Shear Bands

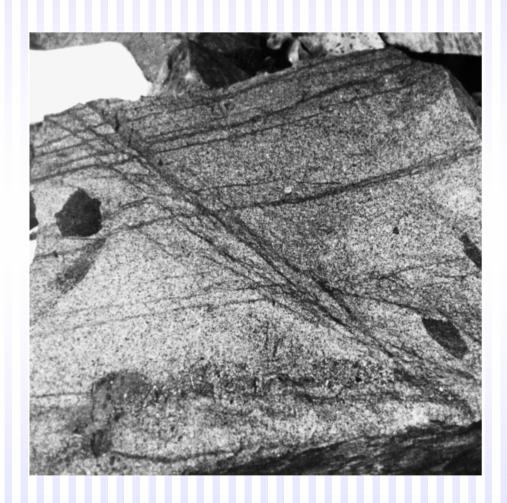
Hans J. Herrmann,

Fernando Alonso-Marroquin Jan Astrøm Ramon Garcia-Rojo Ferenc Kun Fréderic Lacombe Reza Mahmoodi Hans J. Tillemanns Martin Wackenhut

Institute of Computational Physics, ICP, University of Stuttgart, Germany

Seminario Universitá Federico II, Napoli, 19.XI.2004

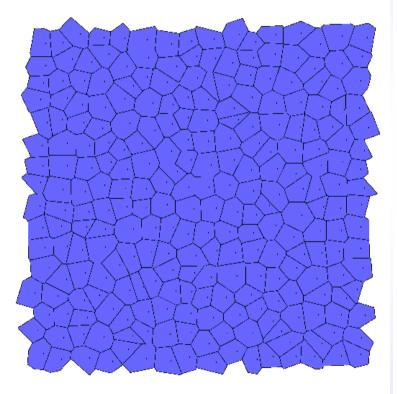
Shear bands in granite of Pyrenees



19.Nov.2004

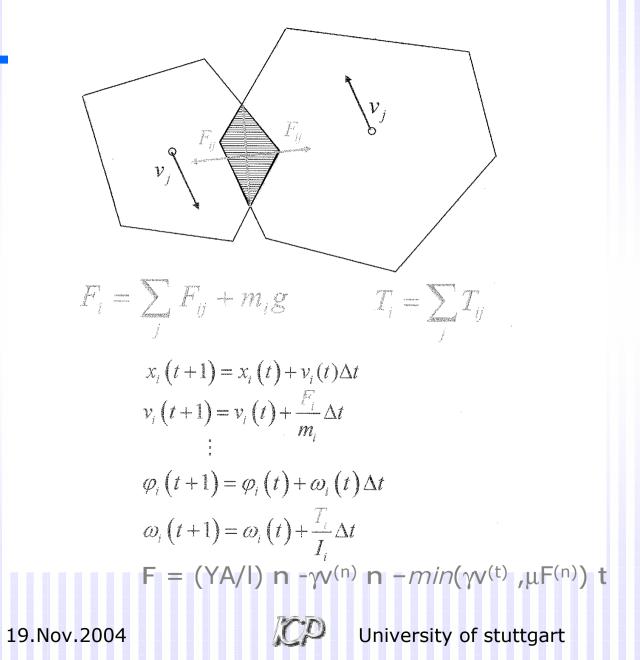
Starting configuration

- Imposed shear velocity
- Periodic boundary conditions
- Regularized polygons

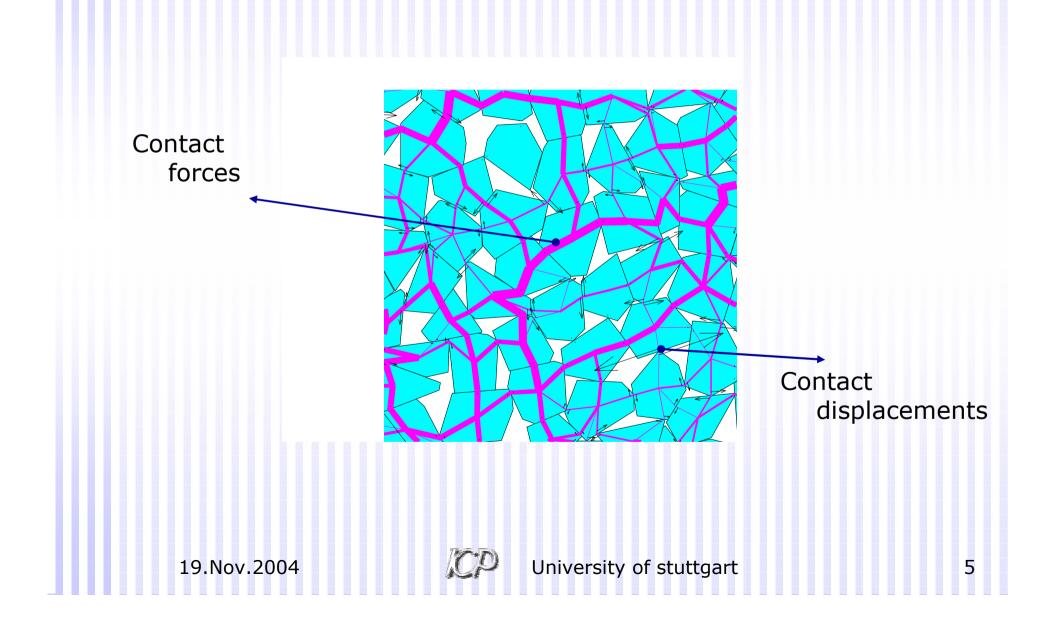


19.Nov.2004

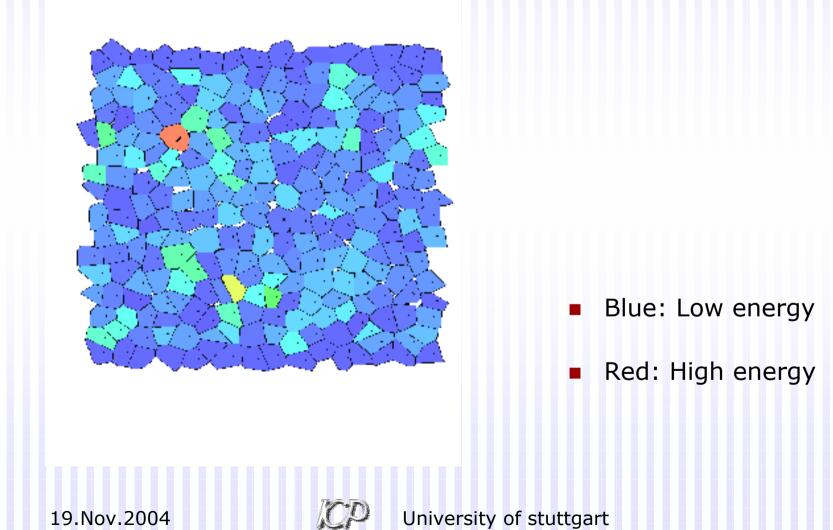
Molecular Dynamics for rigid polygons



Force distribution in a polygonal packing



Kinetic energy after displacement



6

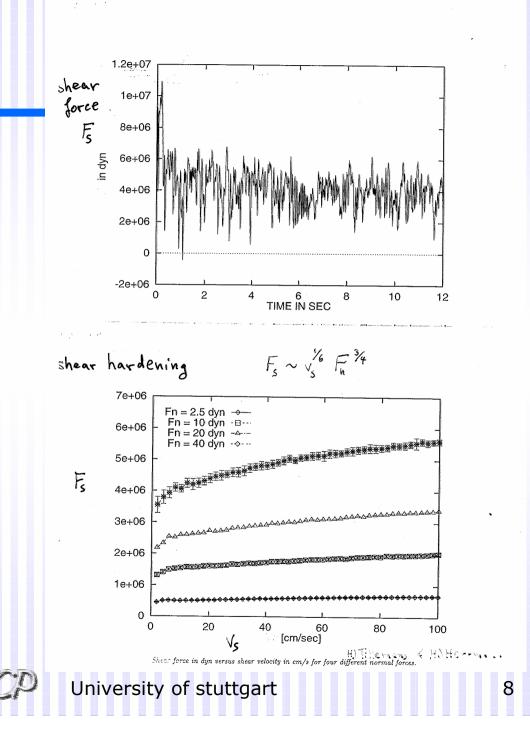
Grains with more than three degrees rotation

