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Abstract

We notice that looking forνe → ντ at the same time asνe → νµ oscillations could significantly
help to reduce the errors in the leptonic CP-violating phaseδ measurement. We show how the
νe → νµ (“golden”) andνe → ντ (“silver”) transitions observed at an OPERA-like 2 kton lead-
emulsion detector atL= 732 km, in combination with theνe → νµ transitions observed at a 40 kton
magnetized iron detector with a baseline ofL = 3000 km, strongly reduce the so-called(θ13, δ)

ambiguity. We also show how a moderate increase in the OPERA-like detector mass (4 kton instead
of 2 kton) completely eliminates the clone regions even for small values ofθ13.
 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The present atmospheric [1–6] and solar [7–14] neutrino data are strongly supporting
the hypothesis of neutrino oscillations [15–18] and can be easily accommodated in a three
family mixing scenario.

Let the Pontecorvo–Maki–Nakagawa–SakataUPMNS matrix be the leptonic analogue
of the hadronic Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix in its most conven-
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tional parametrization [19]:

UPMNS=
(1 0 0

0 c23 s23
0 −s23 c23

)(
c13 0 s13e

iδ

0 1 0
−s13e

−iδ 0 c13

)(
c12 s12 0

−s12 c12 0
0 0 1

)
,

with the short-form notationsij ≡ sinθij , cij ≡ cosθij . Oscillation experiments are
sensitive to the two neutrino mass differences�m2

12,�m
2
23 and to the four parameters

in the mixing matrix: three angles and the Dirac CP-violating phase,δ.
In particular, data on atmospheric neutrinos are interpreted as oscillations of muon

neutrinos into neutrinos that are notνe ’s, with a mass gap that we denote by�m2
23. The

corresponding mixing angle is close to maximal, sin2 2θ23> 0.8, and|�m2
23| is in the

range 1.8 to 4× 10−3 eV2 [20].
The recent SNO results for solar neutrinos [12–14] favour the LMA-MSW [21] solution

of the solar neutrino deficit withνe oscillations into active (νµ, ντ ) neutrino states. The
corresponding squared mass difference, that in this parametrization should be identified
with �m2

12, is ∼ 10−5–10−4 eV2. Comprehensive analyses of the solar neutrino data,
however, do not exclude the LOW-MSW solution [22–25], with�m2

12 ∼ 10−7 eV2. In
both cases, the corresponding mixing angle (θ12) is large (albeit not maximal).

Finally, the LSND data [26,27] would indicate aνµ → νe oscillation with a third,
very distinct, neutrino mass difference:�m2

LSND ∼ 0.3–6 eV2. The LSND evidence in
favour of neutrino oscillation has not been confirmed by other experiments so far [28]; the
MiniBooNE experiment [29] will be able to do it in the near future [30]. In the absence
of an independent confirmation of the LSND evidence, we restrict ourselves to the three
neutrino mixing scenario (the impact of a Neutrino Factory in the case of four neutrino
mixing has been discussed in full detail in [31–33]).

These oscillation signals will be confirmed in ongoing and planned atmospheric and
solar neutrino experiments, as well as in long baseline ones, with the latter being free of
model-dependent estimations of neutrino fluxes. There is a strong case for going further
in the fundamental quest of the neutrino masses and mixing angles, as a necessary step
to unravel the fundamental new scale(s) behind neutrino oscillations. In particular, it is
possible that in ten years from now no information whatsoever will be at hand regarding
the θ13 angle (the key between the atmospheric and solar neutrino realms, for which the
present bound is sin2(2θ13)� 1× 10−1, [34]) and the leptonic CP violating phaseδ.

An experimental set-up with the ambitious goal of precision measurement of the whole
three-neutrino mixing parameter space is under study. This experimental programme
consists of the development of a “Neutrino Factory” (high-energy muons decaying in the
straight section of a storage ring and producing a very pure and intense neutrino beam,
[35,36]) and of suitably optimized detectors located far away from the neutrino source.
The effort to prepare such very long baseline neutrino experiments will require a time
period covering this and the beginning of the following decade. It is therefore of interest
to look for the optimal conceivable factory-detectors combination. One of its main goals
would be the discovery of leptonic CP violation and, possibly, its study [37–40]. Previous
analyses [41–43] on the foreseeable outcome of experiments at a Neutrino Factory have
shown that the determination of the two still unknown parameters in the three-neutrino
mixing matrix,θ13 andδ, will be possible (if the LMA-MSW solution of the solar neutrino
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deficit is confirmed). The most sensitive method to study these topics is to measure the
transition probabilities involvingνe andν̄e, in particular,νe(ν̄e)→ νµ(ν̄µ). This is what is
called the “golden measurement at theneutrino factory”. Such a facility is indeed unique
in providing high energy and intenseνe(ν̄e) beams. Since these beams contain noν̄µ(νµ),
the transitions of interest can be measured by searching for “wrong-sign” muons: negative
(positive) muons appearing in a massive detector with good muon charge identification
capabilities [40].

An incredible amount of work has been devoted to this topic in the last few years: we
refer the interested reader to [44–54] and to the references therein for an overview of the
status-of-the-art in all its different aspects; we address to [55–61] and references therein
for a comparison of the physics reach of a conventional (super)beam and of a Neutrino
Factory; eventually, we point out that in [62] the idea of aν̄e beam originating fromβ-
decay (the so-called “β-beam”), was advanced: it appears that the physics reach of such a
beam is complementary to that of a conventional superbeam [63].

In [64] it has been noticed that the probabilityPνα→νβ (θ̄13, δ̄,Eν) for neutrinos at a fixed
energy (and for a given baseline) computed for a given theoretical input pair(θ̄13, δ̄) defines
a continuous equiprobability curve in the (θ13, δ) plane. Therefore, for a fixed energy,
a continuum of solutions reproduce the input probability. A second equiprobability curve
is defined in this plane by the probability for antineutrinos at the same energy and with
the same input parameters,Pν̄α→ν̄β (θ̄13, δ̄,Eν). The two equiprobability curves have, quite
generally, two intersection points: the first of them at (θ̄13, δ̄), the second at a different point
(θ̃13, δ̃). It is the intersection of equiprobability curves from the neutrinos and antineutrinos
that resolves the continuum degeneracy of solutions in the (θ13, δ) plane, restricting the
allowed values forθ13 andδ to the two regions around (θ̄13, δ̄) and (̃θ13, δ̃). This second
intersection, however, introduces an ambiguity in the measurement of the physical values
of θ13 andδ. Different proposals have been suggested to solve this ambiguity: in [64] the
ambiguity is solved by fitting at two different baselines at the same time; another possibility
is an increase in the energy resolution of the detector [46,50,51]; see also [65].

New degeneracies have later been noticed [59,66], resulting from our ignorance of
the sign of the�m2

atm squared mass difference (by the time the Neutrino Factory will
be operational) and from the approximate[θ23,π/2 − θ23] symmetry for the atmospheric
angle.

In the first part of the paper we describe how the (θ13, δ) ambiguity arises inνe → νµ
oscillation due to the equiprobability curves in the (θ13, δ) plane at fixed neutrino energy.
We then extend our analysis showing how the same phenomenon can be observed in a
real experiment: equal-number-of-events (ENE) curves for any given neutrino energy bin
appears and their intersections in the (θ13, δ) plane explain how and where do “clone”
regions arise. Our analysis is afterwards compared with the results of simulations with a
realistic magnetized iron detector (studied in [67]).

