Global Theory of Boundary Conditions and Topology Change

Manuel Asorey

[Alberto Ibort and Giussepe Marmo]

Quantum Boundary Conditions

Motivation:

Quantum Boundary Conditions

Motivation:

- Hearing the shape of a quantum drum [Weyl, von Neumann,..]

Quantum Boundary Conditions

Motivation:

- Hearing the shape of a quantum drum [Weyl, von Neumann,..]
- Index theorem [Atiyah-Singer]

Quantum Boundary Conditions

Motivation:

- Hearing the shape of a quantum drum [Weyl, von Neumann,..]
- Index theorem [Atiyah-Singer]
- Casimir effect [Casimir]

Quantum Boundary Conditions

Motivation:

- Hearing the shape of a quantum drum [Weyl, von Neumann,..]
- Index theorem [Atiyah-Singer]
- Casimir effect [Casimir]
- Topology change

Quantum Boundary Conditions

Motivation:

- Hearing the shape of a quantum drum [Weyl, von Neumann,..]
- Index theorem [Atiyah-Singer]
- Casimir effect [Casimir]
- Topology change
- Holographic principle, Topological Field Theories, strings, D-branes and all that

Quantum Boundary data

- Riemannian manifold (M, g) with boundary $\partial M=\Gamma$
- Vector bundle $E\left(M, \mathbb{C}^{N}\right)$
- Hilbert product

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle=\int_{M}\left(\psi_{1}(x), \psi_{2}(x)\right)_{x} d \mu_{g}(x), \quad d \mu_{g}(x)=\sqrt{g} d^{n} x
$$

Quantum Boundary data

- Riemannian manifold (M, g) with boundary $\partial M=\Gamma$
- Vector bundle $E\left(M, \mathbb{C}^{N}\right)$
- Hilbert product

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle=\int_{M}\left(\psi_{1}(x), \psi_{2}(x)\right)_{x} d \mu_{g}(x), \quad d \mu_{g}(x)=\sqrt{g} d^{n} x
$$

- Laplace-Beltrami operator

$$
\Delta_{A}=d_{A}^{\dagger} d_{A}
$$

Quantum Boundary data

- Riemannian manifold (M, g) with boundary $\partial M=\Gamma$
- Vector bundle $E\left(M, \mathbb{C}^{N}\right)$
- Hilbert product
$\left\langle\psi_{1}, \psi_{2}\right\rangle=\int_{M}\left(\psi_{1}(x), \psi_{2}(x)\right)_{x} d \mu_{g}(x), \quad d \mu_{g}(x)=\sqrt{g} d^{n} x$
- Laplace-Beltrami operator

$$
\Delta_{A}=d_{A}^{\dagger} d_{A}
$$

- Δ_{A} is a symmetric operator on $C_{0}^{\infty}(M, E)$

$$
\left\langle\psi_{1}, \Delta_{A} \psi_{2}\right\rangle=\left\langle\Delta_{A} \psi_{1}, \psi_{2}\right\rangle
$$

but not selfadjoint $\Delta_{A} \neq \Delta_{A}^{\dagger}$

Selfadjoint extensions:

[von Neumann theory]
Deficiency spaces

$$
\mathcal{N}_{ \pm}=\operatorname{ker}\left(\Delta_{A}^{\dagger} \mp i \mathbb{I}\right)
$$

Selfadjoint extensions:

[von Neumann theory]

Deficiency spaces

$$
\mathcal{N}_{ \pm}=\operatorname{ker}\left(\Delta_{A}^{\dagger} \mp i \mathbb{I}\right)
$$

Theorem [von Neumann]: There exists a one-to-one correspondence between self-adjoint extensions of Δ_{A} and unitary operators U from \mathcal{N}_{+}to \mathcal{N}_{-}.

Selfadjoint extensions:

[von Neumann theory]

Deficiency spaces

$$
\mathcal{N}_{ \pm}=\operatorname{ker}\left(\Delta_{A}^{\dagger} \mp i \mathbb{I}\right)
$$

Theorem [von Neumann]: There exists a one-to-one correspondence between self-adjoint extensions of Δ_{A} and unitary operators U from \mathcal{N}_{+}to \mathcal{N}_{-}.

