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Introduction
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LHC successfully started collisions at 7 TeV
on March 30th 2010

visit the LPCC web site for updatesvisit the LPCC web site for updates

http://lpcc.web.cern.ch/LPCC/

The need of Next to Leading Order (NLO) multi-particle  
scattering predictions is more pressing

New ideas in the field of loop corrections seemsNew ideas in the field of loop corrections seems 
give the possibility to perform the automatic 
generation of NLO predictions for multi-leg processes
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Existing tools
Leading Order

M dG h M dE t

NLO parton level

MadGraph-MadEvent

CompHep-CalcHep

MCFM

NLOjet++p p p

SHERPA

j

………

WIZHARD

ALPGEN

NLO + parton shower

ALPGEN

HELAC

MC@NLO

POWHEG
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General method for NLO parton integrator

The ingredients for a NLO prediction are:

Tree graphs for the lowest order
T h f th l di tiTree graphs for the real radiation
One loop correction to the Born level process

The Born approximation involve m partons in the final statepp p

At NLO we have the real cross section  dσR with m+1 partons in the 
final state and the one-loop correction dσV to the process with m 
partons in the final state

The two integrals are separately divergent although their sum is finite



Solution: subtraction method Ellis, Ross, Terrano (1981)

The general idea consists of the use of the identity

Where dσA is a proper approximation of dσR such as to have the same p p pp
singular behavior point-by-point as dσR itself. 

Further dσA can be chosen in such a way to be analytically 
integrable over the extra parton degrees of freedom. Adding it back 
to the virtual correction we form a finite m parton integrand
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Numerical calculations;Status of
EW corr. e+e- > 4 fermions
Denner and Dittmaier (2005)

Status of
the art pp > W + 3jets

Ellis et al, Berger et al
(2009)

the art

Analytic calculations;
pp > Z + 3jets
Berger et al (2009) 

W/Z/γ+ 2jets Bern et al (1998)

2j (

pp > ttbb
Bredenstein et al, Bevilacqua
et al  (2009)

H  + 2jets (Badger, Berger,  
Campbell, Del Duca, Dixon, 
Ellis, Glover, Mastrolia, 
Risager, Sofianatos, Williams)

pp > tt +2jets Czakon et al   
(2010) 
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Risager, Sofianatos, Williams)
(2006-2009) pp > 4b Binoth et al (2010)



Methods
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Basic features of SAMURAI
Scatterig AMplitudes from Unitarity basedScatterig AMplitudes from Unitarity based 
Reduction Algorithm at Integrand level
Authors: P. Mastrolia, G. Ossola, T. Reiter and F.T.

• Is a fortran90 library for the calculation of the virtual 
corrections downloadable at the URL: www.cern.ch/samurai

• Main purpose was to provide a flexible and easy to use tool for 
the evaluation of the virtual corrections

• It works with any number/kind of legs

• Can process integrands written either as numerator of FeynmanCan process integrands written either as numerator of Feynman 
diagrams or as product of tree level amplitudes

• Can be compiled in double or quadruple precisionp q p p

• Many details including examples of applications can be found in 
arXiv:1006.0710 NAPOLI  – 10/06/2010



OPP reduction algorithm 0. the idea

Any amplitude can be expressed as a linear combination of scalar 
integrals: boxes, triangles, bubbles, tadpoles plus rational terms

At integrand level the structure is enriched by terms that integrateAt integrand level the structure is enriched by terms that integrate 
to zero
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OPP reduction algorithm 1. the idea

Once fixed a parametrization for the loop momentum in terms of a linear 
combination of known four-vectors the vanishing term are polynomial

For example the box residue reads:p

The problem is then reduced to fit the coefficients of the polynomials
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OPP reduction algorithm 2. generalized cuts

With i t t i ti t l i lif th bl fWith appropriate parametrizations one can strongly simplify the problem of 
fitting the coefficient of the polynomials
-> cuts construction -> recursive solution (top-down)