We then propose to reduce the continuum degeneracy and to resolve the last ambiguity
using two baselines with detectors of different design. We notice that muons proceeding
from τ decay whenτ ’s are produced via aνe → ντ transition show a different(θ13, δ)

correlation from those coming fromνe → νµ (first considered in [40]). By using a near
lead-emulsion detector, capable of theτ -decay vertex recognition, we can therefore use the
complementarity of the information fromνe → ντ and fromνe → νµ to solve the (θ13, δ)
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ambiguity. We find that the combination of the near emulsion detector and of a massive
magnetized iron detector atL= 3000 km could indeed help to achieve a good resolution
in the(θ13, δ) plane.

In this paper we restrict ourselves to the (θ13, δ) ambiguity, by fixingθ23 = 45◦ and by
choosing a given sign for�m2

atm (in the hypothesis that more information on the three
neutrino spectrum will be available by the time the Neutrino Factory will be operational).
However, we found that the core of our results do not depend on the sign of�m2

atm: indeed,
we have been carrying on simulations with the opposite sign, with similar results (i.e., we
still observe how “clone” regions disappear due to the two-detector types combination;
notice, however, that the location of the “clone” regions and all the details of the simulation
do depend on the sign of�m2

atm). We remind that, ifθ13 is not extremely small, the
combined measurement ofνe → νµ and νe → ντ transitions could significantly help
in solving the [θ23,π/2 − θ23] ambiguity [66]. We understand that solving the three
ambiguities at the same time will need the combination of different measurements and
we plan to explore this possibility in a forthcoming paper.

In Section 2 we present our analysis of theνe → νµ equiprobability curves in the (θ13, δ)
plane; in Section 3 we introduce the corresponding equal-number-of-events (ENE) curves;
in Section 4 we present a similar analysis for theνe → ντ oscillation probability and
study the impact of “silver” wrong-sign muon events; in Section 5 we show our results
for the combination of a near (L= 732 km) OPERA-like detector and of aL= 3000 km
magnetized iron detector; in Section 6 we eventually draw our conclusions. In Appendix A
a perturbative expansion in�θ of the formulae of Section 2 is presented; in Appendix B
we report some useful formulae forτ CC-interaction and decay.

2. νe → νµ equiprobability curves in the (θ13, δ) plane

We consider theνe → νµ transition, first. This channel has been shown to be the optimal
one to measure simultaneouslyθ13 andδ at the Neutrino Factory in the context of three-
family mixing, through the appearance of “wrong-sign” muons in the detector, [40]. It
therefore deserves the nickname of “golden channel”.

Following Eq. (1) of [64] we get for the transition probability at second order in
perturbation theory inθ13,∆/∆atm,∆/A and∆L (see also [68–70]),

(1)P±
eµ(θ̄13, δ̄)=X± sin2(2θ̄13)+ Y± cos(θ̄13)sin(2θ̄13)cos

(
±δ̄− ∆atmL

2

)
+Z,

where± refers to neutrinos and antineutrinos, respectively, and

(2)



X± = sin2(θ23)

(
∆atm
B∓

)2
sin2(B∓L

2

)
,

Y± = sin(2θ12)sin(2θ23)
(∆
A

)(
∆atm
B∓

)
sin
(
AL
2

)
sin
(B∓L

2

)
,

Z = cos2(θ23)sin2(2θ12)
(∆
A

)2 sin2(AL
2

)
,

with Z = Z+ = Z−. In these formulae,A = √
2GFne (expressed in eV2/GeV) and

B∓ = |A∓∆atm| (with ∓ referring to neutrinos and antineutrinos, respectively). Finally,
∆atm=∆m2

atm/2Eν and∆ =∆m2/2Eν .
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The parameters̄θ13 and δ̄ are the physical parameters that must be reconstructed by
fitting the experimental data with the theoretical formula for oscillations in matter. In what
follows, the other parameters have been considered as fixed quantities, supposed to be
known by the time when the Neutrino Factory will be operational. In particular, in the
solar sector we fixedθ12 = 33◦and�m2 = 1.0 × 10−4 eV2 [22–25], corresponding to
the LMA region of the solar neutrino problem (accordingly to the recent SNO results
[13,14]); in the atmospheric sector,θ23 = 45◦ and�m2

atm = 2.9 × 10−3 eV2 [20] (notice
that for θ23 = 45◦ the [θ23,π/2 − θ23] ambiguity [66] is absent). Finally, we considered
a fixed value for the matter parameter,A = 1.1 × 10−4 eV2/GeV forL < 4000 km and
A= 1.5× 10−4 eV2/GeV forL> 4000 km, obtained by using the average matter density
alongside the path for the chosen distance computed with the Preliminary Earth Model
[71]. For simplicity, we have not included errors on these parameters.1

Eq. (1) leads to an equiprobability curve in the plane (θ13, δ) for neutrinos and
antineutrinos of a given energy:

(3)P±
eµ(θ̄13, δ̄)= P±

eµ(θ13, δ).

We can solve Eq. (3) forδ:

(4)cos

(
±δ− ∆atmL

2

)
=

�P±
eµ −X± sin2(2θ13)−Z
Y± cos(θ13)sin(2θ13)

.

It is useful to introduce the following functions:

(5)



f (θ13, θ̄13)= sin2(2θ̄13)−sin2(2θ13)

cosθ13sin(2θ13)
,

g(θ13, θ̄13)= cosθ̄13sin(2θ̄13)
cosθ13sin(2θ13)

,

with the obvious limitf (θ̄13, θ̄13)= 0 andg(θ̄13, θ̄13)= 1. Eq. (4) can then be written as:

(6)cos

(
±δ− ∆atmL

2

)
=R±f (θ13, θ̄13)+ cos

(
±δ̄− ∆atmL

2

)
g(θ13, θ̄13).

Eq. (6) is particularly illuminating: it describes a family of two branches curves in the plane
(θ13, δ) for the neutrinos and a second family of two branches curves for the antineutrinos.
The dependence on the neutrino energy resides in∆atm and in the ratioR± = X±/Y±,
whereas the dependence on the angle is factorized in the twoθ13-dependent functionsf
andg.

It is helpful to introduce the parameter�θ :

θ13 = θ̄13 +�θ,
constrained by the bound

(7)

∣∣∣∣cos

(
±δ− ∆atmL

2

)∣∣∣∣� 1.

1 It has been shown in [64] that the inclusion of the foreseeable uncertainties on these parameters does not
modify the results on theθ13 andδ measurements in a relevant manner.
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Fig. 1. Allowed region in�θ as a function ofθ13 for Eν = 38 GeV at three different distances:L= 732,3000
and 7332 km.

The allowed region for�θ depend on the input parameters (θ̄13, δ̄), on the neutrino energy
and on the baseline. In Fig. 1, we compute the allowed values of�θ as a function of̄θ13
(θ̄13 ∈ [0◦,13◦]) at three different baselines,L = 732,3000 and 7332 km, for̄δ = 0 and
Eν = 38 GeV, by numerically solving Eq. (7).

It may be noticed that, for (almost) every value ofθ̄13 in the considered range, two
different regions of allowed values for�θ exist. The first region corresponds to�θ � 0,
whereas the second corresponds to large negative values for�θ . In this region,θ13 is
negative: this region is therefore unphysical when the sign of the mass differences and of
the various angles are defined in an appropriate way [52]. We concentrate hereafter on the
tiny region around�θ � 0.

In Fig. 2 we present the equiprobability curves forP+
eµ (the upper row) andP−

eµ (the
lower row) in the (�θ, δ) plane, atL = 732,3000 and 7332 km for different values of
the neutrino energy in the rangeEν ∈ [5,50] GeV. The input values arēθ13 = 5◦ and
δ̄ = 60◦. In the upper row (neutrinos), it can be seen that all the equiprobability curves
intersect in�θ = 0◦, δ = 60◦ (namely,θ13 = θ̄13 and δ = δ̄). However, notice that the
equiprobability curve for a given neutrino energy intersects the curves corresponding to
a different neutrino energy in a second point, at positive�θ and negativeδ. This second
intersection depends on the energies of the two curves. In the upper branch of the neutrino
equiprobability curves, no second intersection is observed, for these particular values of the
input parameters. The results of Fig. 2 may be understood with the help of a perturbative
expansion of Eqs. (5) and (6) in terms of powers of�θ (always possible in the allowed
region, forθ̄13 large enough). Details on this expansion can be found in Appendix A.