Localized shear band

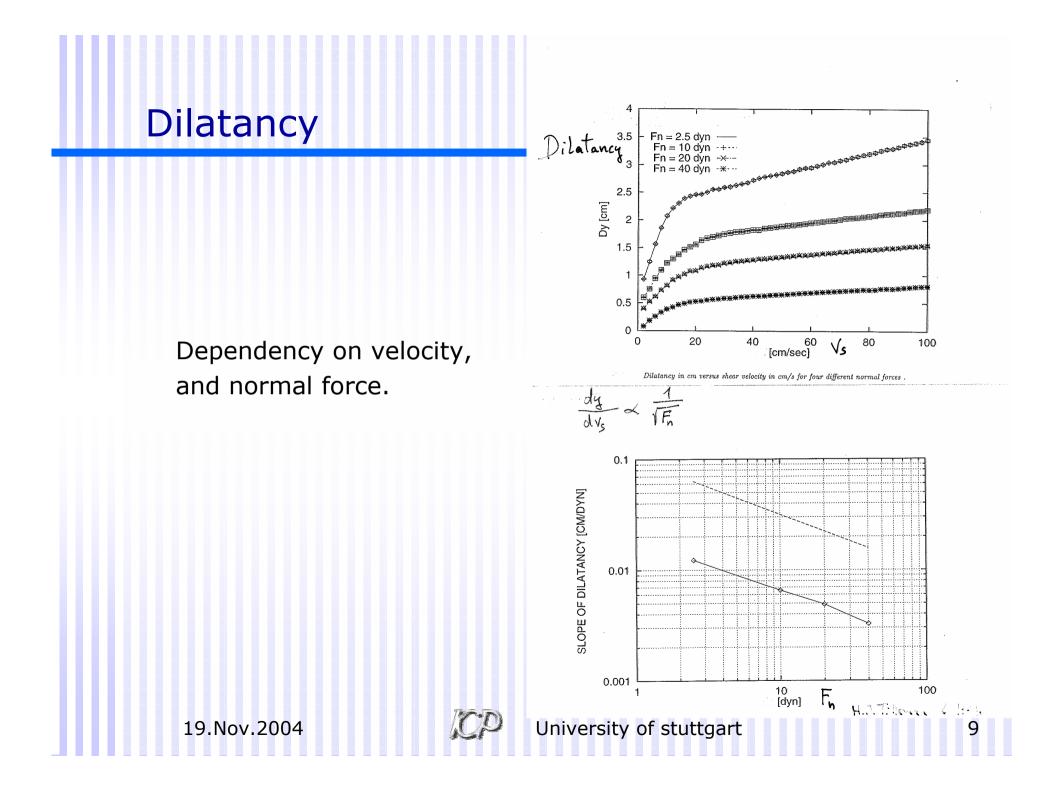
19.Nov.2004

Shear forces

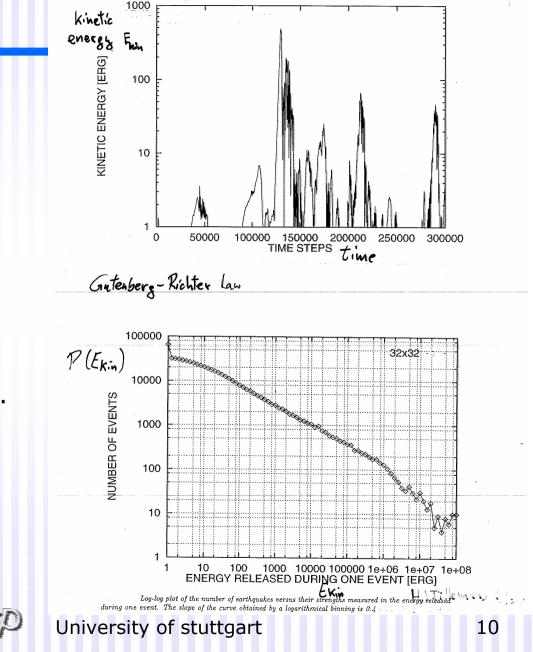
Dependence on time, velocity, and normal force.



19.Nov.2004



Kinetic energies



Bursts.

Gutenberg-Richter law.