Choosing the loop momentum q such that a set of denominators vanish leads 
to a triangular solutions for the system of the coefficients…

d-dimensional generalized unitarity cuts

Th l i l d l th 2 d d i i i t thThe polynomials can encode also the mu2 dependence giving rise to the 
rational part
Giele, Kunszt, Melnikov (2008); Ellis, Giele, Kunszt, Melnikov (2008)
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An implementation of the D-dimensional 
generalized unitarity cuts techniquegeneralized unitarity cuts technique

The power of the method is the fact that for each phase space 
point the only info required to perform the reduction is thepoint the only info required to perform the reduction is the 
knowledge of the numerical value of the numerator N(q, mu2,ε) 

for a finite set of values for the loop momentum (q,mu2)
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Discrete 
FourierFourier 
Transform

The extension of the DFT projection to the case 
of multi-variate polynomials is straightforward
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of multi variate polynomials is straightforward



Amplitudes &
Master IntegralsMaster Integrals

Sources of rational terms are the 
integrals with mu2 powers in the numeratorintegrals with mu2 powers in the numerator

They are generated by the reduction 
algorithm, but could also be present ab
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initio in the numerator function as a 
consequence of the algebraic manipulations



Running 
SAMURAISAMURAI
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calls:calls

A dedicated module (kinematic) is also available 
in the release that contains useful functions toin the release that contains useful functions to 
evaluate:

Polarization vectors for massless vectors
Scalar and spinor products with both real and 
complex four vectors as argumentscomplex four vectors as arguments
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imeth = ‘diag’for an integrand given as numerator  
of a Feynman diagram

‘tree’for an integrand given as the   
product of tree level amplitudes

isca = 1, scalar integrals evaluated with the
QCDLoop package (Ellis and Zanderighi)

2, scalar integrals evaluated with the      
( )AVH-OLO package (van Hameren)

verbosity = 0, nothing is printed by the reduction
1, the coefficients are printed out1, the coefficients are printed out
2, also the value of the MI are printed out
3, also the results of the tests are printed out

it t 0 t titest = 0, none test
1, global n=n test is performed (not avail. for imeth=‘tree’)
2, local  n=n test is performed
3, power      test is performed (not avail. for imeth=‘tree’), p p ( )

new – based on the mismatch of the polynomial degree of the    
given integrand and the reconstructed one
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Optionally to fill the denominators one can use

msq(2)

Pi(2,:)=v2
nleg is the number 
of legs attached msq(2)of legs attached 
to the loop

msq(1) msq(3)Pi(1,:)=v1 Pi(3,:)=v3

msq(0)

Pi(0 ) 0Pi(0,:)=v0

Denominator(j) = [ q + Pi(j :) ]^2 m 2 msq(j)Denominator(j) = [ q + Pi(j,:) ]^2 – mu2 – msq(j) 
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xnum [i]=  the name of the function to reduce with arguments xnum(cut, q, mu2)
for imeth=tree the cut play a selective role to use the relative
tree product

tot [o] =  contains the result of the reduction convoluted with the MI

totr [o]= contains the rational part only

rank [i] = the rank of the numerator useful to speed up the reductionrank [i] = the rank of the numerator, useful to speed up the reduction

istop [i] = when stop the reduction, i.e. after pentuple cut (5) quadruple (4)…

scale2 [i] = the value of the renormalization scale (square)

ok [o] = a logical variable giving the result of the test if they are evaluated
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About the 
precisionprecision

Gram Determinant -> induce large cancellations between contributions from the MI 
that carry such a factor (the tests coded in SAMURAI detect such instabilities)

Big cancellations between diagrams -> on-shell methods seems to be the best option

If running with big internal masses -> big cancellations between cut-constructible g g g
and rational term -> effective theory works better

Quadruple precision solves these issues, but is time consumingQuadruple precision solves these issues, but is time consuming

For numerical studies and checks SAMURAI compiles also in quad
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Examples
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4-photons • imeth=‘diag’
• nleg = 4, rank = 4
• 6 permutations, only 3 relevantp p p , y