We can draw some conclusion from what observed in Fig. 2 and from the previous
considerations on the energy dependence of the equiprobability curves. In particular, it is
to be expected that by fitting experimental data for neutrinos only it should be quite difficult
to determine the physical parameters (θ̄13, δ̄) with good accuracy. We expect, instead, that
the fitting procedure will identify a lowχ2 region whenever the family of equiprobability
curves are not well separated, within the experimental energy resolution. In particular, at
short distance (L = 732 km) it is to be expected a good determination ofθ̄13 (notice that
�θ is generally less than 2◦) and no determination whatsoever of the CP-violating phaseδ̄.
At the intermediate distance,L = 3000 km, the equiprobability curves for neutrinos (for
this particular set of input parameters) do not depend strongly on the energy in the upper



A. Donini et al. / Nuclear Physics B 646 (2002) 321–349 327

Fig. 2. Equiprobability curves in the (�θ,δ) plane, forθ̄13 = 5◦, δ̄ = 60◦, Eν ∈ [5,50] GeV andL= 732,3000
and 7332 km. The upper row represents equiprobability curves for neutrinos, the lower row for antineutrinos. The
dashed line isEν = 5 GeV, the solid line isEν = 45 GeV; the dotted lines lie in between these two.

Fig. 3. Same as in Fig. 2, but with neutrinos and antineutrinos equiprobability curves superimposed.

branch, whereas a larger separation can be seen in the lower branch. Therefore, we expect
a low χ2 region alongside the upper branch of the equiprobability curves spanning from
around the single point corresponding to the physical parameters (at�θ = 0, δ = δ̄) to the
(diluted) region where the curves show the second intersection (that by periodicity in theδ

axis happens to be in the lower branch).
Finally, at large distance (L = 7332 km) we expect a lowχ2 region in the region

�θ � 0.5◦ andδ � δ̄± 100◦ (notice that the small spread in the variableθ for this baseline
is in agreement with Fig. 1).

A great improvement in the reconstruction of the physical parameters from the
experimental data is achievable using at the same time neutrino and antineutrino data. This
can be seen in Fig. 3, where the equiprobability curves for neutrinos and antineutrinos (for
the same input parameters as in Fig. 2) have been superimposed. At short distance, the two
family of equiprobability curves overlap for any value ofδ, and no improvement is to be
expected. However, at the intermediate distance the equiprobability curves for neutrinos
and antineutrinos overlap only in the vicinity of the physical point�θ = 0, δ = δ̄ and in
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the region of the second intersection, whereas in the intermediate region they are quite
well separated, both in the upper and lower branch. We expect, in this case, that the fitting
procedure of the whole set of neutrino and antineutrino data will identify two separate low
χ2 region, around the physical point and around the region where all the curves show the
second intersection. This second allowed region in the parameter space was first observed
in [64] and subsequently confirmed in [46,50,51]. Finally, at large distance we expect no
significant improvement with respect to the previous case.

Notice that these considerations can be drawn by looking at the equiprobability curves
for neutrinos and antineutrinos, only. We will see in the following section how the
theoretical expectation is indeed reproduced in the “experimental data”.

3. Number of “wrong-sign” muons in the detector

The experimental information is not the transition probabilityP±
eµ but the number of

muons with charge opposite to that of the muons circulating in the storage ring, that in
the following will be often called “golden” muons. The events are then grouped in bins
of energy, with the size of the energy bin depending on the energy resolution�E of the
considered detector. In general,

(8)Ni
µ∓(θ̄13, δ̄)=

Ei+�E∫
Ei

dE σνµ(ν̄µ)(E)P
±
eµ(E, θ̄13, δ̄)

dΦνe(ν̄e)(E)

dE

is the number of wrong-sign muons in theith energy bin for the input pair (θ̄13, δ̄); E is the
neutrino (antineutrino) energy.2 The charged current neutrino and antineutrino interaction
rates can be computed using the approximate expressions for the neutrino–nucleon cross
sections on an isoscalar target,

σνN ∼ 0.67× 10−42 × Eν

GeV
×m2,

(9)σν̄N ∼ 0.34× 10−42 × Eν

GeV
×m2.

In the laboratory frame the neutrino fluxes, boosted along the muon momentum vector, are
given by:

d2Φνe,ν̄e

dy dΩ
= 24nµ
πL2m6

µ

�E 4
µy

2(1− β cosϕ)

(10)× {[
m2
µ − 2�E 2

µy(1− β cosϕ)
]∓Pµ

[
m2
µ − 2�E 2

µy(1− β cosϕ)
]}
.

Here,β =
√

1− (mµ/�Eµ)2, �Eµ is the parent muon energy,y =Eν/�Eµ, nµ is the number
of useful muons per year obtained from the storage ring andϕ is the angle between the

2 The neutrino energy can be reconstructed if the considered detector has a hadronic calorimeter capable to
measure the energy of the hadronic shower (Ehadr) in theνN CC interactions with good precision.
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beam axis and the direction pointing towards the detector. In what follows, the fluxes
have been integrated in the forward direction with an angular divergence (taken to be
constant)δϕ ∼ 0.1 mr. The effects of the beam divergence and the QED one-loop radiative
corrections to the neutrino fluxes have been properly taken into account in [72]. The overall
correction to the neutrino flux has been shown to be ofO(0.1%).

In the same approximations as for Eq. (1), we get for the number of events per bin:

(11)



Ni
µ− = I iX+ sin2(2θ13)+

[
I i
Y c+

cosδ+ I i
Y s+

sinδ
]
cosθ13sin(2θ13)+ I iZ,

Ni
µ+ = I iX− sin2(2θ13)+

[
I i
Y c−

cosδ− I i
Y s−

sinδ
]
cosθ13sin(2θ13)+ I iZ,

where we introduced a short-form notation for the following integrals:

(12)




I iX± = ∫ Ei+�E
Ei

dE σνµ(ν̄µ)
dΦνe(ν̄e)(E)

dE
X±(E),

I i
Y c±

= ∫ Ei+�E
Ei

dE σνµ(ν̄µ)
dΦνe(ν̄e)(E)

dE
Y±(E)cos

(
∆atmL

2

)
,

I i
Y s±

= ∫ Ei+�E
Ei

dE σνµ(ν̄µ)
dΦνe(ν̄e)(E)

dE
Y±(E)sin

(
∆atmL

2

)
,

I iZ = ∫ Ei+�E
Ei

dE σνµ(ν̄µ)
dΦνe(ν̄e)(E)

dE
Z(E).

