The JCOP Framework
– A Practical Overview –

Sascha Schmeling
IT/CO • JCOP FW Team
Overview

- The JCOP Framework in a Nutshell
 - Aims
 - Architecture
 - Ingredients
 - Devices and Tools
 - Developments

- A Practical Example
Aims of the JCOP Framework

- Reduce the development effort
 - Reuse of components
 - Hide complexity
 - Facilitate the integration
 - Help in the learning process

- Reduce resources for maintenance
 - Homogeneous control system
 - Operation
 - Maintenance

- Provide a higher layer of abstraction
 - reduce knowledge of tools
 - interface for non experts

- Customize & Extend industrial components

- Modular/Extensible
 - core
 - mix & match components

- As simple as possible

- Development driven by the JCOP FW Working Group
System Architecture

- **JCOP FW (Supervisory)**
- **SCADA (PVSS)**
- **Supervisory Application**
- **FSM, DB, Web, etc.**
- **PC (Windows, Linux)**
- **FE Application**
- **Device Driver**
- **Commercial Devices**
- **UNICOS FW**
- **PLC**
- **Front-end**
- **Communication**
- **Supervision**

- **OPC, PVSS Comms, DIM, DIP ...**
- **Other Systems**
JCOP FW Ingredients

User Framework

PVSS

Commercial Supervisory Application

Event Manager

Data Manager

Controls Hierarchy

Device Editor Navigator

 OPC client

 OPC server

 FW Custom FE

 C/C++ code

 External System

 User specific FE

 Equipment

 GEH

 EAH

 OPC client

 OPC server

 Devices

 February 26th, 2003

 Sascha Schmeling, IT/CO • The JCOP FW Team
Devices

- **Generic Analog-Digital devices**
 - Analog Input/Output
 - Digital Input/Output
 - Process Monitor
- **CAEN power supplies**
 - Crates SY127, SY403, SY527, SY1527
 - Plans to include SY2527
- **Wiener power supplies**
 - OPC server being developed by the company
 - CAN interface. One board currently supported (NI)
- **Wiener Fan Tray**
- **ELMB**

- **ISEG power supplies**
 - OPC server being developed by the company
 - CAN interface. One board currently supported (Peak)
- **PS and SPS machine data server**
 - Common server provided for all experiments
 - SPS needs customization for each beamline
- **Logical Node/View**
 - Composite device
 - A means to build hierarchies of devices
Tools

- **Device Editor/Navigator**
 - Main interface to the Framework
 - System management: installation, login, etc
 - Configuration and operation of devices

- **Controls Hierarchy**
 - High level view of experiment
 - Includes FSMs

- **External Alarm Handler**
 - Receive alarms in PVSS from an external system

- **Trending**
 - Simplify & extend PVSS trends (templates, tree, etc)

- **Device Support Extension**
 - Template to incorporate new devices

- **Generic External Handler**
 - To incorporate C++ code to panels and ctrl manager
 - Easier to use than standard PVSS C++

- **Mass Configuration**
 - Initial release including creation and deletion

- **Component Installation**

- **Tree Browser**
 - Tree widget for Windows and Linux
Other Ingredients

- Guidelines to produce a coherent control system
 - Look and feel
 - e.g. colors, fonts, layout
 - Alarm classes
 - Naming convention
 - Exception handling
 - File organization
 - and so on

- Libraries
 - Setting of address, alerts, archiving, etc
 - List manipulation
 - Exception handling

- Examples
 - Panels
 - Buttons
 - Scripts

- Tutorial
 - Use of several FW tools
 - Connection to real hardware/simulator
 - Can be run in the SCADA lab or in your own lab
 - Available as a one day course from the Training Service
Current Version

- Version 1.2.1
 - Released in January 2003
 - Runs on Linux and Windows
 - PVSS 2.12

- Internal intermediate releases
 - To meet user specific needs
 - Small improvements/bug fixes
Current Developments

- **General**
 - Simplification of the addition of devices
 - Rewrite some of documentation

- **Mass Configuration**
 - Working on UC modify devices (alerts, archiving, etc)

- **Configuration**
 - Requirements defined within FW WG
 - 1st version of prototype foreseen for April-03, including:
 - ELMB, CAEN, Wiener LV, Siemens PLCs
 - Finished evaluation of XML, trying ODBC

- **Data Storage and Retrieval**
 - Requirements defined
 - Writing use cases
 - 1st version of prototype for Conditions DB by April-03

- **Access Control**
 - First implementation from UNICOS, based on SASG discussions
 - Integration in JCOP Framework in progress

- **Tests in a distributed environment**
 - Plain PVSS
 - PVSS + Framework

- **Trending**
 - Histograming
 - Prototype of integration with ROOT

February 26th, 2003
Sascha Schmeling, IT/CO • The JCOP FW Team
CosmoALEPH’

An example for a DCS based on PVSS and the JCOP Framework
A “Small” Experiment

Distances:

- Gallery - Trolley: 18 m
- Trolley - HCAL: 36 m
- Bypass A - Bypass C: 95 m
- Cavern - Bypass A/B: ~260 m
- Cavern - Alcove: ~925 m

Layout of CosmoAleph
The Hardware
Control System Architecture

- DCS
 - Station 1
 - Tracking
 - Trigger
 - Infrastr.
 - HV
 - Cool.,…
 - Gas
 - Station 2
 - Tracking
 - Trigger
 - Infrastr.
 - HV
 - Cool.,…
 - Gas
 - Station 3
 - Tracking
 - Trigger
 - Infrastr.
 - HV
 - Cool.,…
 - Gas

February 26th, 2003
Sascha Schmeling, IT/CO • The JCOP FW Team