Short manual of the multiking_addACS procedure
Version 1.2

Maurizio Paolillo

November 18, 2010

Abstract

This document describes the use of the IDL MultiKing proce-
dures to generate and add simulated PSF or Globular Clusters to
HST ACS observations, simulating the effect of dithering on the
final drizzled and stacked image. The script can be easily modified
to add any type of object.

NEW:

- Version 1.2-

a. bug fixed: the code was not checking the drizzling kernel used by
the reference image, and was thus using whatever kernel the user had
defined in its drizzle preference file. The fix allows the code to drizzle
with the same kernel used in the reference image.

b. The documentation was updated to reflect the fact that files in use
by TinyTim are not required anymore, since TinyTim is implemented
in the code but not actually used (see below for further details) and
also discouraged for it’s limitations.

c. the code now is able to generate PSFs of with the total magnitude
requested by the user, as was alrady possible for GCs (In previous ver-
sions PSFs were always normalized to 1).Tthe use of the package to

generate PSFs, based on the Anderson templates, is better described.

- Version 1.1- fixed a bug which did not allow the code to properly handle

simulated sources overlapping edges. This happens when reading from
an input list, since randomly created sources avoid the field edges by
design.
The code now also allows to include Poissonian errors in the mask
files due to simulated sources, for final drizzling. This is intended
to be used with the ERR weighting option of Multidrizzle [1], which
computes correct error maps including all error sources.

1 Introduction

This task is based on the IDL procedure multiking_addACS.pro, aimed at
generating and add simulated PSF or Globular Clusters to HST ACS .flt
images. The final images can be combined with the Multidrizzle package
[1] as regular ACS images.

The combination of several .flt files in one final drizzled image can be
automatized through the shell multiking wrapper.csh which allows to sim-
ulate a list of objects in given positions using multiking_ addACS.pro, add
them to a set of dithered observations and combine (drizzle) the individual
observations into the final image. Examples for both cases are provided
below.

We strongly encourage users to check the Limitations of the script
in §3 using trying the code, and contact the developer if specific
help is needed.

Required files:

e multiking wrapper.csh: wrapper script to simulate a list of objects
in several dithered observations and combine them in a final drizzled
image. Uses multiking_addACS.pro.

e multiking_addACS.pro: IDL procedure which creates multiple GCs
and adds them to a blank or real HST ACS .flt image

e kingmod_addacs.pro: IDL procedure which creates the individual noisy
and PSF-convolved GC images to be passed to multiking addACS.pro

e get_dithered_coords.csh: c-shell to invoke the pyraf tran task to convert
between distorted (flt) and undistorted (dth) coordinate grid

e original *_flt.fits ACS files

e final dithered image for astrometric reference

3

e *_idc.fits and *_dxy.fits distorsion files from the archive, *coeff?.dat files
produced during the drizzling phase to be used by the pyraf tran rou-
tine

e *final_mask?.fits files produced during the drizzling phase if adding to
original image, to allow to apply the same masking

e OPTIONAL: makeHSTpsf.csh: c-shell to create HST PSF with Tiny-
Tim with the appropriate spectrum and detector position, if you decide
to edit the source code to bring back TinyTim as PSF generator

e OPTIONAL: elliptical spec.dat: spectral template for TinyTim in ASCII
format (see TinyTim help for more information), if you decide to edit
the source code to bring back TinyTim as PSF generator

Required software:
e IDL: (I tested using version 6.0 on a Linux system)

e Pyraf and the Dither package: including the tran routine within the
Dither package to convert .flt pixel coordinates to world coordinates,
and the drizzle task to stack the dithered observations.

e OPTIONAL: TinyTim HST PSF simulator (I tested using version 6.1)
can be used if you don’t want to use the Anderson PSF libraries [2].
However this requires to manually uncomment part of the IDL proce-
dure and is discouraged since it is not optimized for charge diffusion
effects and subpixel sampling.