For a fixed energy bin and fixed input parameters (θ̄13, δ̄), we can draw a continuous
curve of equal number of events in the (�θ, δ) plane,

(13)Ni
µ±(θ13, δ)=Niµ±(θ̄13, δ̄),

as it was the case for the transition probability, Eq. (3).
We therefore get an implicit equation inδ,

(14)F(δ)=G(θ13, θ̄13, δ̄),

where

(15)



F(δ)= cosδ±

(
I i
Y s±
I i
Y c±

)
sinδ,

G(θ13, θ̄13, δ̄)=
(
I iX±
I i
Y c±

)
f (θ13, θ̄13)+ F(δ̄)g(θ13, θ̄13)

and f (θ13, θ̄13) and g(θ13, θ̄13) are theθ -dependent functions introduced in Eq. (5).
Solving forδ,

(16)δ = F−1[G(θ13, θ̄13, δ̄
)]

we get equal-number-of-events curves (ENE) in the (�θ, δ) plane, see Fig. 4.
The problem arises in the reconstruction of the physical parameters from a data set

consisting of some given number of events per bin, for a given number of bins (depending
on the specific detector energy resolution). As it was the case for the equiprobability curves
in the previous section, all the ENE curves intersect in the physical point (�θ = 0, δ = δ̄)
and any given couple of curves intersect in a second point in the same region as in Fig. 2. As
it can be seen in Fig. 4, the second intersection differs when considering different couples
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Fig. 4. Equal-number-of-events (ENE) curves in the (�θ,δ) plane for neutrinos, forθ̄13 = 5◦, δ̄ = 60◦,
Eν ∈ [5,50] GeV and L = 732,3000 and 7332 km. The dashed line represents the first energy bin,
Eν ∈ [0,10] GeV, the solid line the last energy bin,Eν ∈ [40,50] GeV; the dotted lines lie in between these
two.

of curves, but lies always in a restricted area of the (�θ, δ) plane, the specific location of
this region depending on the input parameters (θ̄13, δ̄), see Eqs. (A.2) and (A.3). Theχ2

analysis of the data will therefore identify two allowed regions: the “physical” one (around
the physical value,̄θ13, δ̄) and the “clone” solution, spanning all the area where a second
intersection between any two ENE curves occurs. This is the source of the ambiguity
pointed out in [64].

In the remaining of this section, we apply the analysis in energy bins of [40,64]. Let
Nλi,p be the total number of wrong-sign muons detected when the factory is run in polarity
p = µ+,µ−, grouped in energy bins specified by the indexi, and three possible distances,
λ= 1, 2, 3 (corresponding toL= 732 km,L= 3000 km andL= 7332 km, respectively).
In order to simulate a typical experimental situation we generate a set of “data”nλi,p as
follows: for a given value of the oscillation parameters, the expected number of events,
Nλi,p , is computed; taking into account backgrounds and detection efficiencies per bin,bλi,p

andελi,p , we then perform a Gaussian (or Poissonian forNλi,p � 10 events) smearing to
mimic the statistical uncertainty:

(17)nλi,p = Smear
(
Nλi,pε

λ
i,p + bλi,p

)
.

Finally, “data” are fitted to the theoretical expectation as a function of the neutrino
parameters under study, using a Gaussianχ2 minimization:

(18)χ2
λ =

∑
p

∑
i

(
nλi,p −Nλi,p
δnλi,p

)2

,

where δnλi,p is the statistical error fornλi,p (errors on background and efficiencies are

neglected) or a Poissonianχ2 minimization:

(19)χ2
λ = −2

∑
p

∑
i

[(
nλi,p −Nλi,p

)− nλi,p log

(
nλi,p

Nλi,p

)]

whenever events are Poisson-distributed around the theoretical values (see [61] and
references therein). We verified that the fitting of theoretical numbers to the smeared
(“experimental”) ones is able to reproduce the values of the input parameters (the best
fit always lies within a restricted region aroundθ̄13, δ̄).
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Fig. 5. 68.5, 90 and 99% C.L. contours resulting from aχ2 fit of θ13 and δ, for θ̄13 = 1◦ and δ̄ = 0◦ (up)
and δ̄ = 90◦ (down). For each considered input parameters couple, the two rows represent: from left to right,
L= 732,3000 and 7332 km; the upper row isNi

µ+ , i = 1, . . . ,5; the lower row isNi
µ+ andNi

µ− , i = 1, . . . ,5.

The following “reference set-up” has been considered: neutrino beams resulting from
the decay of 2×1020µ+ ’s andµ−’s per year in a straight section of an�Eµ = 50 GeV muon
accumulator. An experiment with a realistic 40 kton detector of magnetized iron and five
years of data taking for each polarity is envisaged. Detailed estimates of the corresponding
expected backgrounds and efficiencies have been included in the analysis, following [67].
Notice that this set-up is exactly the same of [40,64].

In the first row of Figs. 5, 6, we present the results of the fit to five bins of data
for decaying muons of one single polarity,µ−. The energy binning of the detector is
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Fig. 6. 68.5, 90 and 99% C.L. contours resulting from aχ2 fit of θ13 and δ, for θ̄13 = 5◦ and δ̄ = 0◦ (up)
and δ̄ = 90◦ (down). For each considered input parameters couple, the two rows represent: from left to right,
L= 732,3000 and 7332 km; the upper row isNi

µ+ , i = 1, . . . ,5; the lower row isNi
µ+ andNi

µ− , i = 1, . . . ,5.

�Eν = 10 GeV. In all cases we observe the pattern depicted in the previous section, with
a good determination of̄θ13 and an extremely poor determination ofδ̄. In the second row
we fit to five bins of data for decaying muons of both polarities. The results follow again
the theoretical analysis of this and of the previous section and are in perfect agreement
with what presented in [64]. In particular, notice how at the intermediate distance it is
possible now to reconstructδ with an error of tens of degrees in two separate regions of the
parameter space.
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4. The νe → ντ equiprobability and ENE curves

We present in this section the possibility to use a different channel, namely theνe → ντ
oscillation probability, to improve the reconstruction of the physical parameters (θ̄13, δ̄)
in combination with the results for theνe → νµ transition described in [40,64] and in the
previous section.

The νe → ντ oscillation probability at second order in perturbation theory inθ13,
∆/∆atm, ∆/A and∆L is:

P±
eτ (θ̄13, δ̄)=Xτ± sin2(2θ̄13)

(20)− Y± cos(θ̄13)sin(2θ̄13)cos

(
±δ̄− ∆atmL

2

)
+Zτ ,

where± refers to neutrinos and antineutrinos, respectively, and

(21)



Xτ± = cos2(θ23)

(
∆atm
B∓

)2 sin2(B∓L
2

)
,

Y± = sin(2θ12)sin(2θ23)
(∆
A

)(
∆atm
B∓

)
sin
(
AL
2

)
sin
(B∓L

2

)
,

Zτ = sin2(θ23)sin2(2θ12)
(∆
A

)2
sin2(AL

2

)
,

with Zτ = Zτ+ = Zτ−. Notice thatXτ± andZτ differs from the corresponding coefficients
for theνe → νµ transition for the cosθ23 ↔ sinθ23 exchange, only. TheY± term is identical
for the two channels, but it appears with an opposite sign. This sign difference in the
Y -term is crucial, as it determines a different shape in the(�θ, δ) plane for the two sets of
equiprobability curves.

In Fig. 7, we superimposed the equiprobability curves for theνe → ντ andνe → νµ
oscillations at a fixed distance,L= 732 km, with input parameters̄θ13 = 5◦ andδ̄ = 60◦,
for different values of the energy,Eν ∈ [5,50] GeV. The effect of the different sign in
front of theY -term in Eqs. (1) and (20) can be seen in the opposite shape in the (θ13, δ)
plane of theνe → ντ curves with respect to theνe → νµ ones. Notice that all the curves

Fig. 7. Equiprobability curves in the (�θ,δ) plane, forθ̄13 = 5◦, δ̄ = 60◦, Eν ∈ [5,50] GeV andL= 732 km for
theνe → νµ andνe → ντ oscillation (neutrinos on the left, antineutrinos on the right).
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of both families met in the “physical” point,θ13 = θ̄13, δ = δ̄, and that now three would-
be “clone” regions (i.e., the spread regions where the intersections of any given couple of
equiprobability curves lie) can be seen.

As a final comment we signal that, ifθ13 is not extremely small (in such a way
that theX± and Xτ± terms dominate over theY± terms in Eqs. (1) and (20)), the
combined measurement ofνe → νµ andνe → ντ transitions could in principle solve the
[θ23,π/2− θ23] ambiguity.

