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Quantum Boundary Conditions

Motivation:

Hearing the shape of a quantum drum
[Weyl, von Neumann,..]

Index theorem [Atiyah-Singer]

Casimir effect [Casimir]

Topology change

Holographic principle, Topological Field Theories,
strings , D-branes and all that
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Quantum Boundary data
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Riemannian manifold (M � g)with boundary
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Laplace-Beltrami operator
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Ais a symmetric operator on C0 (M E)
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Selfadjoint extensions:

[ von Neumann theory]

Deficiency spaces

� � ker(


 �

A

� i �

)

Theorem [von Neumann]: There exists a one-to-one
correspondence between self-adjoint extensions of

A and unitary operators U from to .

Not based on boundary data

One needs to know and explicitly [not
operative]
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Boundary data approach
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Theorem [Asorey-Ibort-Marmo]: The set of
self-adjoint extensions of A is in one-to-one
correspondence with the group of unitary operators

of L2( C
N

).
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Examples

One-dimension


 � �d2

dx2 M � [0 � 1]

!

IR

1. Dirichlet boundary conditions

U � �1 0

0 �1

� (0) � � (1) � 0

2. Neumann boundary conditions

U � 1 0

0 1
� "(0) � � "(1) � 0

3. Periodic boundary conditions

U � 0 1

1 0

� (0) � � (1)



M # N
i �1[ai $ bi]

%
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TOPOLOGY CHANGE
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(b)

(c)
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Cayley submanifolds. Maslov index

Cayley submanifolds:

, � � U

! - �

L2(

�
� �N )

� .'.'
.

/

1

!

Sp(U )

The topology of the space of selfadjoint extensions is
non-trivial

0

1

� -

(L2(

�
� �N )

� � 1

Maslov index :

If U � I  

K with Tr K

�

K
2 3 (K Hilbert-Schmidt)

4

the determinant is finite

log det

"

U � Tr log
1

 

K

eK

�



Cayley submanifolds. Maslov index

The Maslov index of a closed path 5: S1 6 -

(L2(
�
� �N )G

of selfadjoint extensions is

7

M ( 5) � 1

2 0

2 8

0

�:9 log det

"

( 5(
;

))d
;

Theorem: The Maslov index of a closed path 5 is equal
to the indexed sum of crossing of 5 throught the
Cayley submanifold

,
�

7

M ( 5) �

2 8

0

�9 n( 5(

;

))d

;



Topology change and edge states

The selfadjoint extensions of




A may not be positive
operators:

(

<

1 �



A

<

2) � (d

<

1 � d

<

2) � � �

1 � A
�

2
�

where A is the Cayley transform of U

7

M ( 5) � 1

2 0

2 8

0

�:9 log det

"

( 5(

;

))d

;

Theorem: For any selfadjoint extension


U
A of




A

with �1 !

SpU and smooth eigenfunction, the fam-

ily of selfadjoint extensions


Ut

A with Ut

� U eit and

0

2

t

2 2

2 0 has one negative energy level E � which

corresponds to an edge state. E � 6 � 3 as t 6 0



CONCLUSIONS

Global theory of boundary conditions. Non trivial
topology Cayley submanifolds

Topology change involves an infinite amount of
energy

Edge states are associated to boundary
conditions in Cayley submanifolds

Application to Topological Field Theories and
string theory: D-branes, M-branes, . . .

Extension for Dirac operators (non-elliptic
extensions)
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