- Not based on boundary data
- One needs to know \mathcal{N}_{+}and \mathcal{N}_{-}explicitly [not operative]

Boundary data approach

M orientable and Γ regular
Balance defect
$\left.\left\langle\psi_{1}, \Delta_{A} \psi_{2}\right\rangle=\left\langle\Delta_{A} \psi_{1}, \psi_{2}\right\rangle\right]-\int_{M} d\left[\left(* d_{A} \psi_{1}, \psi_{2}\right)-\left(\psi_{1}, * d_{A} \psi_{2}\right)\right]$
Boundary flux term

$$
\Sigma\left(\psi_{1}, \psi_{2}\right)=i \int_{\Gamma} j^{*}\left[\left(* d_{A} \psi_{1}, \psi_{2}\right)-\left(\psi_{1}, * d_{A} \psi_{2}\right)\right]
$$

Boundary data approach

M orientable and Γ regular

Balance defect

$$
\left.\left\langle\psi_{1}, \Delta_{A} \psi_{2}\right\rangle=\left\langle\Delta_{A} \psi_{1}, \psi_{2}\right\rangle\right]-\int_{M} d\left[\left(* d_{A} \psi_{1}, \psi_{2}\right)-\left(\psi_{1}, * d_{A} \psi_{2}\right)\right]
$$

Boundary flux term

$$
\Sigma\left(\psi_{1}, \psi_{2}\right)=i \int_{\Gamma} j^{*}\left[\left(* d_{A} \psi_{1}, \psi_{2}\right)-\left(\psi_{1}, * d_{A} \psi_{2}\right)\right]
$$

Theorem [Asorey-lbort-Marmo]: The set \mathcal{M} of self-adjoint extensions of Δ_{A} is in one-to-one correspondence with the group of unitary operators of $L^{2}\left(\Gamma, \mathbb{C}^{N}\right)$.

Boundary data approach

$$
\begin{gathered}
\Sigma\left(\psi_{1}, \psi_{2}\right)=i \int_{\Gamma}\left[\left(\dot{\varphi}_{1}, \varphi_{2}\right)-\left(\varphi_{1}, \dot{\varphi}_{2}\right)\right] d \mu_{\Gamma} \\
\varphi_{i}=j^{*} \psi_{i}=\left.\psi_{i}\right|_{\Gamma} \quad j^{*}\left[* d_{A} \psi_{i}\right]=\dot{\varphi}_{i} d \mu_{\Gamma} \quad(i=1,2)
\end{gathered}
$$

Boundary data approach

$$
\begin{aligned}
& \Sigma\left(\psi_{1}, \psi_{2}\right)=i \int_{\Gamma}\left[\left(\dot{\varphi}_{1}, \varphi_{2}\right)-\left(\varphi_{1}, \dot{\varphi}_{2}\right)\right] d \mu_{\Gamma} \\
& \varphi_{i}=j^{*} \psi_{i}=\left.\psi_{i}\right|_{\Gamma} \quad j^{*}\left[* d_{A} \psi_{i}\right]=\dot{\varphi}_{i} d \mu_{\Gamma} \quad(i=1,2)
\end{aligned}
$$

$$
(\varphi-i \ddot{\varphi})=U(\varphi+i \dot{\varphi})
$$

- Equivalence to von Neumann theory
- Most general type of boundary condition
- Global theory of boundary conditions

Boundary data approach

$$
\begin{aligned}
& \Sigma\left(\psi_{1}, \psi_{2}\right)=i \int_{\Gamma}\left[\left(\dot{\varphi}_{1}, \varphi_{2}\right)-\left(\varphi_{1}, \dot{\varphi}_{2}\right)\right] d \mu_{\Gamma} \\
& \varphi_{i}=j^{*} \psi_{i}=\left.\psi_{i}\right|_{\Gamma} \quad j^{*}\left[* d_{A} \psi_{i}\right]=\dot{\varphi}_{i} d \mu_{\Gamma} \quad(i=1,2)
\end{aligned}
$$

$$
(\varphi-i \ddot{\varphi})=U(\varphi+i \dot{\varphi})
$$

- Equivalence to von Neumann theory
- Most general type of boundary condition
- Global theory of boundary conditions

Examples

One-dimension $\Delta=\frac{-d^{2}}{d x^{2}} \quad M=[0,1] \in \mathbb{R}$

1. Dirichlet boundary conditions

$$
U=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \quad \varphi(0)=\varphi(1)=0
$$

2. Neumann boundary conditions

$$
U=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \varphi^{\prime}(0)=\varphi^{\prime}(1)=0
$$

3. Periodic boundary conditions

$$
U=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \varphi(0)=\varphi(1)
$$

$$
M=\cup_{i=1}^{N}\left[a_{i}, b_{i}\right] \in \mathbb{R}
$$

4. One single circle

$$
U=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\
. & . & . & . & . & \cdots & . & . \\
1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

5. N Disconected circles

$$
U_{N}=\left(\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
. & . & . & . & . & \cdots & . & . \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

TOPOLOGY CHANGE

(a)

(b)

- •••• •

(c)