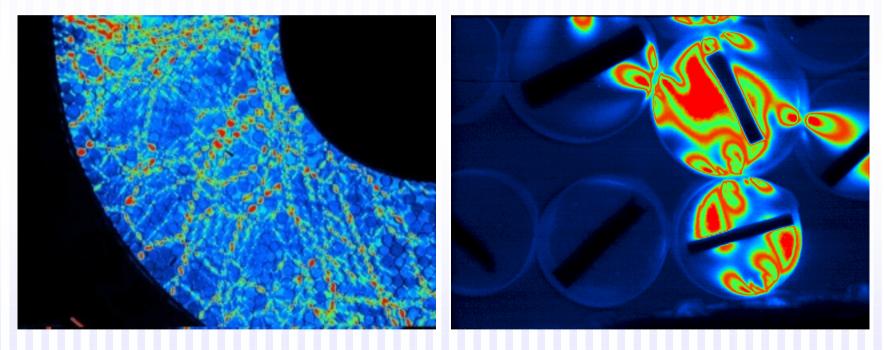
19.Nov.2004

Two-dimensional Couette cell

Experiment Simulation KP University of stuttgart 19.Nov.2004

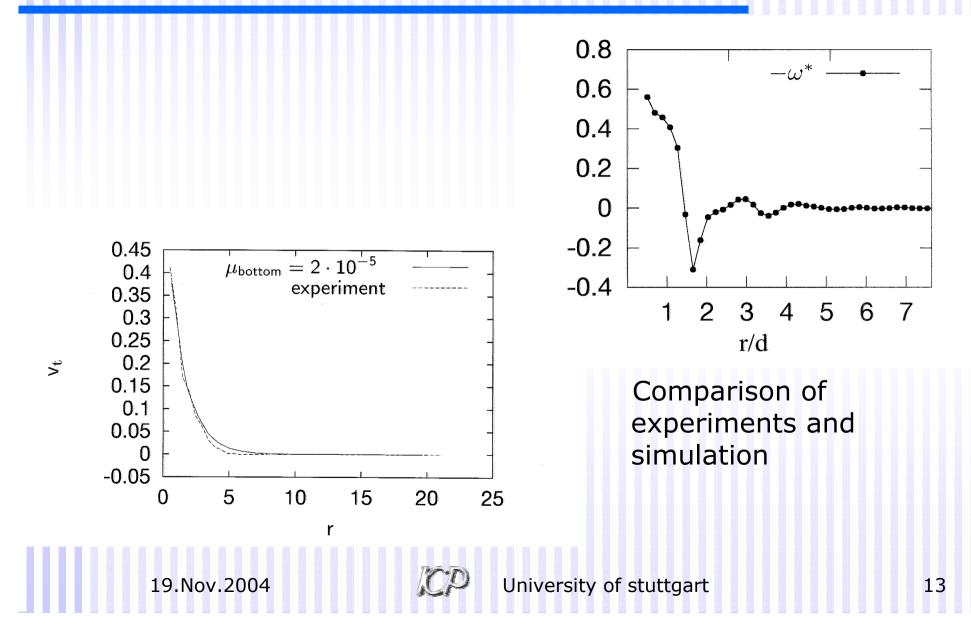
Two-dimensional Couette cell

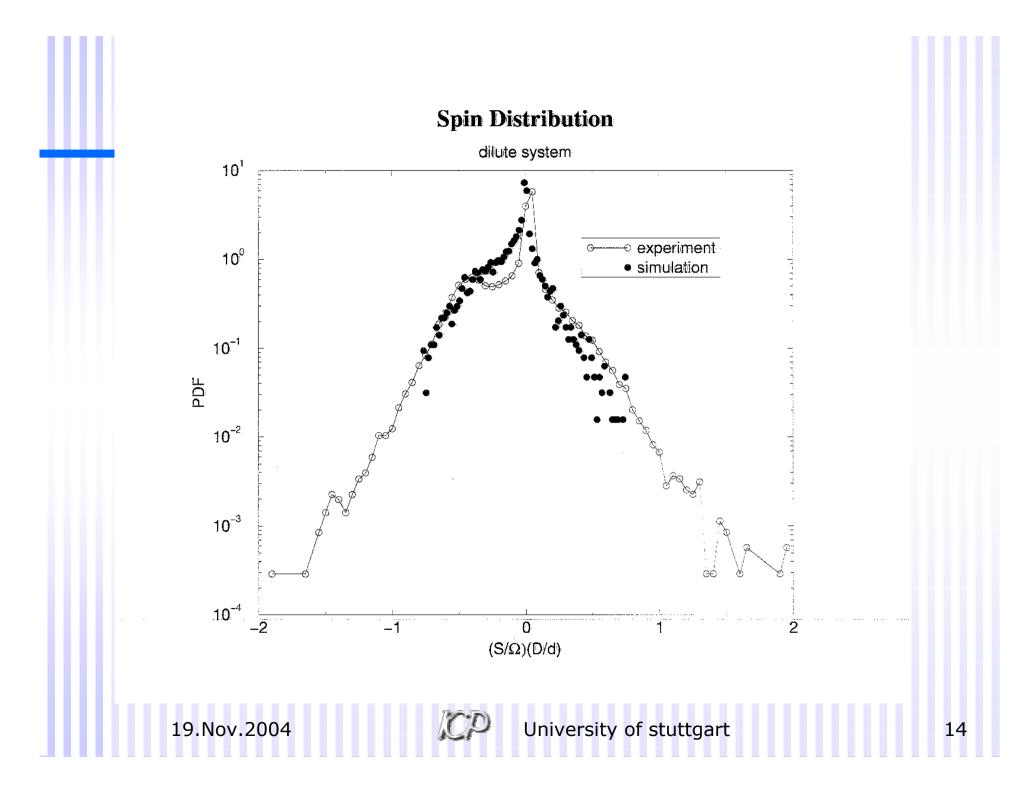
Close-up



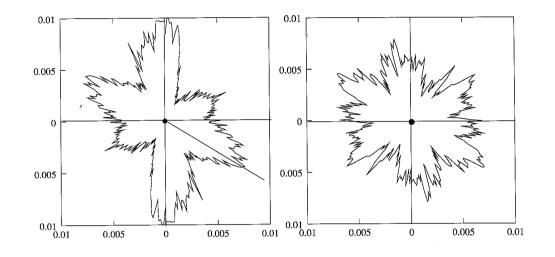
19.Nov.2004

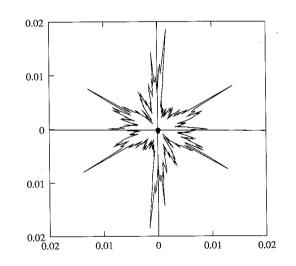
Mean tangential velocity and spin





probability of contact angles



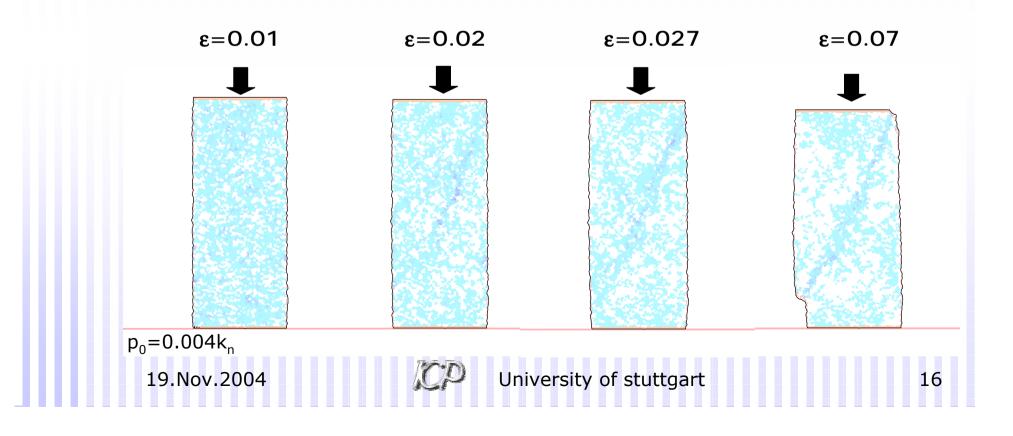


Polar distribution at different positions:

- Inside shear band
- At boundary
- Outside

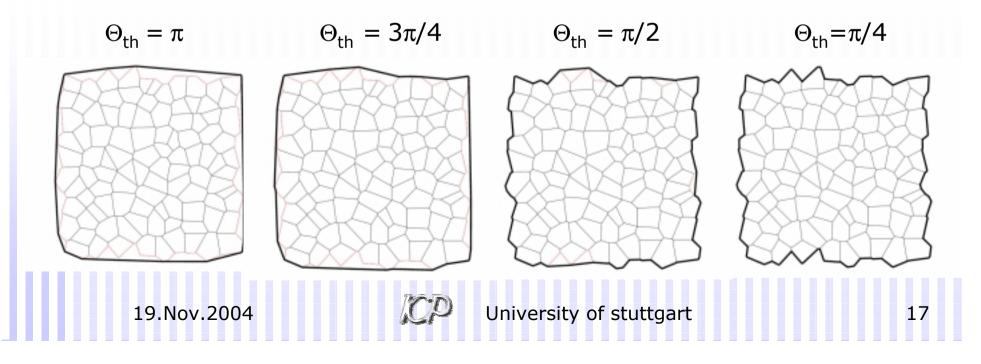
Uniaxial compression

 If the confining pressure is above a certain threshold, a continuous localization of the deformation comes up as the stress increases.



Biaxial test boundary conditions Membrane:Floppy boundary

- The smallest convex polygon enclosing the boundaries is chosen. Its lowest point is the first vertex of the perimeter.
- The boundary points are iteratively included using the bending criterion. (Θ_{th} is the threshold angle for bending)
- The final result gives a set of segments lying on the boundary of the sample.



Biaxial test boundary conditions Force on the membrane

On each segment of the membrane:

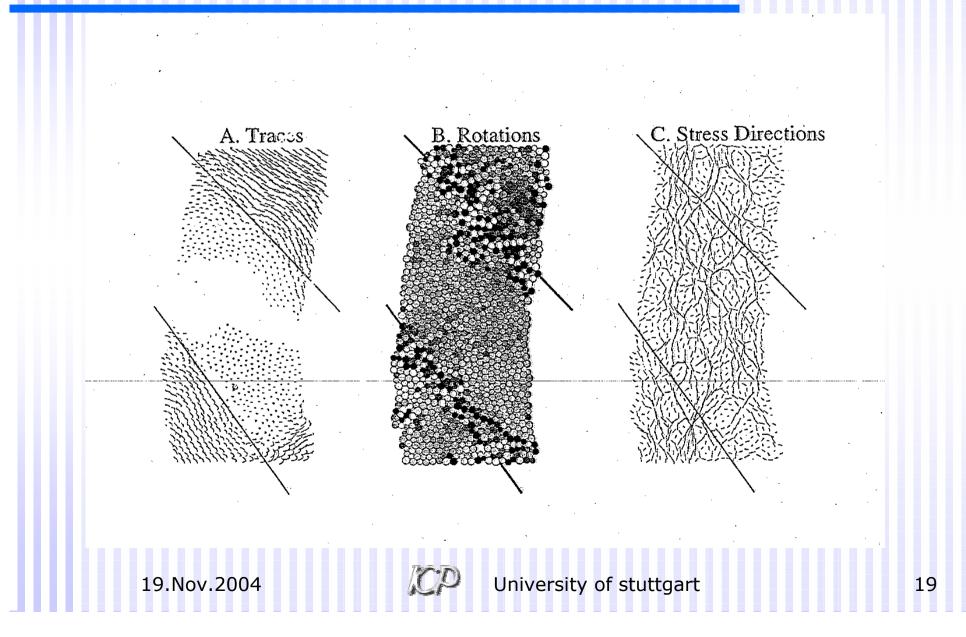
$$\vec{T} = \Delta x_1 \hat{x}_1 + \Delta x_3 \hat{x}_3,$$