L3

p3 p4

L2 L4

L1
p1p2p2

• mu2 terms give zero contribution
• mu2 q^al q^be cancel in the sum
• mu2^2 gives rise to the correct rational part

Results numerically checked vs. Gounaris et al (1999)
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6-photons
• imeth =‘diag’
• nleg = 6, rank = 6
• 120 permutations, only 60 relevant

Bernicot et al (2007 2008)Bernicot et al (2007,2008)

SAMURAI with istop=2

PS point as in Nagy and Soper (2006)

SAMURAI with istop=4, subtracting totr 

Results numerically checked vs. Bernicot et al (2007,2008)
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8-photons
• imeth =‘diag’
• nleg = 8, rank = 8
• 5040 permutations, only 2520 relevant

MHV result numerically checked vs. Mahlon (1993)

• sampling set as in Gong et al (2008)

NNMHV result (new) numerically confirm the structure  
in Badger et al (2009)
The points in quadruple precision (x) have   
b l l t d ith i t 2 i t i ibeen calculated with istop=2, i.e. retaining   
all the cut constructble and rational pieces



Drell-Yan
If one want to consider regularization schemesIf one want to consider regularization schemes 
giving rise to O(ε) terms and reduce them, then 
one needs to process N0 and N1 below separately

d=4     -> Dim Red
d=4-2ε -> CDR

• imeth =‘diag’
l 3 k 2 d=4 2ε > CDR• nleg = 3, rank = 2

Denominators:

• msq = { 0, 0, 0}

• Pi = { 0 p p + p + p }
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• Pi = { 0, pu, pu + pe- + pe+ }

• N1 generate a rational term = - gs
2 CF LO



VB+1j: leading color

i th ‘di ’• imeth = diag

• 1 Box nleg=4, rank=3
4 Tri nleg=3, rank=2g
2 Bub nleg=2, rank=1

• Diagrams can be collected on a common 
box denominatorbox denominator

• Studing Left-handed current needs of 
a prescription for gamma5:
adopting DR w/anticommuting gamma5
we added –Nc/2 times the Tree Level 
amplitude 
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Results numerically checked vs. Bern et al (1997)  
Eqs D1-5, using some code from MCFM



6-gluons all plus: massive scalar contribution
i h ‘ ’• imeth=‘tree’

• nleg = 6, rank = 6

For this helicity choice the result is purely rational
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Results numerically checked vs. Badger et al (2005)



6q amplitudes 0. calculation

Fortran Code generation 
completely automatedcompletely automated 
thanks to an 
infrastructure derived 
f G l 2 0from Golem-2.0
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6q amplitudes .1 checks

( )• A(-+-+-+)
• ren scale = 1GeV
• uv renormalization included

GOLEM 2 0 + GOLEM95 GOLEM 2 0 + SAMURAIGOLEM-2.0 + GOLEM95 GOLEM-2.0 + SAMURAI

Infrared poles calculated 
from the integrated dipols
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6q amplitudes .2 precision

Difference between the single (double) virtual poles and 
those of the integrated dipoles for 10^5 phase space points
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those of the integrated dipoles for 10 5 phase space points



Conclusions

• We wrote the SAMURAI library for the automatic 
evaluation of the NLO virtual correction to scatteringevaluation of the NLO virtual correction to scattering 
processes, once the integrand is given in some form: 
Feynman diagrams or product of tree level amplitudes

• I showed its main features and several examples that 
could be useful to understand the framework and as a 
guide to implement other processes

• We tried to make things as effective and simple asWe tried to make things as effective and simple as 
possible to allow for interfaces with other tools
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Outlook

• Improve on velocity and stability
Especially for Degenerate kinematic configurationsEspecially for Degenerate kinematic configurations

• In the near future we plan to study some processes 
relevant for Higgs particle discovery at the LHC:   

H production in association with 3jetsH production in association with 3jets

and important background processes for H and BSM 
searches at the LHC like:searches at the LHC like:

4-top production
WW+2j production
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