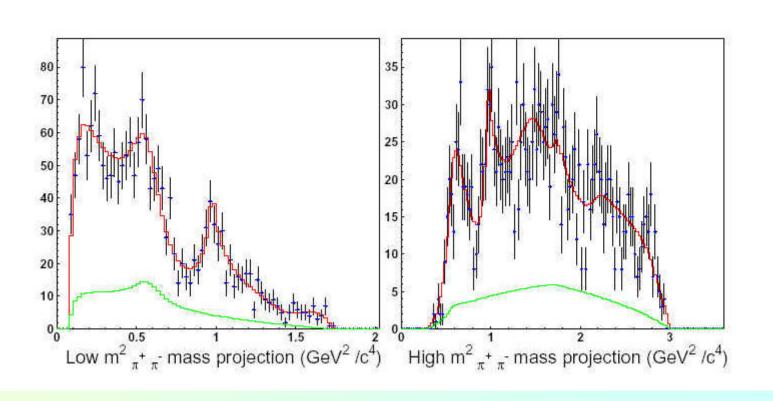

- •BR ($\phi \rightarrow a_0 \gamma$) dello stesso ordine di grandezza di BR ($\phi \rightarrow \eta' \gamma$)
- •Definitiva conferma dell'esistenza di f0(980) osservata sia in $\pi^+\pi^-$ che in $\pi^0\pi^0$ con le attese probabilità relative
- •Necessità di una $\sigma(600)$ per fittare lo spettro $\pi^0\pi^0\gamma$; i parametri del fit privilegiano una struttura a 4 quark per f_0
- •Fit completo al Dalitz plot in corso...

Ricerche della $\sigma(600)$:

E791, FOCUS: analisi del Dalitz plot $D^+ \rightarrow \pi^+ \pi^+ \pi^-$

BES II: analisi del Dalitz plot $J/\psi \rightarrow \omega \pi^+ \pi^-$

$\sigma(600)$ ad E791

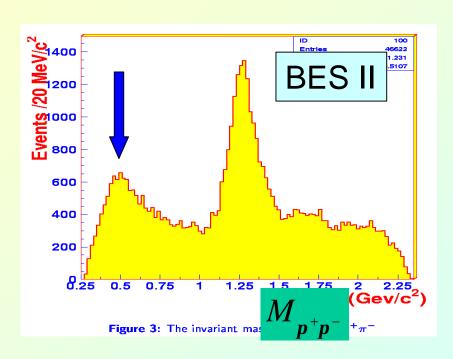

PRL 86, 770 (2001)

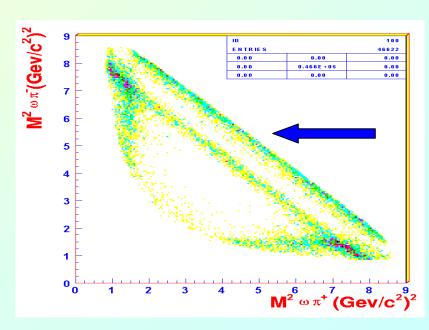
$$M = 478 \pm 23 \pm 17 \text{ MeV}$$

 $\Gamma = 324 \pm 40 \pm 21 \text{ MeV}$

hep-ex/0307008 (2003)

σ (600) a FOCUS




PLB 585, 200 (2004)

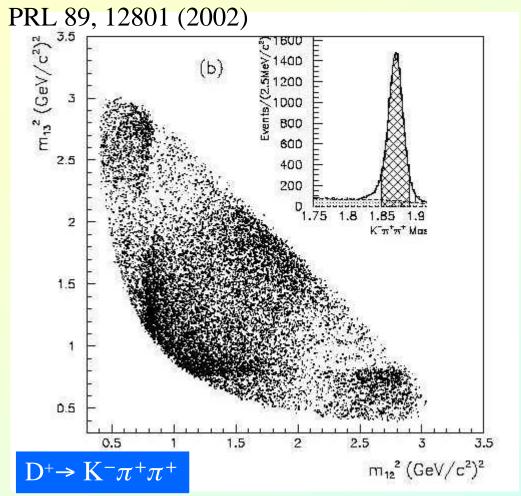
Il fit con il metodo della K-matrix non necessita di $\sigma(600)$

σ (600) a BES II

• BES II ha osservato la s in J/y ® wp+p-.