• We apply the force:

$$\vec{f}^m = -\sigma_1 \Delta x_3 \hat{x}_1 + \sigma_3 \Delta x_1 \hat{x}_3 - \gamma_b m_i \vec{v}^i$$

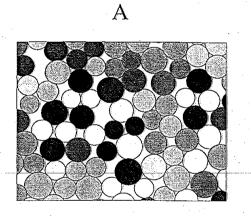
 One must take into account whether the segment of the membrane fully coincides with a polygon wedge, or whether it connects the vertices of two polygons.

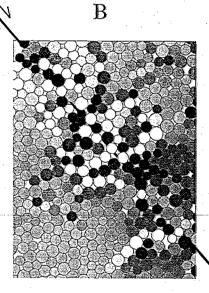
Biaxial test



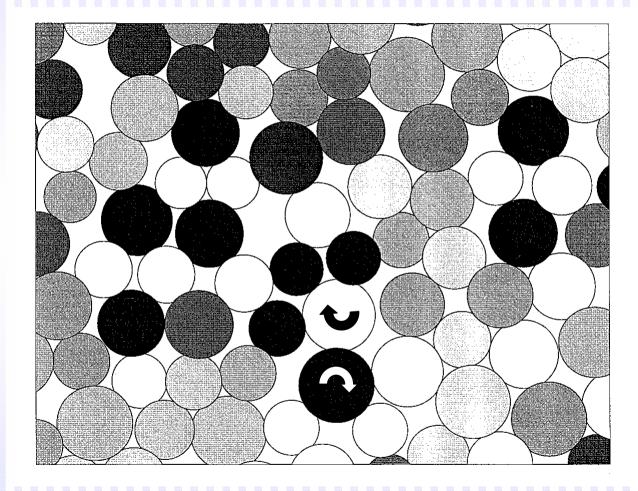
Spontaneous bearing formation

Black: clockwise rotation White: counter-clockwise rotation



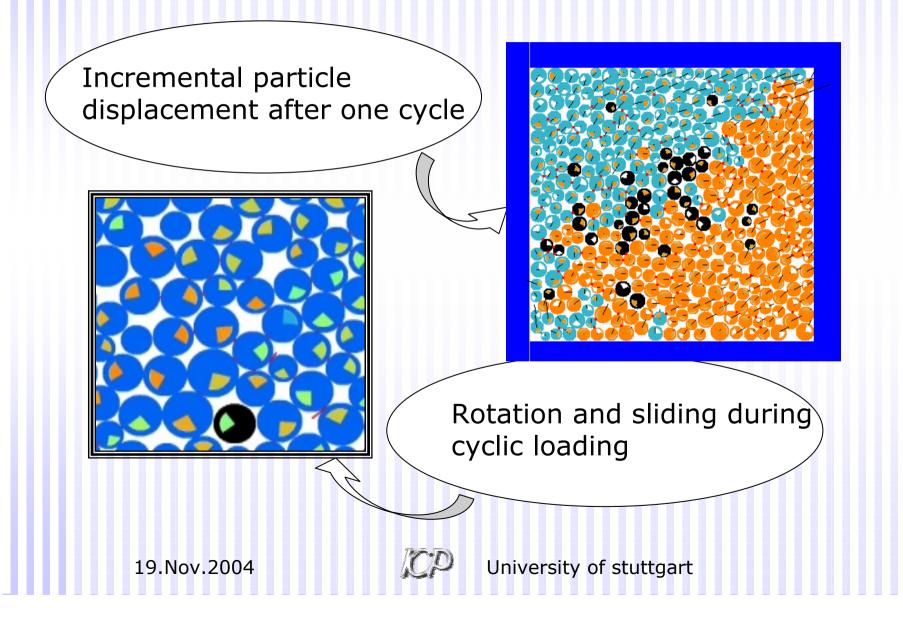


Close-up of bearing

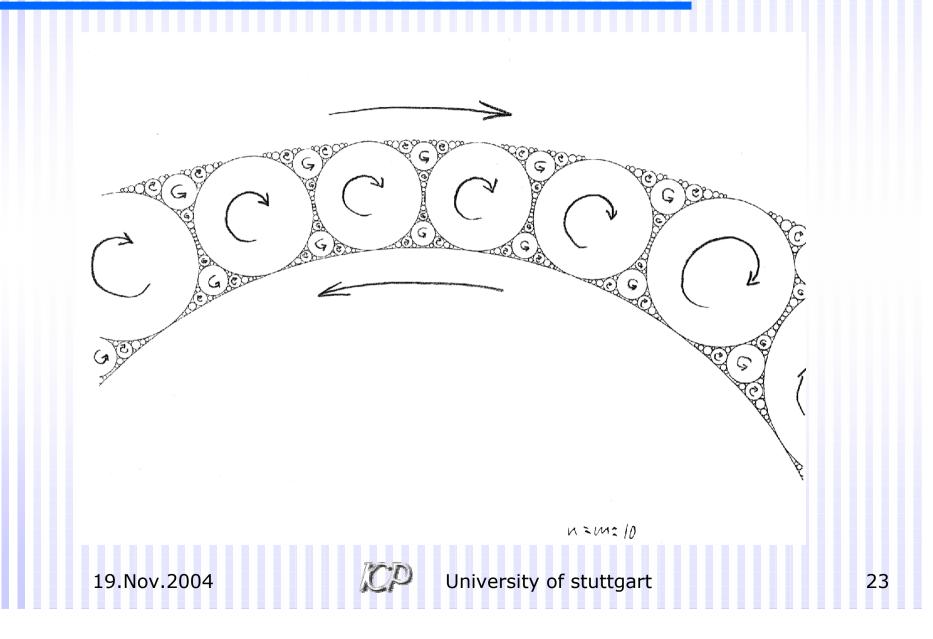


19.Nov.2004

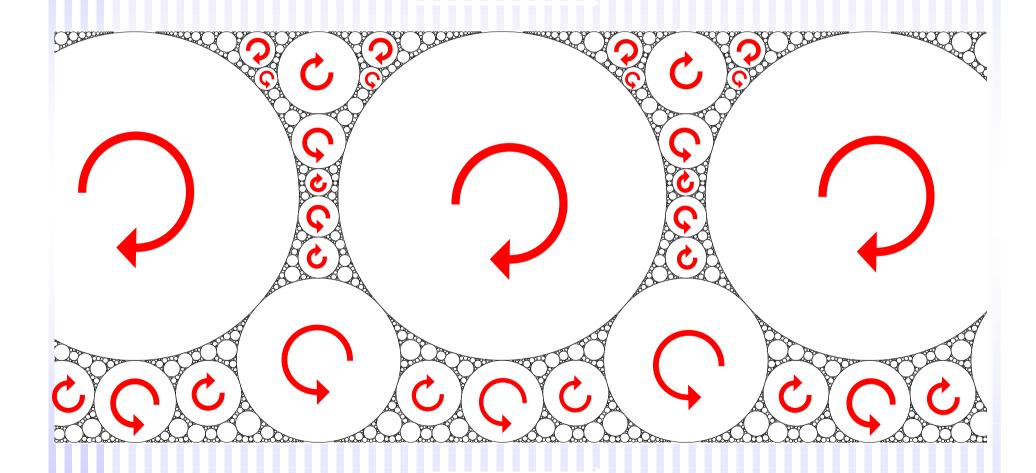