To follow the line of reasoning adopted for theνe → νµ channel, we should now discuss
how theνe → ντ channel can be used in a realistic experiment. A number of modifications
with respect to the case of the “golden” channel should be taken into account.

First, the approximate expressions for the neutrino–nucleoncross section on an isoscalar
target, Eq. (9), are no longer appropriate in the case of aντ CC interaction inside the
detector. In this case we used the reported values for theντN cross-section [73] that
have been applied in the CHORUS and OPERA experiment to compute the expected
number of CCτ events. The considered cross-section includesτ mass effects in the DIS
region following [74] (see Appendix B for details), as well as the elastic and quasi-elastic
contributions to the cross section.

Second, theτ will decay in flight into a muon of the same charge and two neutrinos,
with a branching ratio BR(τ → µ) � 0.17 [19]. This “silver” wrong-sign muon is
the experimental signal we are looking for, to be identified and to be separated from
the “golden” wrong-sign muons originated fromνµ CC interactions.3 The first tool to
distinguish the two sets of wrong-sign muons is their different energy distribution (see
Appendix B for details on the differential decay rate). It has been shown in [67] that in the
magnetized iron detector considered in the previous section, muons fromτ decay cannot
be distinguished from the main background represented by muons from charmed mesons
decay by means of kinematical cuts. In order to take advantage of this channel, we should
therefore use a different kind of detector: for this reason we concentrate in the remaining of
the paper on a lead-emulsion detector, where the observation of theτ decay vertex allows
to distinguish “golden” and “silver” wrong-sign muons, and the latter from the charmed
mesons decay background. We must mention that theνe → ντ oscillations were previously
considered in [48] for a liquid argon detector, using kinematical cuts to identifyτ ’s. It
could be of interest to explore further the possibility of using “silver” muon events in such
a detector to reduce or eliminate the (θ13, δ) ambiguity.

In what follows, we consider an OPERA-like detector with a mass of 2 kton and
spectrometers capable of muon charge identification (see the OPERA proposal for details,
[75]) located atL= 732 km down the neutrino source (obviously, in the back of our mind
we are thinking of the CNGS set-up). The results for both the “golden” and the “silver”
channel at the near emulsion detector will be combined with results for the “golden”
channel obtained with the magnetized iron detector located at the optimal distance for
the measurement of leptonic CP violation,L= 3000 km.

3 We adopt the nick-name of “silver” muon events due to the lesser statistical significance with respect to
“golden” ones.
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In this paper, we will first restrict ourselves to an ideal OPERA-like detector with perfect
efficiency and no background. Afterwards, we take into account the realistic estimates
of the energy-dependent reconstruction efficiency and of the most relevant backgrounds.4

Eventually, we will consider how an increase in the detector mass or an improvement on
the signal/noise ratio affects our results.

Schematically, starting from a positive charged muon in the storage ring, “silver” muons
are obtained by the following chain:

µ+ →


e+,
ν̄µ,

νe → ντ → τ− →µ−,
whereas “golden” muons come from:

µ+ →


e+,
ν̄µ,

νe → νµ → µ−.
If we group the events in bins of the final muon energyEµ, with the size of the energy
bin �Eµ depending on the energy resolution of the considered detector, the number of
“golden” muons in theith energy bin for the input pair (θ̄13, δ̄) and for a parent muon
energy�Eµ is:

(22)

N
g

µ∓(θ̄13, δ̄)=
{
dσνµ(ν̄µ)(Eµ,Eν)

dEµ
⊗P±

eµ(Eν, θ̄13, δ̄)⊗ dΦνe(ν̄e)(Eν,
�Eµ)

dEν

}Ei+�Eµ
Ei

(remember thatP± is the oscillation probability for neutrinos and antineutrinos, respec-
tively, see Section 2), whereas the number of “silver” muons in theith energy bin is:

Ns
µ∓(θ̄13, δ̄)= BR(τ → µ)

{[
dNµ∓(Eµ,Eτ )

dEµ
⊗ dσντ (ν̄τ )(Eτ ,Eν)

dEτ

]

(23)

⊗ P±
eτ (Eν, θ̄13, δ̄)⊗ dΦνe(ν̄e)(Eν,

�Eµ)
dEν

}Ei+�Eµ
Ei

.

In both equations,⊗ stands for a convolution integral on the intermediate energy: for
example,

BR(τ → µ)

[
dNµ∓(Eµ,Eτ )

dEµ
⊗ dσντ (ν̄τ )(Eτ ,Eν)

dEτ

]

gives the number of muons in theith bin in the final muon energyEµ, for a given neutrino
energyEν (see Appendix B for details). In Fig. 8 we present a direct comparison of

4 A dedicated careful analysis of the “silver” muons reconstruction efficiency and of the background as a
function of the neutrino energy for this specific detector is currently under progress, [76]. A key issue is the
maximum affordable amount of charge discrimination, both for the emulsion and the magnetized iron detector.
Estimates can be found in [67] for the magnetized iron detector and in Fig. 86 of [75] for the emulsion detector.
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Fig. 8. Comparison of the number of “golden” muons (lightest bars) and “silver” muons (darkest bars), for a
parent muon energy�Eµ = 50 GeV and input parameters̄θ13 = 5◦ , δ̄ = 60◦ and a near detector (L = 732 km)
with a mass of 2 kton and perfect reconstruction efficiency for both channels.

“golden” and “silver” muons grouped in five energy bins with�Eµ = 10 GeV, for a parent
muon energy�Eµ = 50 GeV with input parameters̄θ13 = 5◦, δ̄ = 60◦. We consider here
a near detector (L= 732 km) with a mass of 2 kton and perfect reconstruction efficiency
for both channels. Notice that in Fig. 8 we have not included quasi-elastic and resonance
contributions to theνN cross section that could enhanceτ production at low neutrino
energy.

The total number of events for these parameters areN
g

µ− ∼ 700 andNs
µ− ∼ 30. The

strong reduction in the number of “silver” muons with respect to the “golden” muons with
the same input parameters depends on the suppression due to the BR(τ → µ) branching
ratio and to the differentνN DIS cross section for muons and taus.

Following the same procedure used to get the “golden” muons ENE curves presented in
Fig. 4 we can compute ENE curves for “silver” muons. These curves are reported in Fig. 9
in the case ofL= 732 km.

In Fig. 10 we superimpose “golden” and “silver” ENE curves forL = 732 km and
θ̄13 = 5◦, δ̄ = 60◦. Notice how, as it was expected from the equiprobability curves
analysis, the two sets of curves have opposite concavity in the (�θ, δ) plane. As for the
equiprobability curves, all lines met in the “physical” point. Therefore, a combinedχ2

analysis of the two sets of data should present a well defined global minimum around
the “physical” region, whereas the local minima situated in the three “clone” regions are
considerably raised with respect to what presented in the previous section where only the
“golden” muon signal was considered.

5. Combination of “golden” and “silver” muon events

We follow the analysis in energy bins outlined in the previous section and in [40,
64]: we produce a theoretical data set (N

g

µ±,Nsµ± ) for fixed input parameters̄θ13, δ̄ and
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Fig. 9. Equal-number-of-event-curves in the (�θ,δ) plane, forEν ∈ [5,50] GeV andL= 732 km in the case of
νe → ντ oscillation (neutrinos on the left, antineutrinos on the right), forθ̄13 = 5◦ andδ̄ = 60◦.

Fig. 10. Superposition of the equal-number-of-events curves for the transitionνe → νµ (light lines) andνe → ντ
(dark lines), forL= 732 km andθ̄13 = 5◦, δ̄ = 60◦.

then we smear it as in Eq. (17) to obtain an “experimental” data set (n
g

µ±, nsµ± ). Finally,
“experimental” data are fitted and 68.5, 90 and 99% C.L. contours in the (θ13, δ) plane are
drawn.