Posizione del polo, dall'analisi in onde parziali:

$$(541\pm39) - i(252\pm42)$$
 MeV


Mesoni scalari: una panoramica sperimentale F Ambrosino

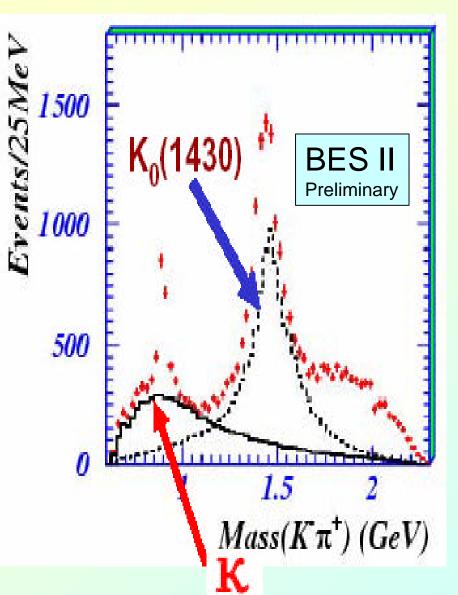
Ricerche della $\kappa(800)$:

E791, CLEO, BABAR: analisi del Dalitz plot $D \rightarrow K\pi\pi$

BES II: analisi del decadimento $J/\psi \rightarrow K^*K\pi \rightarrow K\pi K\pi$

$\kappa(800)$ ad E791

Nessuna k necessaria per il fit dei Dalitz plot $D^0 \rightarrow K^-\pi^+\pi^0$ e $D^0 \rightarrow K^-\pi^+\pi^-$ (CLEO)


Nessuna k necessaria per il fit dei Dalitz plot $D^0 \rightarrow K^0 K^-\pi^+ e D^0 \rightarrow K$ $K^+\pi^- (BABAR)$

$$M = 797 \pm 19 \pm 43 \text{ MeV}$$

 $\Gamma = 410 \pm 43 \pm 87 \text{ MeV}$

Fondo non risonante :90% (no k)→13% (k)

Mesoni scalari: una nanoramica sperimentale F Ambrosino

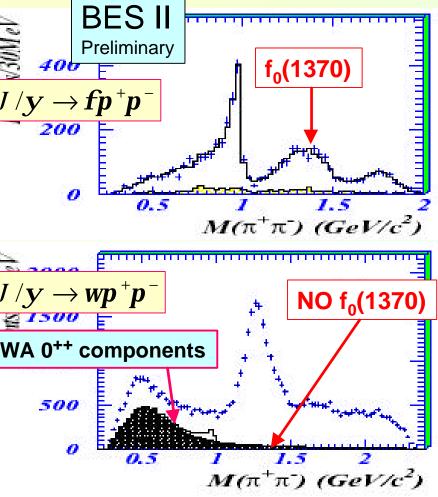
$\kappa(800)$ a BES II

- BES II ha recentremente osservato la \mathbf{k} in $J/\psi \rightarrow K^*K\pi \rightarrow K\pi K\pi$.
- Risultato preliminare dell'analisi in onde parziali:

 $(760 \sim 840) - i(310 \sim 420) MeV$

(II) La regione delle glueballs :1500-1700 MeV

Il manuale della giovane glueball


La QCD prevede in modo del tutto naturale la possibilità di stati legati di gluoni (glueballs). Le caratteristiche del più leggero di questi stati dovrebbero essere:

- •M circa 1600 MeV e $J^{PC}=0^{++}$ (QCD su reticolo)
- $\bullet I = 0$ (niente quarks!)
- •Estraneo ai multipletti 8+1
- •Produzione in ambienti "ricchi" di gluoni come i decadimenti J/ ψ
- •Bassa probabilità di accoppiamento con i canali γγ
- •BR di decadimento incompatibili con le previsioni di SU(3)
- Possibili candidati:

$$f_0(1370), f_0(1500), f_0(1710), f_0(1790)$$

$f_0(1370)$

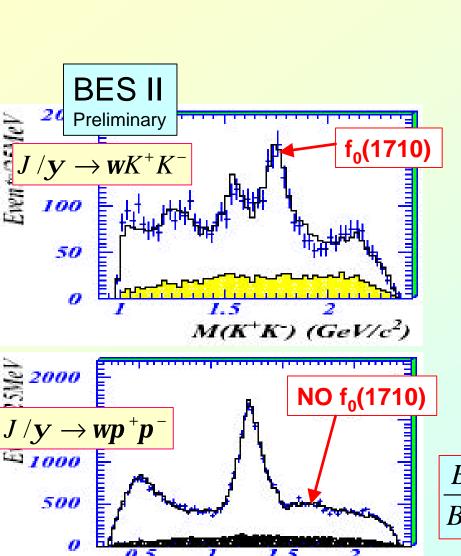
Risonanza larga, ma osservata in più reazioni: pp, $D_s \rightarrow 3\pi$, $J/\psi \rightarrow \phi \pi \pi$

• $f_0(1370)$ osservata chiaramente in $J/\psi \to \phi \pi \pi$, ma non vista in $J/\psi \to \omega \pi \pi$.

$$M = 1350 \pm 50 MeV$$

$$\Gamma = 265 \pm 40 MeV$$

osino

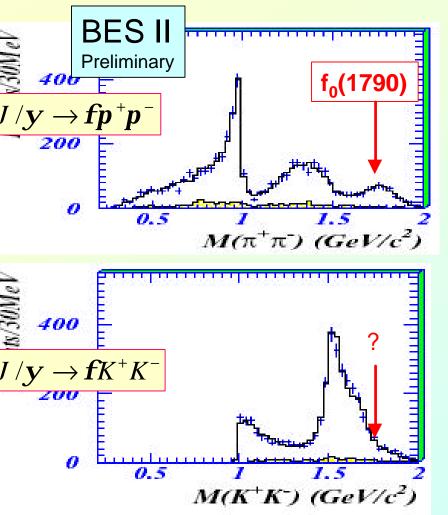

$f_0(1500)$

•Risonanza più stretta, osservata essenzialmente in reazioni: pp ma in vari canali di decadimento da Crystal **B**arrel e WA102 (ma anche in analisi di Dalitz plot di Ds)

•Non osservata in eventi $\gamma\gamma$ a LEP (alta componente gluonica ?)

 Non sembra avere alto contenuto in quark s dato il piccolo BR in KK

$f_0(1710)$


- •Osservata in collisioni γγ
- Decade principalmente in KK
- Chiaro picco $f_0(1710)$ in $J/\psi \rightarrow \omega KK$.

$$M = 1740 \pm 30 \ MeV$$

$$\Gamma = 125 \pm 20 \ MeV$$

• Nessun segnale $f_0(1710)$ osservato in $J/\psi \to \omega \pi \pi$!

$$\frac{BR(f_0(1710) \to pp)}{BR(f_0(1710) \to K\overline{K})} < 0.13 \quad @ 95\% CR$$

Un nuovo scalare $f_0(1790)$ a BES?

