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Shear bands in granite of Pyrenees
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Starting configuration

� Imposed shear velocity

� Periodic boundary conditions

� Regularized polygons



19.Nov.2004 University of stuttgart 4

F = (YA/l) n -γv(n) n –min(γv(t) ,µF(n)) t
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Force distribution in a polygonal packing

Contact 
forces

Contact 
displacements
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Kinetic energy after displacement

� Blue: Low energy

� Red: High energy
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Grains with more than three degrees rotation

Localized shear band
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Shear forces

Dependence on time, 
velocity, and normal
force.
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Dilatancy

Dependency on velocity,
and normal force.
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Kinetic energies

� Bursts.

� Gutenberg-Richter law.
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Two-dimensional Couette cell

Experiment

Simulation
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Two-dimensional Couette cell

Close-up
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Comparison of 
experiments and 
simulation

Mean tangential velocity and spin
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Polar distribution at 
different positions:

� Inside shear band
� At boundary
� Outside
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Uniaxial compression

� If the confining pressure is above a certain threshold, a 
continuous localization of the deformation comes up as the 
stress increases.

εεεε=0.01 εεεε=0.02 εεεε=0.027 εεεε=0.07

p0=0.004kn
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Biaxial test boundary conditions 
Membrane:Floppy boundaryFloppy boundary

� The smallest convex polygon enclosing the boundaries is 
chosen. Its lowest point is the first vertex of the perimeter.

� The boundary points are iteratively included using the bending 
criterion. (Θth is the threshold angle for bending)

� The final result gives a set of segments lying on the boundary 
of the sample.

Θth = π Θth = 3π/4             Θth = π/2      Θth=π/4
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Biaxial test boundary conditions 
Force on the membraneForce on the membrane

� On each segment of the membrane:

� We apply the force:

� One must take into account whether the segment of the 
membrane fully coincides with a polygon wedge, or 
whether it connects the vertices of two polygons.
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Biaxial test
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Spontaneous bearing formation

Black: clockwise rotation
White: counter-clockwise rotation
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Close-up of bearing
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Rotations in the system

Incremental particle 
displacement after one cycle

Rotation and sliding during 
cyclic loading
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Idealized space filling bearing
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Example for space filling bearing
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Random bearing

Bi-chromatic packing
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Rolling space-filling bearings

0.5c =0.0c =
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Granular ratcheting

Cyclic uniaxial loading
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Vorticity in ratcheting

Displacement field
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Characterization of the granular ratcheting

� Strain rate and the resilient parameters characterize the 
ratcheting regime.

� The effect on these magnitudes of the macroscopic 
(confining pressure, deviator) and microscopic quantities 
(stiffness, friction) can be investigated with our model.
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Contact forces and plastic deformation
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Permanent strain accumulation

� Power law dependence on the confining pressure and 
the deviatoric stress.

y ∝ x0.4

y ∝ x2.9

P0 confining pressure 

∆σ loading amplitude
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Permanent strain accumulation

y ∝ x-0.3

y ∝ x-2

kt tangential grain stiffness
kn normal grain stiffness

µµµµ, friction coefficient
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Resilient response

� Close to the shakedown limit, the resilient parameters 
remain approximately constant.

� For higher ∆σ, a there is a polynomial dependence on  
∆σ of both resilient magnitudes.
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� MR, resilient modulus
� ζ, Poisson ratio

Resilient response

y ∝ x0.34
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Shakedown

� Relaxation of the dissipated energy per cycle.

� Non-systematic 
accumulation of permanent 
strain.

� No sliding contacts.

� …all dissipation is due to the 
viscosity.
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Drucker-Prager plasticity

� Mohr-Coulomb criterion

τ = p tan ϕ + C
ϕ = friction angle       (ϕ ≈30°)
C = cohesion force

� Plastic flow rule

ψ = dilation angle       (ψ ≈11°)
non-associate ϕ ≠ψ

ψ

ε

∆V
V
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FLAC calculation of pure shear

� Fractal network
� Mesh dependence
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Statistical argument for finite width of shear band

Using Martingales, one obtains 
the number of force chains that 
turn upwards giving an overage 
with of 15 grain diameters
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Fragmentation in shear bands

Shear bands become 
denser and stiffer
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Shearing of polydisperse packing

Polydisperse system before 
shearing

Polydisperse system after 
shearing
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Shearing of bidisperse packing

Bidisperse system before
shearing

Bidisperse system after
shearing
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Dilatancy
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Averaged time series of the change in the height h(t)-h0 as a function of the 
horizontal displacement ν t of the lid. All distances are given in units of the 
system size.

First picture: Polydisperse particles with φ0 0.887.

Second picture: Bidisperse particles with R=1/45 and the same value of φ0

In both cases, ν =0.15. Ten simulations were averaged together to obtain these curves. 
The straight lines show the fits used to obtain Ψ and ds.
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The empty symbols correspond to polydisperse mixtures; the large, filled symbols correspond 
to a bidisperse mixture with R=1/45, and the small, filled symbols to a bidisperse mixture 
with R=1/60. The squares indicate results for an initial solid fraction , the  circles 

and the triangles                    .
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Dilatancy angles      for  bidisperse and 
polydisperse mixtures, as a function of the 
initial shear rate          .

Saturation dilatancy for polydisperse and 
bidisperse particles.

0 0.887Φ =
0 0.911Φ =

Ψ

0/v h

0 0.876Φ =
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Shear force
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The horizontal force F(t) divided by the normal force      , as a function of 
displacement vt, for the simulations shown in Fig. 1. First picture: Polydisperse
particles with                  .Second picture: Bidisperse particles with the same 
value of     . In both cases, v = 0.15. Ten simulations were averaged together to 
obtain these curves. The straight lines show the fitting of the force.

NF

0 0.887Φ =
0Φ
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LocalLocal Mohr-Coulomb criterion

� The relation between the volumetric and deviatoric stress 
at failure is strictly non-linear:

� As a consequence, the envelope of all Mohr-Coulomb 
circles at failure cannot be represented by a single straight 
line
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Plastic envelope

� A load-unload stress path for 
σ1=2.0·105 N/m and σ3 =1.2·105 N/m 
is followed 

� The plastic envelope shows the 
uni-directional character predicted 
by elasto-plasticity

� The yield direction does not coincide 
with the flow direction: 

nonnon--associated flow ruleassociated flow rule
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Elastic response

� For q/p < 0.4, the envelope responses collapse. Isotropic 
linear elasticity.

� For q/p > 0.4 there is a 
reduction of the stiffness and 
a rotation of the principal 
direction of the elastic tensor. 
Anisotropic response.

� This anisotropy can be 
characterized by the 
distribution of the orientations 
of the branch vectors: Fabric.
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Anisotropy

� The loading intensity 
changes the contact 
distribution and induces 
fluctuation of contact 
forces

q=0.1p

q=0.35p
q=0.65p
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Conclusions

� Future challenges:
• Three dimensional polyhedra.
• Realistic grain fragmentation.
• Non-convex shapes.
• Anisotropy.
• Strong polydispersity.
• Cohesive forces.