In Fig. 11 we present the results of this analysis comparing two different possibilities:
in the upper row we combine two realistic magnetized iron detectors atL = 732 and
L= 3000 km; in the lower row we combine an ideal OPERA-like detector atL= 732 km
and a realistic magnetized iron detector atL= 3000 km.

First, we present our results for the combination of the two iron detectors (where only
“golden” muons,Ng

µ± , can be used). We draw in each figure the contours for different input

parameters: three values forθ̄13 = 1◦, 6◦ and 11◦ and three values for the phaseδ̄ = −90◦,
0◦ and 90◦. In each figure, therefore, fits to nine input parameter pairs (θ̄13, δ̄) are shown:
this has to be compared with Figs. 5 and 6 where in each plot the results of a fit to one
single input parameter pair was presented.



338 A. Donini et al. / Nuclear Physics B 646 (2002) 321–349

On the left, only five years of data taking forµ+ circulating in the storage ring are
considered. Notice that for any given input pairθ13 is always reconstructed within a
2◦ error; on the contrary, roughly any value for the CP-violating phase is allowed. The
situation is drastically improved on the right, where five years of data taking for each muon
polarization are considered. In this case, the phaseδ is reconstructed with a precision of
tens of degrees for all values of the input parameters. Notice, however, how some “clone”
region is still present at 90% C.L. (e.g., forθ̄13 = 1◦, δ̄ = 90◦ the small region around
θ13 = 2◦, δ = 150◦; for θ̄13 = 1◦, δ̄ = 0◦ the small region aroundθ13 = 2.5◦, δ = −150◦;
see also Fig. 5). These results can be easily understood in terms of the theoretical analysis
of the equiprobability and equal-number-of-events curves for theνe → νµ channel of
Sections 2 and 3.

We present now results for the combination of a near emulsion detector (with both
“golden” and “silver” muons,Ng

µ± andNs
µ± ) and a not-so-far iron detector (with “golden”

muons, only). On the left, again only five years of data taking forµ+ circulating in the
storage ring are considered. Notice that a significant reduction in the reconstruction errors
on the phaseδ is already achieved. On the right, we simply add to the first five years of data
taking for theµ+ polarity further five years for the opposite polarity in the iron detector,
only. We have not included a further five year operational time for the emulsion detector to
take into account the mass decrease due to the brick removal in the first five year period.5

Notice, however, that a quite relevant improvement with respect to the one-polarity two-
detector types case (lower left) is achieved in theδ̄ reconstruction error. More important,
an improvement with respect to the two-polarities one-detector type (upper right) can
also be observed. In particular, the “clone” regions have completely disappeared, due to
the combination of “silver” and “golden” muons with a differentδ-dependent oscillation
probability. The effect of the inclusion of “silver” muons can be seen in Fig. 12, where we
present the two-polarities two-detector types combination (Fig. 11, lower right) compared
with the same combination but with only a “golden” muon signal. In this figure we can
clearly see that “clone” regions are still present and that the near emulsion detector is
too small to compete with a 40 kton iron detector located at the same distance down the
neutrino source.

We also studied the effect of a change in the longest baseline, moving the iron detector
from L = 3000 km toL = 2000 km, with no significant improvement. This was to be
expected, since the former distance,L= 3000 km has been found to be the optimal one to
measure the CP-violating phase for the considered set-up, [40–50].

We remind here that in [64] it was shown that the optimal combination of two
magnetized iron detectors is achieved forL = 3000 km andL = 7332 km: in that case,
no “clone” region is present (see Fig. 6 of [64]). We prefer however to compare our results
for the OPERA-like near detector and magnetized iron not-so-far detector option with the
two magnetized iron detectors combination at the same distances.

Up to this moment, we considered an ideal lead-emulsion detector with identification
efficiency equal to 1 and no backgrounds. We should consider instead a real detector with

5 This is a quite conservative assumption, being the expected number of bricks to be removed looking for
“silver” muons smaller than in the case ofνµ → ντ oscillations considered in the OPERA proposal [75].
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Fig. 11. 68.5, 90 and 99% C.L. contours resulting from aχ2 fit of θ13 and δ, for θ̄13 = 1◦, 6◦ and 11◦, and
δ̄ = −90◦, 0◦ and 90◦, for the combination of two iron detectors (upper row) or one iron detector and one
emulsion detector (lower row). Upper row: iron detector atL= 732 and 3000 km: (a)Ng

µ+ ; (b)Ng
µ+ andNg

µ− ;

Lower row: iron detector atL= 3000 km and emulsion detector atL= 732 km: (a)Ng
µ+ +Ns

µ+ ; (b)Ng
µ+ +Ns

µ+
andNg

µ− .

Fig. 12. 68.5, 90 and 99% C.L. contours resulting from aχ2 fit of θ13 and δ, for θ̄13 = 1◦, 6◦ and 11◦, and
δ̄ = −90◦, 0◦ and 90◦, for the combination of an iron detector atL = 3000 km and an emulsion detector at
L= 732 km: (left) both “silver” and “golden” muon events are taken into account (same figure as in Fig. 11, lower
right); (right) only “golden” muon events are taken into account. Five years of data taking for both polarities in
the distant detector and only five years in theµ+ polarity in the near detector have been considered.

a refined analysis of efficiencies and background for the two “wrong-sign muons” signals,
νe → νµ andνe → ντ . A detailed simulation of the expected performance at an OPERA-
like detector is under way [76]. However, a preliminary study has been done following the
outline of the OPERA proposal [75] and of the recent progress report [77].

We first consider “golden” muons. In this case, it seems reasonable to consider a
90% average efficiency in the neutrino energy rangeEν ∈ [5,50] GeV. The most relevant
background to this channel are “right-sign” muons with a wrong charge assignment: with
no improvement with respect to the present OPERA proposal, a level of 10−3 of charge
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misidentification is achieved (a level of 10−6 was envisaged for the magnetized iron
detector, see [67]). On the other side, the dominant background at the magnetized iron
detector coming from charmed mesons decay with no “right-sign” muon identification is
here under control by looking for the decay vertex.

Regarding “silver” muons, we have an unavoidable important reduction in the average
efficiency, mainly due to the detector design: theτ decay vertex cannot be observed if
it occurs inside the lead plates. An average efficiency for “silver” muons of 25% only is
achieved in the neutrino energy rangeEν ∈ [5,50] GeV [75]. In the case of “silver” muon
events, the dominant background is the standard charmed mesons decay with no “right-
sign” muon identification. Sub-dominant backgrounds coming fromπ andK mesons
decay can be kept at a reasonable level by imposing kinematical cuts as described in [75].
As an illustrative example, in Fig. 13 we present the charmed mesons decay background
and the “silver” muon signal for̄θ13 = 5◦ andδ̄ = 90◦ as a function of the neutrino energy
(for 1 GeV energy bins). Notice how the “silver” muons signal peaks at lower energy with
respect to the background, thus allowing us to use theνe → ντ oscillation to improve the
(θ13, δ) reconstruction.

Eventually, we present in Fig. 14 the results for the combination of an iron detector at
L = 3000 km and of an emulsion detector atL = 732 km with reasonable estimates for
the reconstruction efficiencies for “golden” and “silver” muons and for the corresponding
backgrounds. We can see that the results obtained with the two-detector types combination
strongly resembles those obtained with the reference two iron detectors set-up (Fig. 11,
upper right). In particular, we notice a general improvement at the 68% C.L. but we still
observe “clone” regions for small values ofθ̄13.