Rotations in the system



Idealized space filling bearing

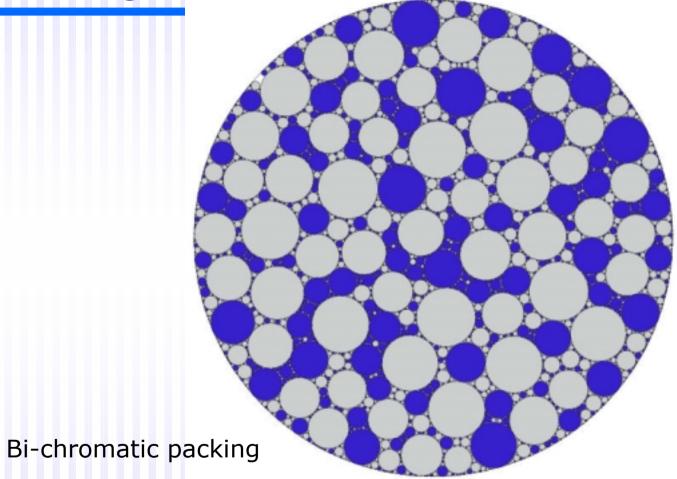


Example for space filling bearing



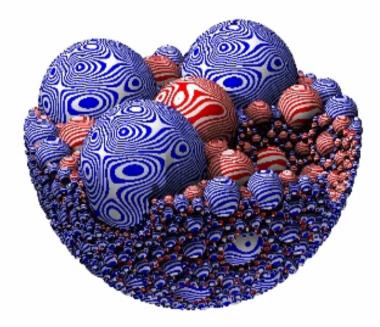
19.Nov.2004

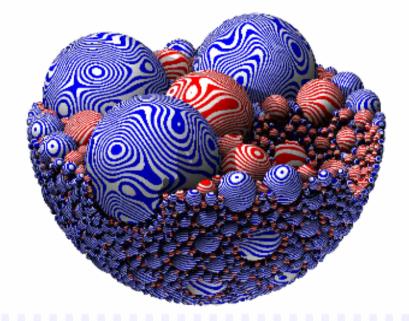
Random bearing



19.Nov.2004

Rolling space-filling bearings



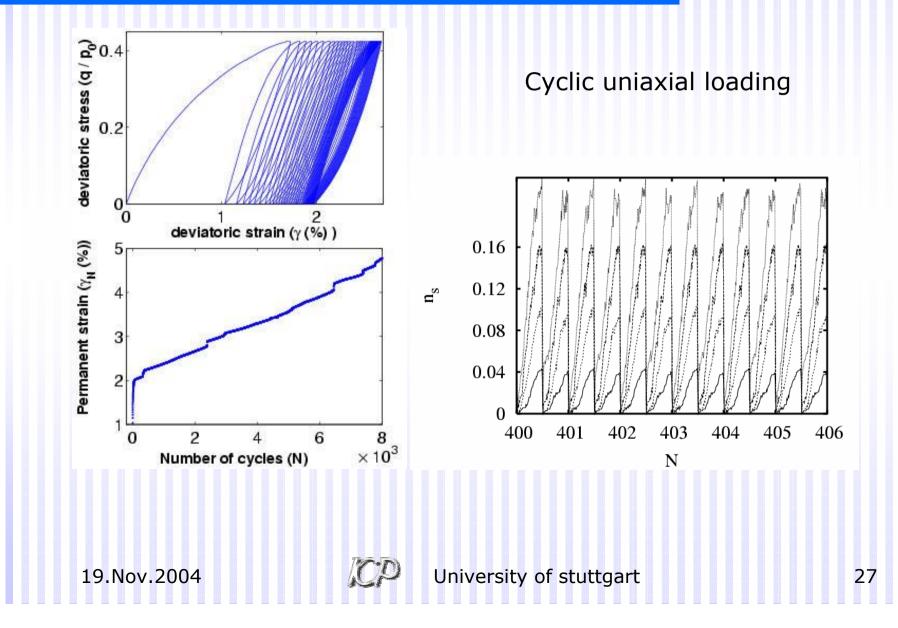


c = 0.5

19.Nov.2004

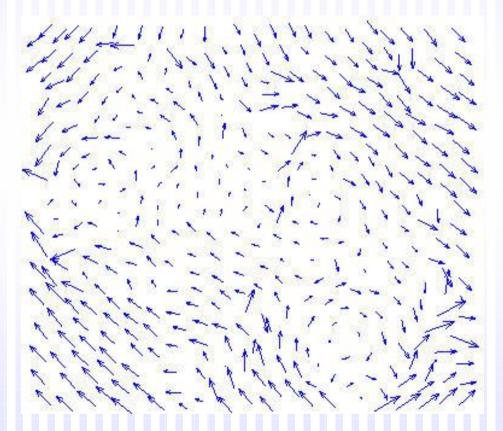
c = 0.0

Granular ratcheting



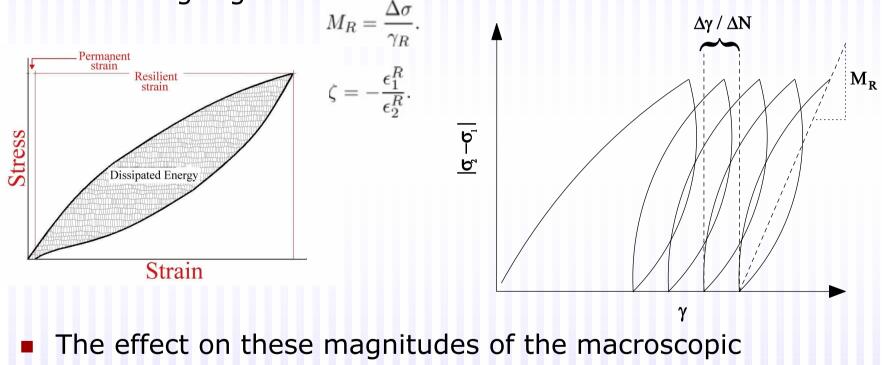
Vorticity in ratcheting

Displacement field



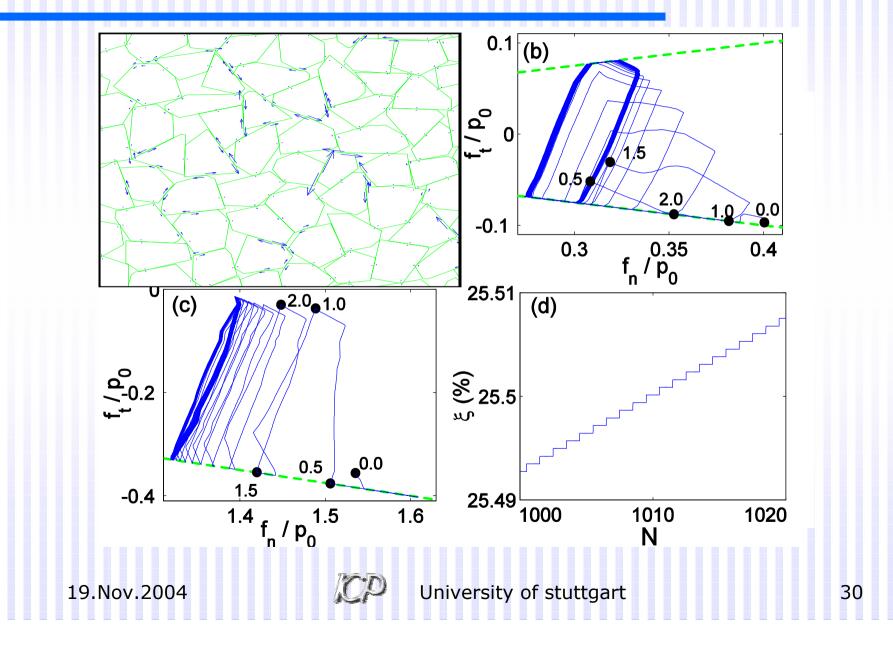
Characterization of the granular ratcheting

 Strain rate and the resilient parameters characterize the ratcheting regime.