• Chiaro picco a 1790 MeV in $J/\psi \rightarrow \phi \pi \pi$.

$$M = 1790_{-30}^{+40} MeV$$

$$\Gamma = 270_{-30}^{+60} MeV$$

• Nessun picco in J/ $\psi \rightarrow \phi KK$. Se $f_0(1790) = f_0(1710)$, ci si aspetta:

$$\frac{BR(f_0(1790) \to \mathbf{pp})}{BR(f_0(1710) \to K\overline{K})} \sim 1.5$$

•Inconsistente con $J/\psi \to \omega\pi\pi$, ωk

$$\frac{BR(f_0(1710) \to pp)}{BR(f_0(1710) \to K\overline{K})} < 0.13 \quad @ 95\% CL$$

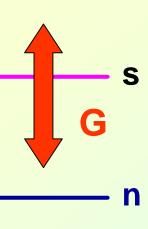
viesoni scalari: una panoramica sperimentale e Amprosino

La regola di OZI nei decadimenti adronici della ${\sf J/}_{Y}$

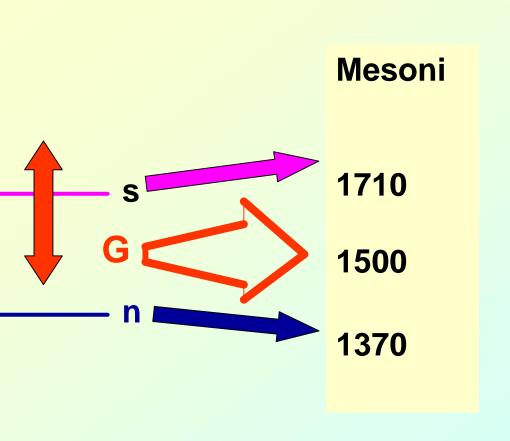
• Per i decadimenti adronici della J/y la presenza di w o F nello stato finale seleziona rispettivamente la componente $u\bar{u} + d\bar{d}$

Mesoni scalari: una nanoramica sperimentale F Ambrosino

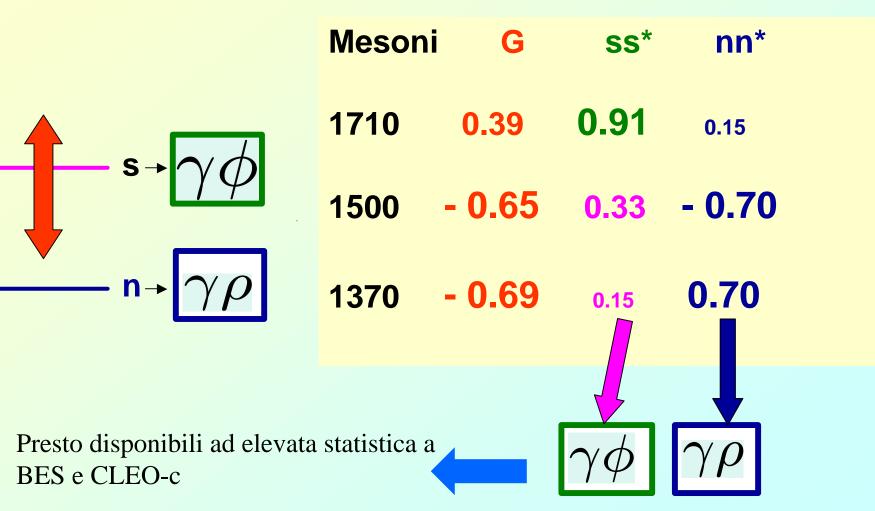
Le "strane" proprietà di f₀(1370), f₀(1710) ed f₀(1790)


$f_0(1710)$:

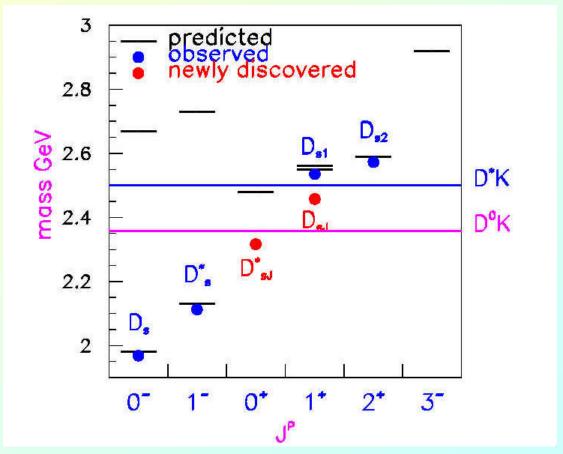
- Decade principalmente in KK (e non in $\pi\pi$) \rightarrow SS
- Prodotta in decadimenti J/ ψ con ω (non con la φ) → $u\overline{u} + d\overline{d}$