Although the results of Fig. 14 do not indicate a strong improvement with respect to
the reference two iron detectors set-up, two comments are in order: first, we have been
considering up to now an OPERA-like detector with the characteristics of the detector
described in [75] which is currently under construction and should be operational by year
2006. We therefore study the effects on the physics reach of foreseeable improvements
in the following. Secondly, it seems to us that the combination of two different detector
types with different characteristics and systematics could be of the utmost importance in

Fig. 13. Charmed mesons decay background and “silver” muons signal (shaded) forθ̄13 = 5◦ andδ̄ = 90◦ in the
OPERA-like emulsion detector as a function of the reconstructed neutrino energy (for 1 GeV energy bins).
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Fig. 14. 68.5, 90 and 99% C.L. contours resulting from aχ2 fit of θ13 and δ, for θ̄13 = 1◦, 6◦ and 11◦, and
δ̄ = −90◦, 0◦ and 90◦ , for the combination of an iron detector atL= 3000 km (with “golden” muon events) and
an emulsion detector atL= 732 km (with “golden” and “silver” muon events). Realistic estimates for efficiencies
and backgrounds at both the iron and the emulsion detector have been taken into account. Five years of data taking
for both polarities in the distant detector and only five years in theµ+ polarity in the near detector have been
considered.

the project of a facility for precision measurements of the leptonic mixing matrix such as
the Neutrino Factory.

In Table 1 we schematically present which are the main advantages of an increase in
the emulsion detector mass, or of a reduction of the main backgrounds, considering the
presence or absence of “clone” regions and the maximal error inδ that can be achieved.
The main background for “silver” muon eventsBsilver (originating from charmed mesons
decay) is normalized to the value that can be deduced on the basis of the OPERA proposal.
In this case we do not consider that significant improvements can be achieved and we
restrict ourselves to a 10 to 20% reduction. We believe that, on the other hand, the main
background for “golden” muon eventsBgolden (originating from charge misidentification)
could be significantly reduced: we therefore present results for a 10−3 (the predicted level
in the OPERA proposal) and for a 10−4 charge misidentification. Finally, having in mind
that in the last years the scanning power increased by about a factor 10 every two years,
we consider as realistic the assumption that, by the time the Neutrino factory will become
operational, we will be able to scan a larger number of events, say a factor two. Therefore,
we studied the physical reach of the Neutrino factory-detectors set-up as a function of the
lead-emulsion mass, considering a linear increase in the mass from 2 to 4 kton.

The outcome of this analysis is the following:

• “Clone” regions disappear increasing the emulsion mass. For a 4 kton detector no
ambiguity is present. An improvement in the charge identification (i.e., a reduction
of “golden” muons main background) implies generally a decrease in the statistical
significance of “clone” regions.

• When no “clone” regions are observed, a reduction of “golden” muons main
background induces a shift in the 99% C.L. allowed region forδ towards higher values.
In the optimal case we observe a Gaussian-distributed region with�δ = ±20◦.
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Table 1
Effects of a mass increase or of a “silver” (Bsilver) or “golden” (Bgolden) main background reduction for the
emulsion detector, for̄θ13 = 1◦ andδ̄ = 90◦. Whenever a “clone” region is present, no overall error onδ is given

Mass (kton) Bsilver Bgolden Clone regions δmin, δmax at 99% C.L.

2 1.0 10−3 At 68% C.L. –
0.9 10−3 At 68% C.L. –
0.8 10−3 At 68% C.L. –
1.0 10−4 At 68% C.L. –
0.9 10−4 At 90% C.L. –
0.8 10−4 At 90% C.L. –

3 1.0 10−3 At 99% C.L. –
0.9 10−3 At 99% C.L. –
0.8 10−3 At 99% C.L. –
1.0 10−4 No 50◦–100◦
0.9 10−4 No 50◦–110◦
0.8 10−4 No 50◦–110◦

4 1.0 10−3 No 55◦–105◦
0.9 10−3 No 55◦–105◦
0.8 10−3 No 55◦–105◦
1.0 10−4 No 60◦–110◦
0.9 10−4 No 60◦–110◦
0.8 10−4 No 70◦–110◦

• A 10 to 20% reduction of the “silver” muons main background (charmed mesons
decay) does not seem to improve significantly the previous results.

We remind that this table should be interpreted as an indication of which kind of
improvement in the emulsion detector helps more to improve the physics reach of the
envisaged two detector types combination.

6. Conclusions

It was previously shown [40] that the “golden” wrong-sign muon signal at the Neutrino
Factory can be extremely useful to measure simultaneously two of the parameters of the
PMNS leptonic mixing matrix,θ13 andδ. In [64] was first noticed that degenerate regions
in the (θ13, δ) parameter space occur in many cases, severely reducing the Neutrino Factory
sensitivity to the CP-violating phaseδ.

In the first part of the paper we describe how the (θ13, δ) ambiguity arises inνe → νµ
oscillation due to the equiprobability curves in the (θ13, δ) plane at fixed neutrino energy.
We then extend our analysis showing how the same phenomenon can be observed in a
real experiment: equal-number-of-events (ENE) curves for any given neutrino energy bin
appears and their intersections in the (θ13, δ) plane explain how and where do “clone”
regions arise. Our analysis is subsequently compared with the results of simulations with a
realistic magnetized iron detector, already studied in previous papers.
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In the second part of the paper, we propose the use ofνe → ντ oscillation to solve the
(θ13, δ) ambiguity problem. We apply the arguments presented in the case ofνe → νµ and
we show howνe → ντ actually give a complementary information that can be used to
improve the measurement of the phaseδ. However, to take full advantage of this “silver”
channel we should use a detector of a different kind to distinguish muons originated fromτ

decay from the so-called “golden” muons. In the last part of the paper we therefore perform
simulations using the combination of a realistic magnetized iron detector atL= 3000 km
and of an OPERA-like lead-emulsion detector located atL = 732 km from the Neutrino
Factory. Theτ decay vertex recognition in the emulsion detector allow us to separate
“silver” from “golden” muon events and to strongly reduce the effect of the charmed
mesons decay background.

We first use an ideal lead-emulsion detector with the mass currently envisaged by
the OPERA Collaboration (2 kton), perfect reconstruction efficiency and no background,
showing how the “clone” regions disappear for any value ofθ13 � 1◦. Eventually, we
consider a realistic estimate of the reconstruction efficiency and of the main backgrounds
both for “golden” and “silver” muon events at the emulsion detector, following the outline
of the OPERA proposal [75]. In this case, “clone” regions forθ13 � 1◦ do appear and our
results are similar to those that we obtain for a combination of two realistic magnetized iron
detectors withL= 732 andL= 3000 baselines. However, we stress here that the OPERA-
like 2 kton lead-emulsion detector is under construction and should be operational by mid
2006 to exploit the CNGS beam. We can therefore study how possible improvements of the
detector (from 2006 till the time the Neutrino factory will become operational) affect the
results of our analysis. In particular, we remind that a moderate scaling in the lead-emulsion
detector mass could indeed be seriously taken into account (due to the rapid increase in the
emulsion scanning power). The outcome of this study is that an increase in the emulsion
mass from 2 to 4 kton eliminates completely the “clone” regions forθ13 � 1◦. On the other
hand, a moderate increase in the main background rejection does not seem to improve in a
significant way the previous results.

As a final comment we believe that the two-detector types combination should be
investigated further, even in the case of results comparable to those of a two-baselines
magnetized iron detector combination, since having detectors with different characteristics
and systematics can be extremely helpful to ameliorate theδ measurement.
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Appendix A. Perturbative expansion in 
θ

If θ13 is large enough, we can expand Eqs. (5) and (6) in powers of�θ for any value of
�θ in the allowed region of Fig. 1.