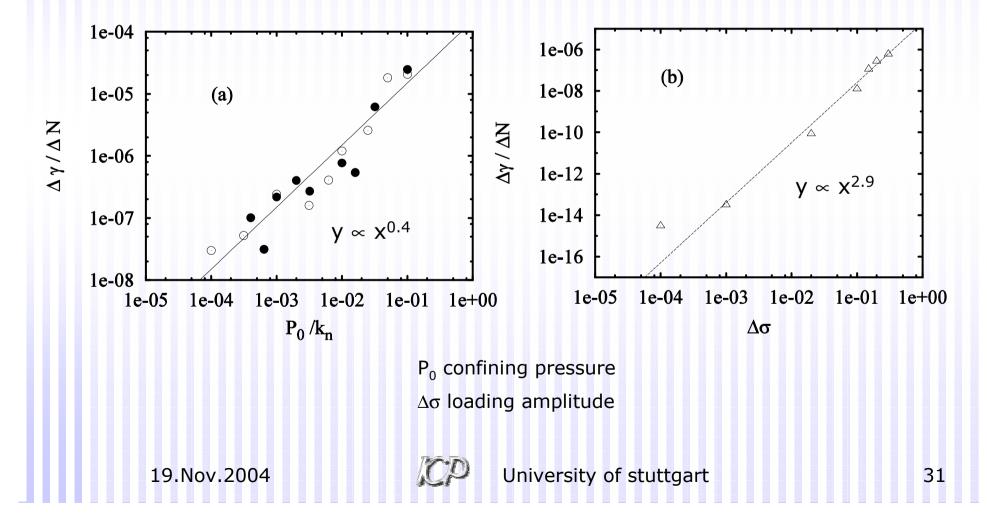
(confining pressure, deviator) and microscopic quantities (stiffness, friction) can be investigated with our model.

Contact forces and plastic deformation

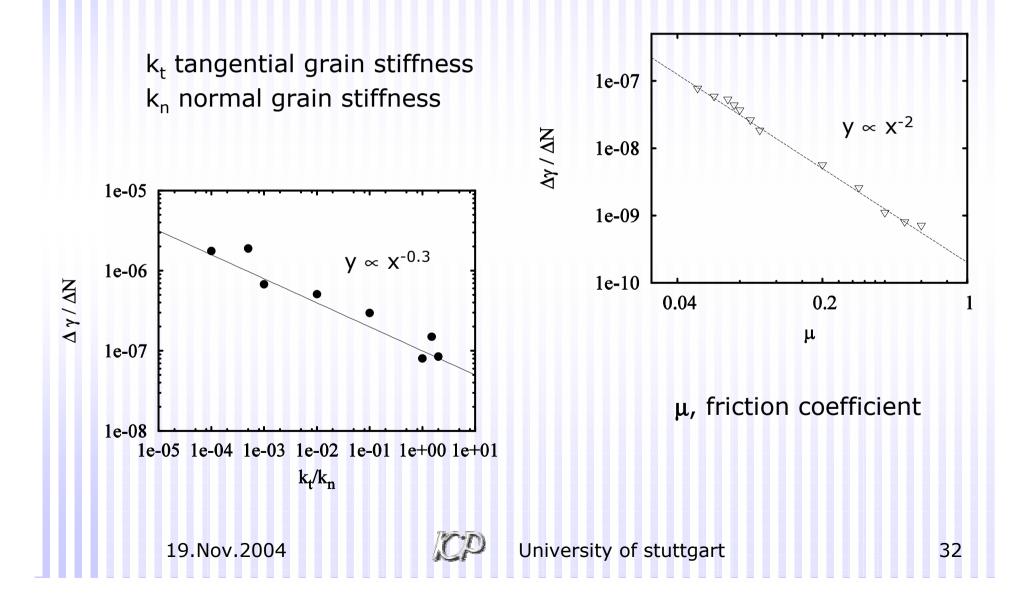


Permanent strain accumulation

 Power law dependence on the confining pressure and the deviatoric stress.

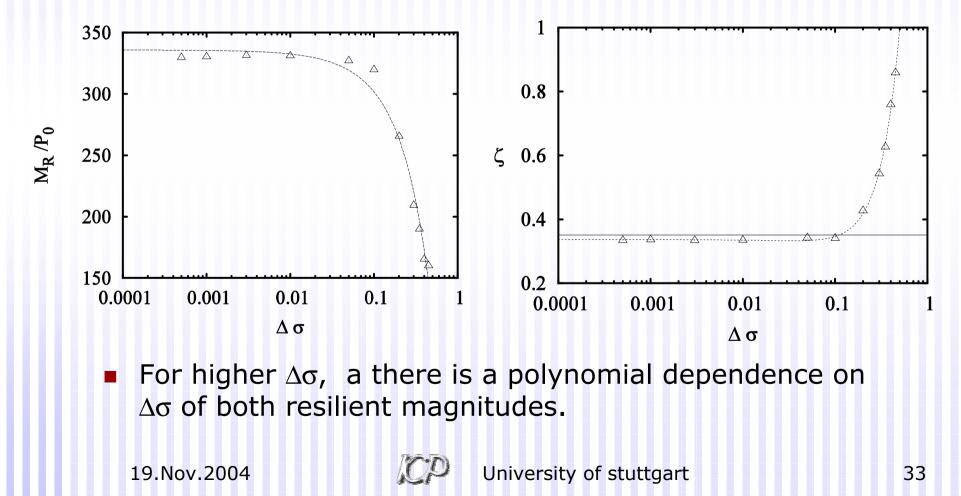


Permanent strain accumulation

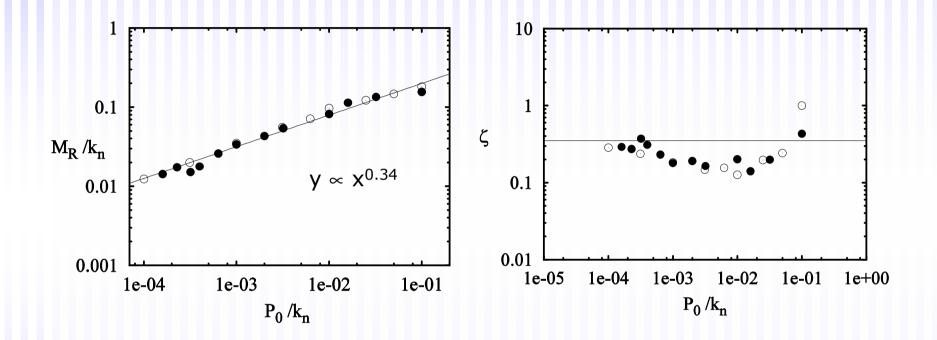


Resilient response

 Close to the shakedown limit, the resilient parameters remain approximately constant.



Resilient response



- M_R, resilient modulus
- ζ, Poisson ratio

19.Nov.2004

Shakedown

- Relaxation of the dissipated energy per cycle.
- Non-systematic accumulation of permanent strain.
- No sliding contacts.

- 1.2 $\Delta \sigma = 1.10^{\circ}$ 1.15 $\Delta \sigma = 1.10^{-7}$ $\Delta \sigma = 1.10^{-5}$ 1.1 $\Delta \sigma = 1.10^{-6}$ 1.05 0.95 (a) 0.9 200 400 600 800 1000 0 Ŋ
- ...all dissipation is due to the viscosity.

