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The Casimir gives the ‘size’ of the color representation.
The color force is most attractive in the least

colorful states.
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With antisymmetry in color and spin and a common 
spatial configuration, Fermi statistics ⇒ 3̄f

Good diquarks:
Bad diquarks:

[qq]
3̄c,1s,3̄f

(qq)
3̄c,3s,6f

Since spin interaction is a relativistic effect we might expect it
stronger for the lightest quarks....

Splitting : (ud)− [ud] > (us)− [us] > (uc)− [uc]≈ 0
HQ Spin Symmetry 

Repulsion of diquarks

q q
q q

Overlap

Unfavorable correlation

Reluctant to fuse in baryon+quark



QCD:  low energy qqbar pairs and gluons are omnipresent;
hadrons contain an indefinite number of soft particles.

Quark Model: built upon degrees of freedom whose properties
are modeled on the fundamental theory.

Working assumptions: Mesons (qqbar), Baryons (qqq)

Are there additional structures in the hadron spectrum?

Why not?
If yes, where?

If yes, why so few?

A way of creating few exotica is with good diquarks pairs: because of
their antisymmetry they lock up flavor and color and because

of their mutual repulsion they forbid mergers; few with respect
to predictions from independent-particle models.



N.B. The diquark picture for constructing
four-quark states is different from the original one:

O(x) = qiq̄
iq jq̄

j(x)
Gauge invariant four-quark operator

〈O(x)O(y)〉 ∼ 〈qq̄(x)qq̄(y)〉2
but

Two freely propagating mesons at leading 1/N

No interaction is required to dissociate to
light mesons: ‘fall apart decay’

Very broad or non-resonant states.



Cryptoexotics: [qq][qbqb] can explain for example
the non exotic structure of the light scalar meson nonet.

Indeed for flavor one has:

with the same charges as for qqb

A pure exotic particle, like uuddss (Jaffe’s H), was 
predicted in the bag model to be possibly even below 
Λn threshold, i.e. stable even against lowest order

weak interactions.

3⊗ 3̄= 1⊕8

Good diquark correlations + diquark repulsion
suggest a reason why the independent particle approach fails.

See recent papers by Jaffe & Wilczek
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D → 3π
E791-PRL86(2000) claims that almost the 46% of

could resonate on  a scalar bump with
mσ=478 ± 24 MeV

Γσ=324 ± 41 MeV

Has this something to do with the pole on the second sheet of
the isoscalar S-wave in ππ scattering found, e.g., by

Colangelo-Gasser-Leutwyler NPB603(2001) and many others?
√

s = (479 ± 30) − i(295 ± 20) MeV(1)

Their reply is ‘there is no harm in ca!ing this an unusua!y broad 
resonance...’. Is it a broad enhancement whose  dynamical origin 

is in the strong pionic FSI for these quantum numbers?

E791 made the data analysis  describing this scalar bump
as a Breit-Wigner resonance!



Diquark needs to combine with other color objects

T-shape: baryon

H-shape: scalar meson (?)

Stretching the string which keeps together the H shape 
seems to excite a baryon-baryon pair...rather than a meson-meson pair

((Meson-Meson molecules: do residual forces bind?))

q
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q q

q q

q
Vacuum restricts to a one-dimensional-string 

the color line of force from each quark

neutralization of color



Color Singlet Mesons

Decaying 4-quark state

The rearrangement goes through a barrier,
but at least is not so energetically expensive

as producing a baryon-baryon pair!

L = A · (S ji ! jlm!iknMl
kM

m
n ) No derivative coupling
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A
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p

M2

S
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p: the decaying momentum
MS: the mass of the decaying scalar meson

x: numerical coefficients and Isospin amplitudes.

For the lightest
scalar mesons the latter
decay channels are forbidden



Rossi&Veneziano, Nucl. Phys. B127, (1977) 507

Baryon-Baryon scattering & Harari-Rosner duality
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The full SU3 Lagrangian has three couplings 
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tunneling amplitude annihilation diagrams

The scalar mesons are defined by:
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 Define S as the nonet scalar meson matrix:
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Assuming octet symmetry breaking, masses depend on four 

parameters (we use squared masses):

α, β, c, d unknown coefficients  
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 diquark masses

4 parameters, 4 masses(scalars), 1 mixing and an overall relation:

cos2!+2
√
2sin2!= 1+4

a+"−2#
a−" . f0 and a0 degenerate

squared

squared

Masses



Using the previous relation and exp. data:

-Almost ideal mixing
-α-β = 230 MeV vs ms = 150 MeV

-Linear mass formula gives very similar results

Since we are holding f degenerate with a, the σ mass
is pushed down as mixing becomes more negative being zero

for tan(2ϕ)=-0.48. Mixing is small because OZI rule is 
respected in the physical mass spectrum.



Decays

Amp(a+→ K̄
0
K

+) = A ;

Amp(a+→ !+") = A
(
−

√
2

3
cos#+

√
1

3
sin#

)
#−0.69A .

The value of A

 A=2.6 GeV

L. Maiani, F. Piccinini,  A.D. Polosa, V. Riquer,  PRL

can we improve on these values?

Widths
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Putting in the other 2 SU3 couplings

we get:

equally spaced allowing a  b=-0.7 GeV!
We find further gπ=0.06; still too low 

The  annihilation contribution c should be small. With c=0 we get 
a rate for a→ηπ =30 MeV vs. 60±13

|a−2b| = 2.6 GeV (from !→ ""),
|a−3b| = 3.1 GeV (from f0→ KK̄),
|a−b| = 1.8 GeV (from a0→ KK̄),



The weak point is fππ 

Maybe it comes from 1-loop contributions

f → KK̄→ !!

f → BB̄→ !!

?

new



























For [cq][cbqb] the approximate spin independence of heavy quark 
interactions implies both good and bad diquarks.

A rich spectrum is implied with states having J=0,1,2 and 

both natural and unnatural  JPC .

We describe the mass spectrum in terms of constituent diquark masses and 
spin-spin interactions.

We derive the strenght of the latter interactions from known meson and 
baryon masses where possible or from educated guesses from one-gluon 

exchange otherwhise.

Heavy diquarks
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Consistent with observed decays in J+V

Belle

X-states

[cq]S=1(c̄q̄)S=0+(cq)S=0[c̄q̄]S=1



Xu = [cu][ūc̄]
Xd = [cd][d̄c̄]

We consider neutral states with the composition:

they can be arranged in two Isospin multiplets I=0,1

At the mass scale determined by the ccb pair we expect annihilation
diagrams to be small (think to J width) thus mass eigenvectors should

align on the quark mass basis.

At the X(3872) mass scale we expect annihilation diagrams to
be dominated by the u-d quark mass difference.

We predict close to maximal Isospin breaking in the wave function
and correspondingly in the hadronic decays of X(3872).
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Summary

• 4-quark light scalars < GeV

• 4-quark open charm and the Selex (?)

• 4-quark hidden charm and the X (!)

• other exotics [qq][cbqb]??


