LA MECCANICA STATISTICA DEI MATERIALI GRANULARI

A. Coniglio, A. de Candia, A. Fierro, <u>Mario Nicodemi</u>, M. Pica Ciamarra, M. Tarzia

Piano del seminario:

- i Mezzi Granulari (Granular Media, GM): sistemi non termici;
- la Meccanica Statistica dei GM e la teoria di Edwards;
- la scoperta del diagramma di fase dei GM e la spiegazione dei fenomeni di segregazione di taglia.

Napoli, 8 Ottobre 2004

\Box Granular Media (GM)

Examples of granular media are: powders, sand, corn-flakes, aspirins, etc...

- they are **dissipative** systems;
- they are **non-thermal** systems:

since $d > 1 \mu m \implies mqd >> k_B T$

\Box Size segregation

RANDOM INITIAL PACK

SEGREGATED PACK AFTER SHAKING

In presence of shaking a granular system is not randomized, but its components tend to separate:

- BNE, "Brazil nut effect": large grains above;
- RBNE, "reverse Brazil nut effect": large grains below. (Hong,Quinn&Luding 2001)

□ Experiments in Chicago (Nagel et al. 1998)

- Experimental set-up. Γ=(peak acceler.)/gravity
- Packing fraction, φ, as a function of the shake amplitude, Γ.

Experiments in Rennes (Philippe&Bideau 2002)

 Packing fraction, φ, at stationarity as a function of the shaking amplitude, Γ

 Characteristic time scale, τ, to reach stationarity as a function of 1/Γ

□ Macro and Micro-States

• Macroscopic properties of GM at rest are characterized by a few control parameters.

As much as in thermal systems, macrostates correspond to many microstates, i.e., mechanically stable configurations.

• In thermal systems the space of microstates is explored by the presence of a finite T_{bath} , and in granular media (where, at rest, $T_{bath} = 0$) by an external drive ($\Gamma \Leftrightarrow T_{bath} > 0$).

\Box An important question (Edwards 1989)

What's the probability, P_r , to find the "mechanically stable state" r? P_r allows to substitute *time* with *ensemble averages*.

\Box Edwards' approach to GM

(Edwards 1989, Nicodemi 1999, Coniglio&Nicodemi 2001)

- Granular media are found, at rest, in mechanically stable microstates. In Edwards' Stat. Mech. of GM, averages are only over these mechanically stable states with a flat measure.
- Thus, in the canonical ensemble (given average energy) the probability, P_r , of a microstate r with energy, E_r , is:
 - **a)** $P_r \propto e^{-\beta_{conf}E_r}$ if *r* is "mechanically stable";

b) else $P_r = 0$.

 $T_{conf} = \beta_{conf}^{-1} \leftarrow configurational \ temp.$

$$\beta_{conf} = \frac{\partial \ln \Omega}{\partial E}$$

 $\Omega(E)$ is the number of "mechanically stable states" with E.

• The system at rest has: $T_{bath} = 0$ and $T_{conf} = \beta_{conf}^{-1} \neq 0$

\Box Test of Edwards' scenario

We have to show that for any observable Q:

a) "Thermodynamics"

 \overline{Q} is not "history" dependent; for instance, for a given energy, e, there is only one value $\overline{Q}(e)$.

b) "Statistical Mechanics"

ENSEMBLE AVERAGES

$$P_r \propto e^{-\beta_{conf}E_r} \implies \langle Q \rangle = \sum_r Q_r P_r$$

Time and Ensemble Averages must coincide: $\overline{Q}(e) = \langle Q \rangle(e)$

\Box Schematic Models and Dynamics

(Nicodemi, Coniglio, Herrmann 1997)

Tap <u>amplitude</u>: T_{Γ} ($\leftrightarrow \Gamma = a/g$ of exp.s) Tap <u>duration</u>: τ_0 ($\leftrightarrow \omega^{-1}$ of experiments)

thermodynamic parameter; \mathbf{T}_{Γ} is **not**.

• h_1 and h_2 are enough \Longrightarrow two configurational temperatures exist:

$$\beta_1 = \frac{\partial \ln \Omega(E_1, E_2)}{\partial E_1} \quad \beta_2 = \frac{\partial \ln \Omega(E_1, E_2)}{\partial E_2}$$

\Box A mean field calculation

• Hard spheres on a lattice. The Hamiltonian is:

$$\mathcal{H} = \mathcal{H}_{HC}(\{n_i(z)\}) + mg\sum_i n_i(z)z$$

Hard Core + Gravity

The variable $n_i(z)$ is 1 (resp. 0) when site *i* at hight *z* is filled by a grain (resp. empty).

• The **partition function**:

$$Z = \sum_{r} \mathrm{e}^{-\beta_{conf} \mathcal{H}(r)} \cdot \Pi_{r}$$

where $\Pi_r = 1$ if r is a "stable state"; else $\Pi_r = 0$.

A tractable expression for Π_r can be found:

 $\Pi_r = \lim_{K \to \infty} \exp\left\{-K \sum_z \mathcal{H}_{CONF}(z)\right\} \quad \text{where } \mathcal{H}_{CONF}(z) = \sum_i \delta_{n_i(z),1} \delta_{n_i(z-1),0} \delta_{n_i(z-2),0}$

• A mean field analytic calculation ("Bethe approx.") of Z in this model is shown to be possible!

□ Equation of State and Phase Diagram

(Coniglio, de Candia, Fierro, Nicodemi & Tarzia 2003)

- $T_{\mathbf{K}}$: Supercooled Fluid to Glass transition (metastable phases)
- T_D : dynamical crossover line

Two basic mechanisms (no "hydrodynamics" here):

- Weak segregation/mixing: "geometric" effects within a given phase (e.g., more stable states with small grains below)
- Strong segregation: phase separation due to phase transitions

\Box Conclusioni

- Comincia oggi a farsi strada l'idea di poter descrivere materiali non termici, come i mezzi granulari, con teorie di Meccanica Statistica.
- Lo studio dei limiti di validitá dell'approccio di Edwards é appena agli inizi. Emerge, peró, per la prima volta una teoria unitaria della fisica dei mezzi granulari: dal loro "diagramma di fase", alle proprietá "vetrose", ai fenomeni di segregazione di taglia.
- Si comincia a comprendere l'*universalitá* di fenomeni (come transizioni di fase, "jamming", ...) osservati in sistemi molto diversi tra loro: dai "vetri strutturali", ai "vetri di spin" sino ai materiali granulari.