19.Nov.2004

Drucker-Prager plasticity



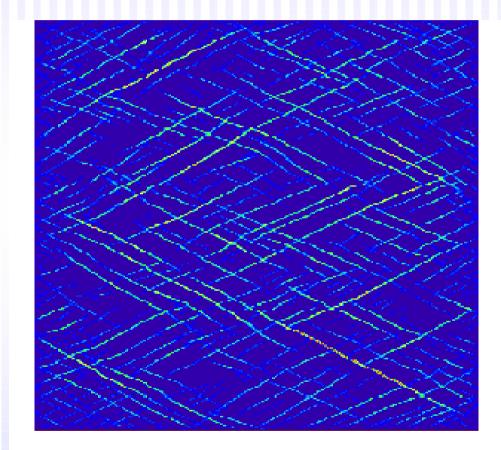
 ψ = dilation angle (ψ ≈11°) non-associate $\varphi \neq \psi$

19.Nov.2004

Ψ

3

FLAC calculation of pure shear



Fractal networkMesh dependence

19.Nov.2004

Statistical argument for finite width of shear band

On the width of shear bands

H] Herrmann

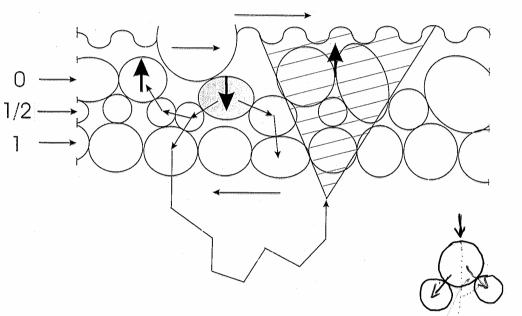


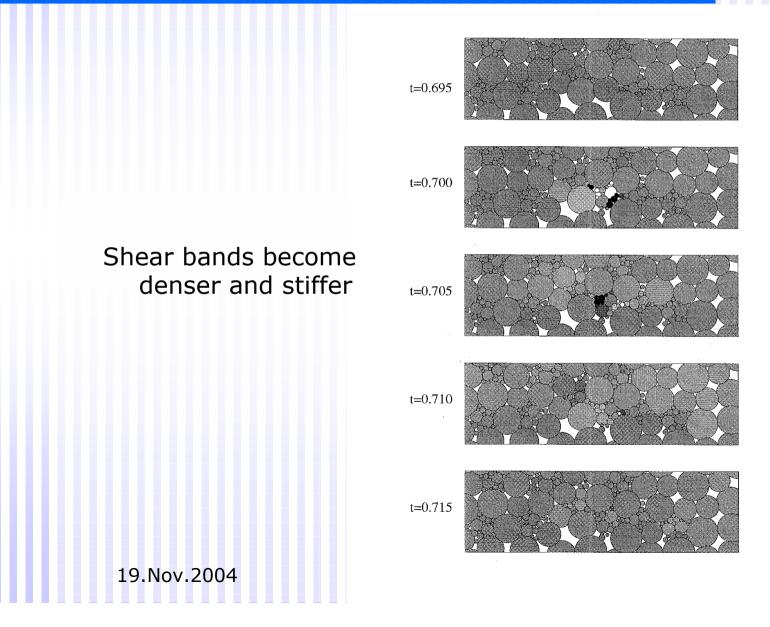
FIG. 1

Using Martingales, one obtains the number of force chains that turn upwards giving an overage with of 15 grain diameters

19.Nov.2004

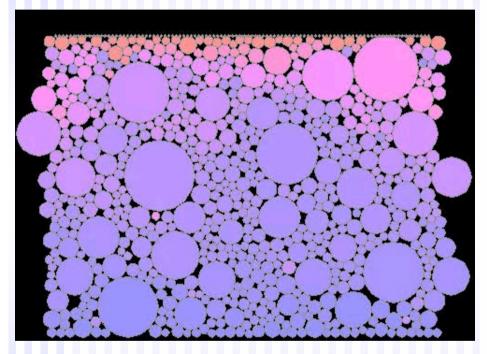
CP

Fragmentation in shear bands



39

Shearing of polydisperse packing

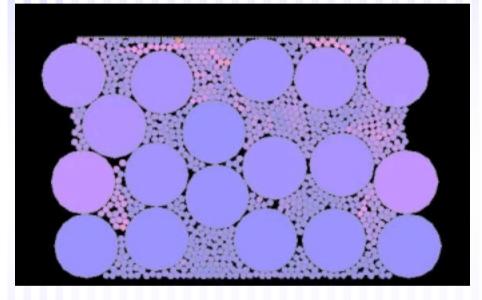


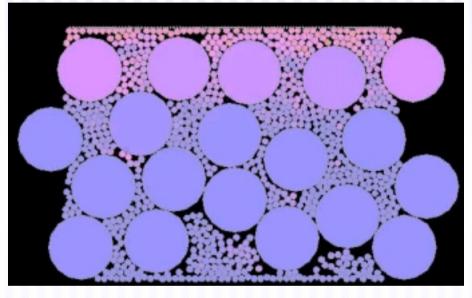
Polydisperse system before shearing

Polydisperse system after shearing

19.Nov.2004

Shearing of bidisperse packing



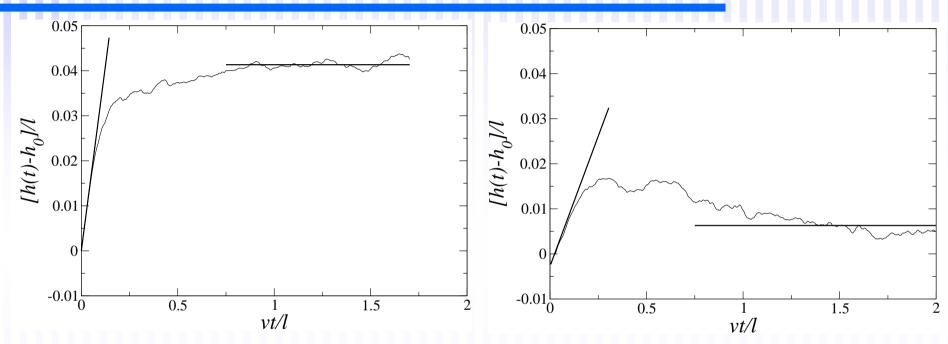


Bidisperse system before shearing

Bidisperse system after shearing

19.Nov.2004

Dilatancy



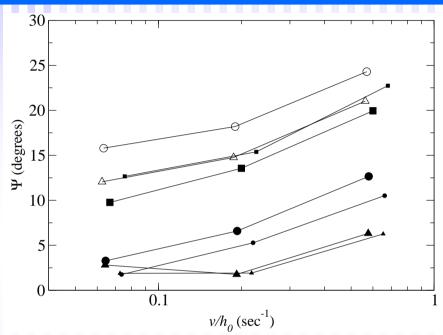
Averaged time series of the change in the height $h(t)-h_0$ as a function of the horizontal displacement v t of the lid. All distances are given in units of the system size.

First picture: Polydisperse particles with ϕ_0 0.887.

Second picture: Bidisperse particles with R=1/45 and the same value of ϕ_0 In both cases, v =0.15. Ten simulations were averaged together to obtain these curves. The straight lines show the fits used to obtain Ψ and d_s.

19.Nov.2004

Dilatancy

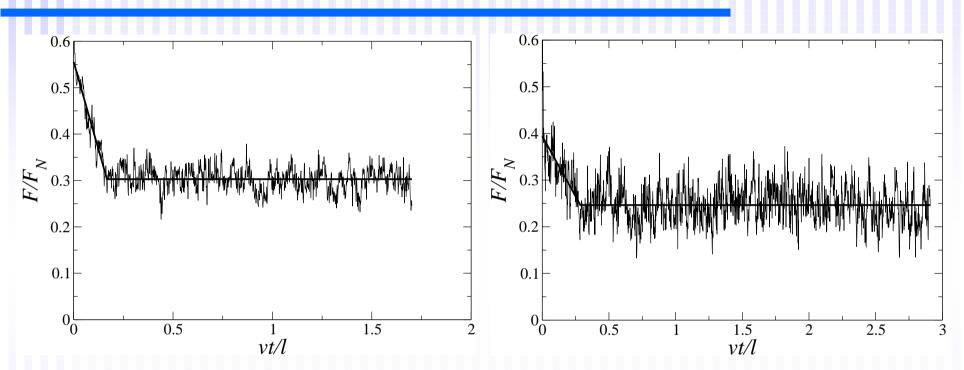


Dilatancy angles Ψ for bidisperse and polydisperse mixtures, as a function of the initial shear rate $v\,/\,h_{\!_0}$.