$f_0(1370)$ e $f_0(1790)$

- Decadono principalmente in $\pi\pi$ (e non in KK) → $u\bar{u} + d\bar{d}$
- Prodotte in decadimenti J/ ψ con ϕ (non con ω) \rightarrow $s\bar{s}$


Un modello di mixing scalari-glueballs (F.Close)

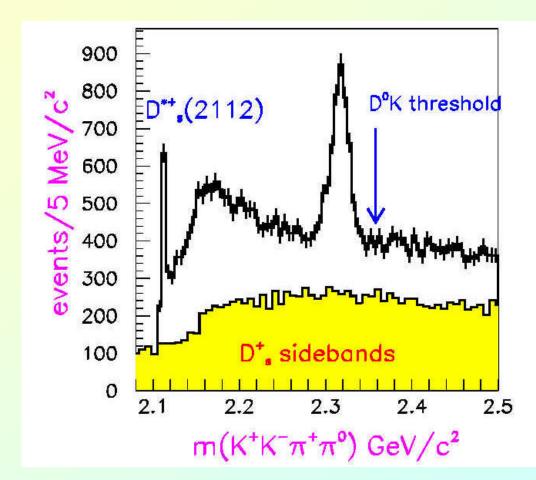
Un modello di mixing scalari-glueballs (F.Close)


Un modello di mixing scalari-glueballs (F.Close)

(III) Le nuove risonanze con charm

Mesoni con quark pesante e leggero

In mesoni di tipo Qq si ha la conservazione separata del momento angolare totale j_q del quark leggero e dello spin S_Q del quark pesante. (Isgur-Wise) Insieme ai modelli di potenziale questo ha permesso notevoli previsioni sulla spettroscopia dei mesoni con charm:

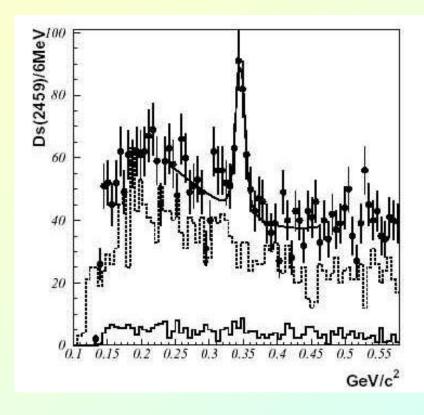


D*_s(2317) a BABAR

Osservata nel 2003 in decadimenti Ds π^0

Confermata da BELLE e CLEO

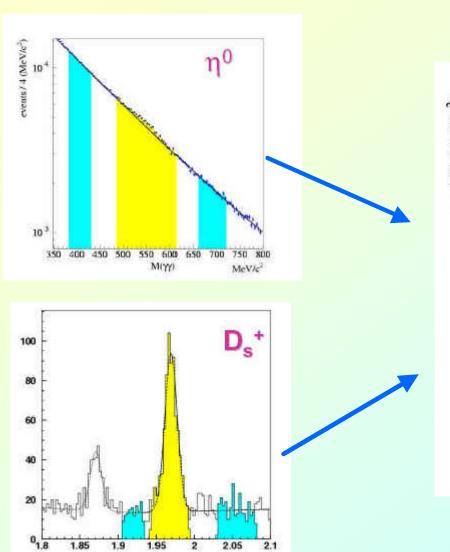
Non decade in Ds γ

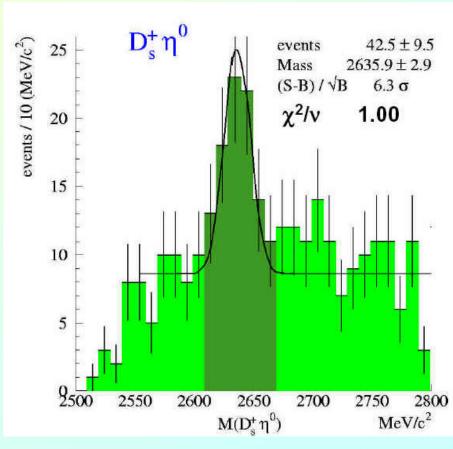

 $M=2317.4 \pm 0.9 \text{ MeV}$ $\Gamma < 4.6 \text{ MeV}$

$D_{sJ}(2460)$ a CLEO, BELLE, BABAR

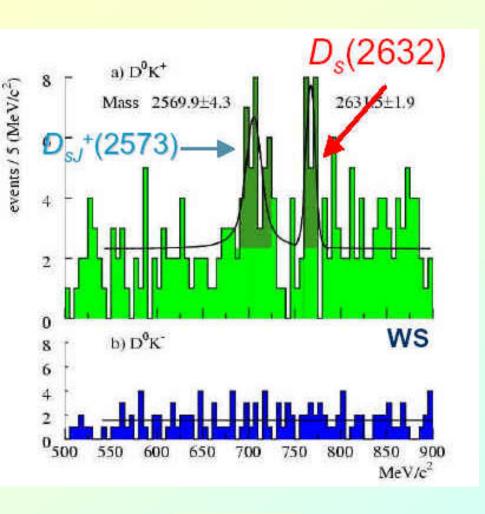
Osservazione non conclusiva di BABAR in decadimenti Ds $\pi^0 \gamma$

Osservata da CLEO e confermata da BELLE


Ha sicuramente $J \neq 0$



 $M = 2459.3 \pm 1.3 \text{ MeV}$ $\Gamma < 5.5 \text{ MeV}$


BEEDE

$D_{SJ}(2632)$ a SELEX?

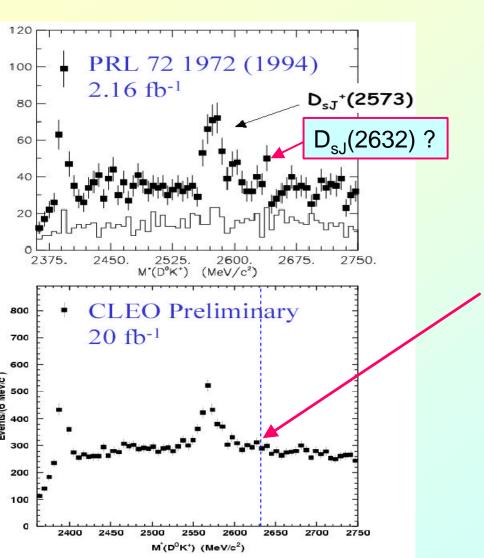
$D_{SJ}(2632)$ a SELEX?

- D_{SJ}(2632) osservata anche nel canale D⁰K⁺
- $N_{\text{event}} = 14.0 \pm 4.5$
- La significanza è di circa 5.3 s (usando S/\sqrt{B}

$$M(D^0K^+)$$

Proprietà di D_{SJ}(2632)

Massa: $2632.6 \pm 1.6 \text{ MeV}$ (oltre la soglia D^(*) K)

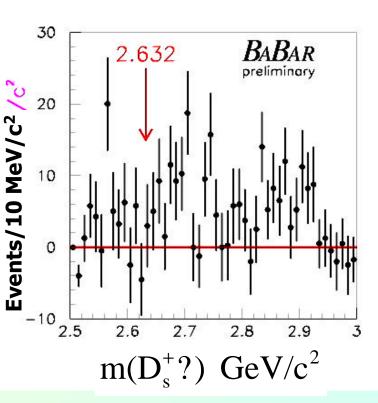

Larghezza: < 17 MeV at 90% C.L.