Output:
1. simulated HST ACS image, named according to the IDL input
2. simulated GC parameter list, named according to the IDL input
3. log file of the makeHSTpsf.csh and TinyTim output: makeHSTpsf.log

4

4. OPTIONAL: if the option to add Poisson noise to mask files is cho-
sen, the modified mask files *_flt?_mask1.fits and *_flt?_mask2.fits are
produced for each input flt file.

5. OPTIONAL: simulated PSF at each GC position are produced as files:
king_*_*_*_psfconv.fits, but deleted on successful completion of the pro-
cedure. To preserve temporary PSF-convolved GC fits images com-
ment this line in multiking addACS.pro:
spawn, ’set chck = ‘ls | grep psfconv.fits® ; if ($#chck
0) rm -f king * psfconv.fits’

6. OPTIONAL: temporary TinyTim file: tmp.par (see discussion on Tiny-
tim above)

2 Usage

2.1 Simulating and drizzling with multiking_wrapper.csh

To generate a simulated drizzled ACS image starting from a list of object
positions and a set of ACS observations (including the final dithered file)
run the multiking wrapper.csh script followed by the input parameters and
files:

Input parameters explanation:
1) File containing list of .flt files on which you want to add simulations

2) Reference drizzled image for astrometry (usually obtained with .flt files
as in #1)

3) Rootname of output drizzled image with simulated objects (simulated
flt files will be named accordingly)

4) Simulated .flt should be created as orig.flt+simul [a] or just blank-+simul
[n]?

5) Add Poisson noise of simulated sources to original weight maps to
produce correct error maps in final drizzling [y/n|? (to be used for
ERR weighting in multidrizzling)

6) Create GC [gc] or stellar [psf] objects?

7) Generate random sample within assigned range [p] or read obj.params
from file [r]

8) Output filename with simulated objects parameters

9) If (7)=p: number of objects to simulate;
If (7)=r: File with parameters of objects to simulate. Note that in-
put parameter file requires specific format as included template ander-

son_coords_wcs_center.lst, i.e. identical to the output file with simulated
objects parameters of #8 (see 2.3 for more details)

10-15) If (7)=p: range [min max]| of core radius (pixels), conc.index and mag
of objects to simulate

Examples:

1. Generate a blank drizzled image with a grid of PSF's at specific coor-
dinates. This example allows to create a PSF library using Anderson
closest templates [2] and further accounting for your specific dithering
pattern. Note that the code just uses the nearest Andersen template
instead of interpolating first!:
> source multiking_wrapper.csh fit.Ist N1399_center_drz_sci.fits N1399_psf_center
n n psf r psfsimlist.Ist anderson_coords_wcs_center.Ist | tee multik-
ing_wrapper.log

2. Add 10 randomly simulated GCs to an actual ACS dithered image,
further including Poisson errors of simulated sources in weight maps:
> source multiking_wrapper.csh fit.Ist N1399_center_drz_sci.fits N1399_GC_center
ay gcp GC_simlist.Ist 10 0.01 5.0 0.1 20 21 27 | tee multiking_wrapper.log

3. Add 10 simulated GCs to an actual ACS dithered image, reading the
positions and parameters from an input file (following the input format
described above), further including Poisson errors of simulated sources
in weight maps:

1A refined approach requires the user to generate the Anderson grid at the original
Anderson positions, and then interpolate them; this can be done by transforming the
Anderson pixel coordinates (see provided library files) to RA, Dec coordinate of your
image through the IRAF tran task, and then using these as a list of input coordinates to
the multiking procedure.

> source multiking_wrapper.csh fit.Ist N1399_center_drz_sci.fits N1399_GC_center
ay gcr GC_simlist_center.Ist GC_input_list.Ist — tee multiking wrapper.log

2.2 Simulating individual images with multiking addACS.pro

To produce a single ACS image with simulated GC using multiking addACS.pro:

> idl
IDL> .run multiking_addACS.pro

then provide the required parameters. Standard templates are provided
in the following examples.