Cayley Transform

1. If $-1 \notin \operatorname{Sp} U$ the boundary condition reduces to

$$
\dot{\varphi}=-i \frac{\mathbb{1}-U}{\mathbb{1}+U} \varphi
$$

21. If $1 \notin \operatorname{Sp} U$ the boundary condition reduces to

$$
\varphi=i \frac{\mathbb{1}+U}{\mathbb{1}-U} \dot{\varphi}
$$

Cayley Transform

1. If $-1 \notin \operatorname{Sp} U$ the boundary condition reduces to

$$
\dot{\varphi}=-i \frac{\mathbb{1}-U}{\mathbb{1}+U} \varphi
$$

21. If $1 \notin \operatorname{Sp} U$ the boundary condition reduces to

$$
\varphi=i \frac{\mathbb{1}+U}{\mathbb{1}-U} \dot{\varphi}
$$

Cayley transform

$$
A=-i \frac{\mathbb{1}-U}{\mathbb{1}+U}
$$

Inverse Cayley transform

$$
U=\frac{\mathbb{1}-i A}{\mathbb{1}+i A}
$$

Cayley submanifolds. Maslov index

Cayley submanifolds:

$$
\mathcal{C}_{ \pm}=\left\{U \in \mathcal{U}\left(L^{2}\left(\Gamma, \mathbb{C}^{N}\right)\right) \mid \pm 1 \in \operatorname{Sp}(U)\right\}
$$

The topology of the space of selfadjoint extensions is non-trivial

$$
\pi_{1}\left[\mathcal{U}\left(L^{2}\left(\Gamma, \mathbb{C}^{N}\right)\right]=\mathbb{Z}\right.
$$

Maslov index:
If $U=I+K$ with $\operatorname{Tr} \mathrm{K}^{\dagger} \mathrm{K}<\infty$ (K Hilbert-Schmidt) \Rightarrow the determinant is finite

$$
\log \operatorname{det}^{\prime} U=\operatorname{Tr} \log \frac{1+K}{e^{K}},
$$

Cayley submanifolds. Maslov index

The Maslov index of a closed path $\gamma: S^{1} \rightarrow \mathcal{U}\left(L^{2}\left(\Gamma, \mathbb{C}^{N}\right)_{G}\right.$ of selfadjoint extensions is

$$
\nu_{M}(\gamma)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \partial_{\vartheta} \log \operatorname{det}^{\prime}(\gamma(\vartheta)) d \vartheta
$$

Theorem: The Maslov index of a closed path γ is equal to the indexed sum of crossing of γ throught the Cayley submanifold \mathcal{C}_{-}

$$
\nu_{M}(\gamma)=\int_{0}^{2 \pi} \partial_{\vartheta} n(\gamma(\vartheta)) d \vartheta
$$

Topology change and edge states

The selfadjoint extensions of Δ_{A} may not be positive operators:

$$
\left(\Psi_{1}, \Delta_{A} \Psi_{2}\right)=\left(d \Psi_{1}, d \Psi_{2}\right)-\left(\varphi_{1}, A \varphi_{2}\right)
$$

where A is the Cayley transform of U

$$
\nu_{M}(\gamma)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \partial_{\vartheta} \log \operatorname{det}^{\prime}(\gamma(\vartheta)) d \vartheta
$$

Theorem: For any selfadjoint extension Δ_{A}^{U} of Δ_{A} with $-1 \in \operatorname{Sp} U$ and smooth eigenfunction, the family of selfadjoint extensions $\Delta_{A}^{U_{t}}$ with $U_{t}=U e^{i t}$ and $0<t \ll 2 \pi$ has one negative energy level E_{-}which corresponds to an edge state. $E_{-} \rightarrow-\infty$ as $t \rightarrow 0$

CONCLUSIONS

CONCLUSIONS

- Global theory of boundary conditions. Non trivial topology \Rightarrow Cayley submanifolds

CONCLUSIONS

- Global theory of boundary conditions. Non trivial topology \Rightarrow Cayley submanifolds
- Topology change involves an infinite amount of energy

CONCLUSIONS

- Global theory of boundary conditions. Non trivial topology \Rightarrow Cayley submanifolds
- Topology change involves an infinite amount of energy
- Edge states are associated to boundary conditions in Cayley submanifolds

CONCLUSIONS

- Global theory of boundary conditions. Non trivial topology \Rightarrow Cayley submanifolds
- Topology change involves an infinite amount of energy
- Edge states are associated to boundary conditions in Cayley submanifolds
- Application to Topological Field Theories and string theory: D-branes, M-branes, ...

CONCLUSIONS

- Global theory of boundary conditions. Non trivial topology \Rightarrow Cayley submanifolds
- Topology change involves an infinite amount of energy
- Edge states are associated to boundary conditions in Cayley submanifolds
- Application to Topological Field Theories and string theory: D-branes, M-branes, ...
- Extension for Dirac operators (non-elliptic extensions)