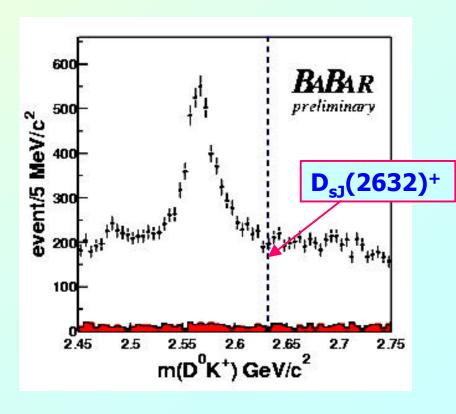
Stranissimi rapporti di decadimento:

$$\Gamma(D^0K^+)/\Gamma(D_S^+h) = 0.16 \pm 0.06$$

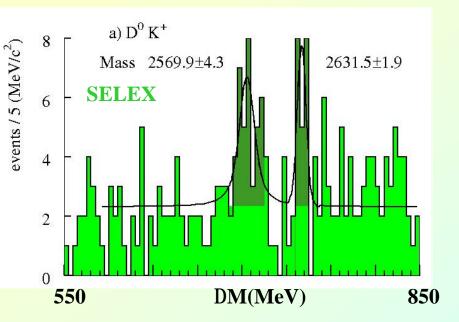
Valore atteso circa 2, per puro spazio delle fasi

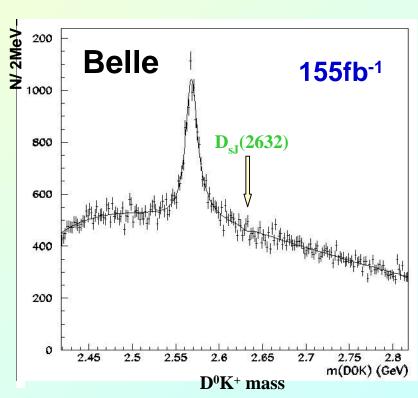
$D_{SJ}(2632)$: ricerca a CLEO




 SELEX ha segnalato un eccesso in un bin a 2636 MeV in dati per 2.16 fb⁻¹ a CLEO

 CLEO non ha osservato picchi a 2632 MeV in dati per 20 fb⁻¹


D_{SJ}(2632): ricerca a BABAR


BaBar non ha osservato D_{SJ}(2632) negli stessi canali di SELEX in 125 fb⁻¹.

$D_{SJ}(2632)$: ricerca a BELLE

 $\frac{s\ D_{sJ}(2632)\ B\ (D_{sJ}(2632))\ \ \ \ D^0K)}{s\ D_{sJ}(2573)\ B(D_{sJ}\ (2573))\ \ \ \ D^0K)} <1.2\% \qquad @90\%CL$

cf. SELEX 56 ±279

Conclusioni (I)

- La spettroscopia dei mesoni scalari è di grande importanza nella ricerca di stati a multi-quark e di glueballs.
- Lo scenario dei mesoni scalari leggeri sembra caratterizzato da un nonetto "invertito" con la σ come mesone di massa più bassa, la controversa κ come partner a I=1/2 ed a₀ (980) ed f₀(980) come particelle di massa più alta.
- Le proprietà di a₀ (980) ed f₀(980) non sembrano ben descritte da un modello q-qbar mentre risultano in miglior accordo con un modello a 4 quarks.

Conclusioni (II)

- La regione 1500-1700 MeV è caratterizzata da almeno tre, forse quattro risonanze isoscalari, con pattern di produzione e decadimento anomali per stati q-qbar
- È possibile che sia manifesta in questa regione la glueballs scalare più leggera, con un mixing con stati ordinari q-qbar, o stati a 4 q

- Le nuove risonanze con charm D*s(2317) e DsJ(2460) sono insolitamente strette, e presentano un effetto simile a quello di a₀ (980) ed f₀(980) rispetto alla soglia DK e D*K rispettivamente.
- La presunta risonanza DsJ(2632) di SELEX è con ogni probabilità inesistente.