Saturation dilatancy d_s for polydisperse and bidisperse particles.

The empty symbols correspond to polydisperse mixtures; the large, filled symbols correspond to a bidisperse mixture with R=1/45, and the small, filled symbols to a bidisperse mixture with R=1/60. The squares indicate results for an initial solid fraction $\Phi_0 = 0.911$, the circles $\Phi_0 = 0.887$ and the triangles $\Phi_0 = 0.876$.

Shear force

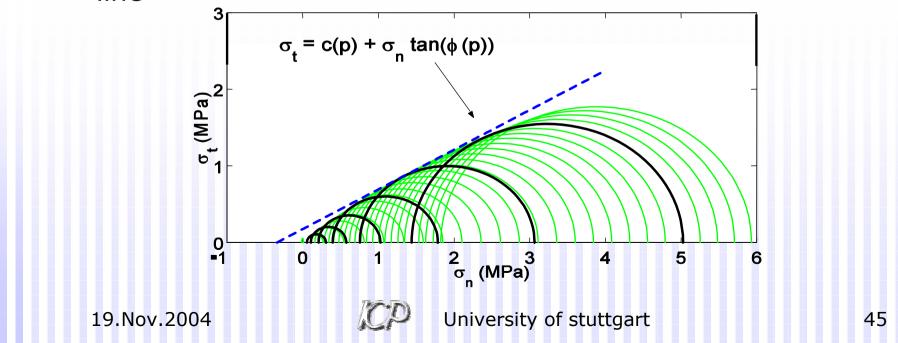


The horizontal force F(t) divided by the normal force F_N , as a function of displacement vt, for the simulations shown in Fig. 1. First picture: Polydisperse particles with $\Phi_0 = 0.887$. Second picture: Bidisperse particles with the same value of Φ_0 . In both cases, v = 0.15. Ten simulations were averaged together to obtain these curves. The straight lines show the fitting of the force.

19.Nov.2004

Local Mohr-Coulomb criterion

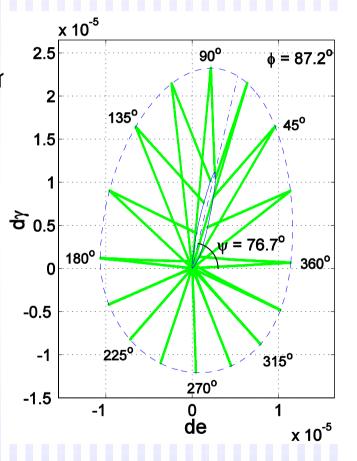
- The relation between the volumetric and deviatoric stress at failure is strictly non-linear: $\frac{p}{p_r} = \alpha (\frac{q}{p_r})^{\beta},$
- As a consequence, the envelope of all Mohr-Coulomb circles at failure cannot be represented by a single straight line



Plastic envelope

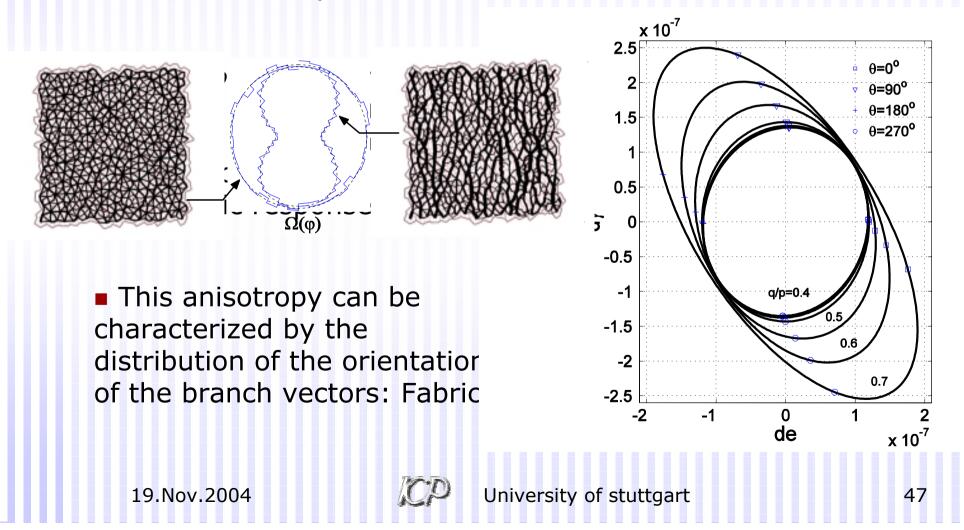
- A load-unload stress path for σ_1 =2.0·10⁵ N/m and σ_3 =1.2·10⁵ N/m is followed
- The plastic envelope shows the uni-directional character predicted by elasto-plasticity

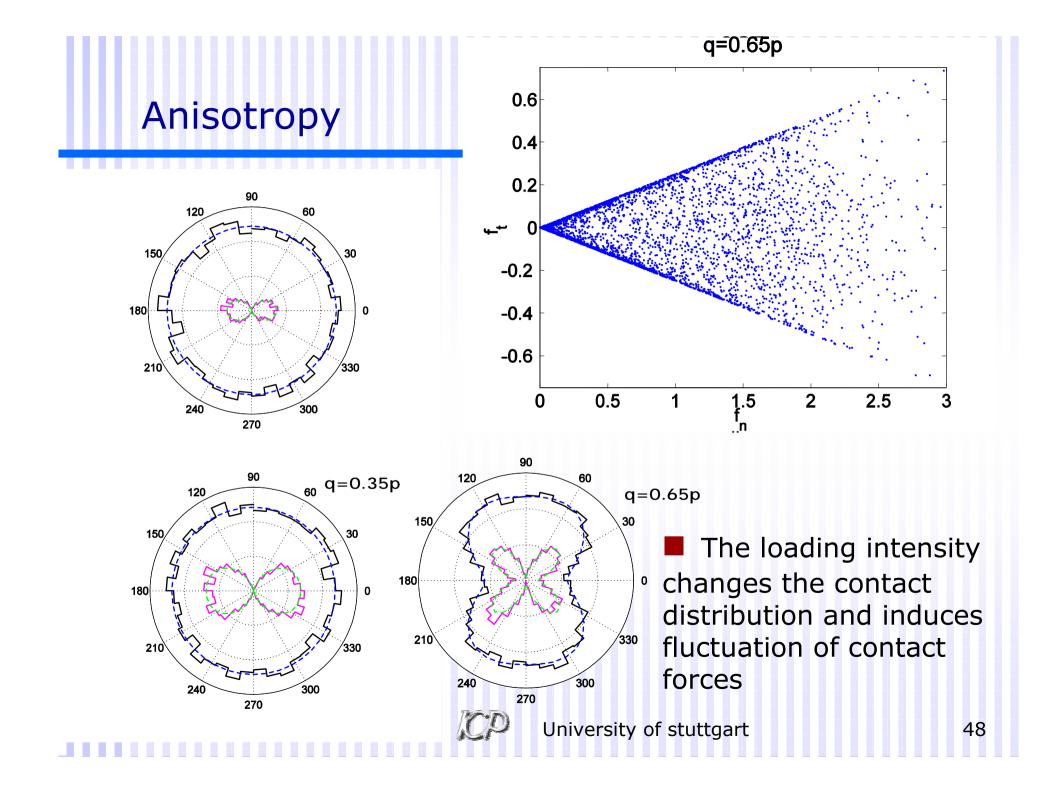
The yield direction does not coincide with the flow direction: non-associated flow rule



Elastic response

For q/p < 0.4, the envelope responses collapse. Isotropic linear elasticity.</p>





Conclusions

Future challenges:

- Three dimensional polyhedra.
- Realistic grain fragmentation.
- Non-convex shapes.
- Anisotropy.
- Strong polydispersity.
- Cohesive forces.