At first order in�θ ,

(A.1)



f (θ13, θ̄13)� −�θf̃ (θ̄13)+O

(
�θ2

)� −4�θ cos(2θ̄13)

sin(θ̄13)
+O

(
�θ2

)
,

g(θ13, θ̄13)� 1−�θg̃(θ̄13)+O
(
�θ2

)� 1−�θ 3 cos(2θ̄13)−1
sin(2θ̄13)

+O
(
�θ2

)
,

where, forθ̄13 ∈ [0◦,13◦], f̃ andg̃ are positive functions of̄θ13.
For neutrinos we get

(A.2)δ+ = ∆atmL

2
±
{(
δ̄− ∆atmL

2

)
−�θ 4R+f̃ (θ̄13)+ cos(δ̄− ∆atmL

2 )g̃(θ̄13)

|sin(δ̄− ∆atmL
2 )|

}

and for antineutrinos we get

(A.3)

δ− = −∆atmL

2
±
{(
δ̄ + ∆atmL

2

)
−�θ 4R−f̃ (θ̄13)+ cos(δ̄+ ∆atmL

2 )g̃(θ̄13)

|sin(δ̄+ ∆atmL
2 )|

}
.

Notice that from Eq. (5), for�θ = 0, we getδ± = δ̄ or δ± = −δ̄±∆atmL. For�θ �= 0, we
get the two branches of the equiprobability curves.

If we turn on the�θ correction at first order, the results of Fig. 2 are easily understood
with the following argument: consider two different equiprobability curves for neutrinos,
for two different values of the neutrino energyE1 andE2, E2 � E1. The intersections
between the two curves are defined by

δ+(E1)= δ+(E2).

Solving for�θ we get two solutions:

(A.4)

{
�θ = 0,

�θ = L∆atm(E1)−∆atm(E2)
H(E2)−H(E1)

,

where

H(E)= 4R+(E)f̃ (θ̄13)+ cos(δ̄+ ∆atm(E)L
2 )g̃(θ̄13)

|sin(δ̄ + ∆atm(E)L
2 )| .

For �θ = 0, we getδ = δ̄. On the other hand, the second intersection gets anO(�θ)
correction:

(A.5)δ = −δ̄+L∆atm(E1)+�θH(E1).

BeingH(E) and (for the considered parameters and baselines) the second solution for�θ

both positive quantities, the second intersection between any two equiprobability curves
for neutrinos will be displaced towards negative values ofδ and positive values of�θ .
This is precisely what observed in the upper row of Fig. 2. For the considered set of
input parameters, baselines and neutrino energy range the same argument applies to the
antineutrino equiprobability curves also, as it can be seen in the lower row of Fig. 2.
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Appendix B. Formulae for τ decay and ντN cross section

Grouping events in bins of the final muon energyEµ, with the size of the energy bin
�Eµ depending on the energy resolution of the considered detector, the number of “silver”
muon events in theith energy bin for the input pair (θ̄13, δ̄) and for a parent muon energy
�Eµ is:

Ns
µ∓(θ̄13, δ̄)= BR(τ → µ)

{[
dNµ∓(Eµ,Eτ )

dEµ
⊗ dσντ (ν̄τ )(Eτ ,Eν)

dEτ

]

⊗P±
eτ (Eν, θ̄13, δ̄)⊗ dΦνe(ν̄e)(Eν,

�Eµ)
dEν

}Ei+�Eµ
Ei

,

where⊗ stands for a convolution integral on the intermediate energy.
Several comments are in order:

• The differential neutrino fluxdΦνe(ν̄e)(Eν, �Eµ)/dEν has been given in Eq. (10).
• Theνe → ντ oscillation probability has been given in Eq. (20).
• The ντN cross section. The (anti)neutrino–nucleon differential cross sections on an

isoscalar target, defined as the average of the differential cross sections on proton and
neutron, can be divided in three components: the elastic, the quasi-elastic and the DIS
cross section. We refer to [78] for a detailed discussion on the different contributions
to these components. The DIS cross-section can be expressed in terms of the isoscalar
structure functionsFi(x) (i = 1, . . . ,5):

d2σν(ν̄)

dx dy
= G2

FMEν

π

{
y

(
xy + m2

l

2MEν

)
F1(x)+

(
1− y − Mxy

2Eν
− m2

l

4E2
ν

)
F2(x)

±
[
xy

(
1− y

2

)
− y m2

l

4MEν

]
F3(x)+

(
xy

m2
l

2MEν
+ m4

l

4M2E2
ν

)
F4(x)

(B.1)− m2
l

2MEν
F5(x)

}
,

whereM is the nucleon mass andml the charged lepton mass;x = Q2/2MEνy is
the DIS Bjorken variable andy = 1 − El/Eν depends on the fraction of neutrino
energy carried away by the charged lepton. Notice that thex, y variables defined in
this appendix should be interpreted aslocal variables: outside the appendix the same
letters may represent different objects (we are simply following the standard notation
for the DIS cross section).
Making use of the Callan–Gross relation, 2xF1(x) = F2(x), and of the Albright–
Jarlskog relations [74],F4(x) = 0, xF5(x) = F2(x), Eq. (B.1) depends on two
independent structure functions, only. Using the quark parton model (see [79] and
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references therein, for example) the isoscalar structure functionsF2(x) andxF3(x)

are:

(B.2)




Fν2 (x)= x
[
(u+ d + 2s)+ (ū+ d̄ + 2c̄ )

]
,

F ν̄2 (x)= x
[
(u+ d + 2c)+ (ū+ d̄ + 2s̄ )

]
,

xF ν3 (x)= x
[
(u+ d + 2s)− (ū+ d̄ + 2c̄ )

]
,

xF ν̄3 (x)= x
[
(u+ d + 2c)− (ū+ d̄ + 2s̄ )

]
.

Eventually, the structure functions, given in terms of the parton distribution at a definite
value ofQ2 [80], must be evolved according to the DGLAP equations to compute the
ντN cross section for a given neutrino energy.
In Fig. 15 we show the dependence of thedσ/dy on y for a fixed value ofEν (in
this case,Eµ = �Eµ). Notice the strong suppression of the antineutrino cross section
with respect to the neutrino one for high and intermediateτ energy (y → 0). The
integration limits for the(x, y) variables are reported in Fig. 16 for different neutrino
energies [81].

• The τ decay rate. The muon distribution is given, in theτ rest frame, by the following
expression:

(B.3)
d2Nµ±

dx ′ d cosθ
= 1

2

[
f0(x

′,R)∓Pτ f1(x
′,R)cosθ

]
,

whereR = mµ/mτ , Pτ is the averageτ polarization along theτ direction in the
laboratory frame,x ′ = 2Eν/mτ (not to be confused with the Bjorkenx variable
defined for the cross section) andθ is the angle between the muon momentum vector
and theτ spin direction. The twof -functions are:

(B.4)f0(x
′,R)= 2

√
x ′2 − 4R2

[−4R2 + 3
(
1+R2)x ′ − 2x ′2],

(B.5)f1(x
′,R)= 2

(
x ′2 − 4R2)[1+ 3R2 − 2x ′]

and they reduce to the standardf0(x
′) andf1(x

′) functions for theνµ ande flux in the
R→ 0 limit [82]. The boost in the laboratory frame is given by the following relations:

Fig. 15. Neutrino and antineutrino—nucleon differential cross section as a function ofy for Eν = �Eµ.
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Fig. 16. Kinematical bounds in thex,y plane for different neutrino energies [81].

y ′ = x ′

2
+ β

2

[
x ′2 − 4R2]1/2 cosθ,

(B.6)cosθ ′ = βx ′ + (
x ′2 − 4R2

)1/2
cosθ

[(x ′ + β(x ′2 − 4R2)1/2 cosθ)− 4(1− β2)R2]1/2 ,

wherey ′ =Eµ/Eτ andθ ′ is the angle boosted in the lab frame.
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