Examples:

1. Simulate 4 GCs and produce a blank image with simulated objects,
without modifying weight masks:

IDL> .run multiking_add ACS.pro

Reference ACS fit image? j8zq07alq _flt.fits

Final dithered reference ACS image (_drz_scifile)? N1399_sw_drz_sci.fits
Output simulated ACS image with GC? ACS_GC fits

Add simulation to original image or create new image? [a/n] n
Perform simulations or read GC parameters from file? [p/r] p
Output file with GC parameters for reference image? simulated_GC.Ist
Number of GC to simulate (> 1)? 4

Core radius range in pixels [min max]? 0.05 0.2
Concentration index range [min max]? 10 100
Total V magnitude range [min max]? 20 22

Modify original weight masks to include sim.source Poisson noise (as-
sumes ERR weighting in multidrizzling) [y/n]? n

2. Read 4 GCs positions and add simulated objects to original ACS im-
age, including Poisson errors of simulated sources in weight masks:

IDL> .run multiking addACS.pro

Reference ACS fit image? j8zq07zvq_flt.fits

Final dithered reference ACS image (-drz_sci file)? N1399_sw_drz_sci.fits
Output simulated ACS image with GC? ACSplusGC fits

Add simulation to original image or create new image? [a/n] a
Perform simulations or read GC parameters from file? [p/r] r
Input file with simulated GC parameters? simulated _GC.Ist
Output file with GC parameters for reference image? simu-

lated GC2.1st
Modify original weight masks to include sim.source Poisson noise (as-
sumes ERR weighting in multidrizzling) [y/n]? y

2.3 Source parameters file

To simulate a custom set of sources (either GCs or PSFs) the user must
provide positions and parameters of such sources. The procedure uses a
fixed-format template, that follows the structure of the included file ander-
son_coords_wcs_center.Ist which can be modified for this purpose. Such file
has 10 lines of header and 12 columns of parameters. Not all parameters
have to be updated by the user, since the code will update some of them
in the running stage, but all columns must be present with the correct
format.

The parameters are:

N : Source number, only used for tracking purposes

R A,Dec : Source position relative to the astrometric solution used in the

9

final drizzled image. User is required to provide this to simulate at
specific positions.

X,Y : Pixel position of source centroid. These values change for each .flt
file, and are thus computed by the procedure based on the final driz-
zled image; the user is not required to provide them, but 2 columns
of floating point data must be present here to satisfy the reading for-
mat (in the template anderson_coords_wcs_center.Ist file for instance, for
simplicity the Ra, Dec columns are repeated here).

r_0, Conc.index, Tot.mag. : structural parameters of the GCs to sim-
ulate, identical to those of points 10-15) above.

X,Y cent.in pixel : subpixel centroid position. These values change for
each .flt file, and are thus computed by the procedure based on the
final drizzled image; the user is not required to provide them, but
2 columns of floating point data must be present here to satisfy the
reading format (in the template anderson_coords wcs_center.lst file for
instance, for simplicity a fixed value of 50. is used here).

WPEFC chip : WFC chip on which the source will fall. This is used by the
script get_dithered_coord.csh to run the IRAF tran task on the correct
chip. Note that the script assumes that each source falls always on the
same chip in all .flt file (see 3 for more details). The user is required
to provide this parameter.

PSF file : Anderson PSF library file for each position. Since the script
uses the closest PSF in the Anderson library in terms of *.flt pixel
positions, this file depends on the X, Y values described above. A
string must be present here, but again the user does not have to
provide this since the script will do it later (in the template ander-
son_coords_wcs_center.lst file for instance, for simplicity a fixed string
“aaa” is used here).

10

3 Limitations and warnings (please read!)

- The multiking wrapper script has been designed to automatize the
whole simulation and dithering process for images with small dither-
ings, where the simulated sources fall always on the same WFC chip.
Otherwise the tran task may not reproduce the correct coordinates,
yielding incorrect results. As a workaround for such cases, the user
may run the IDL multiking_ addACS procedure on each image sepa-
rately with different position list files, accounting for the correct chip,
and then drizzle manually the images together as done in the final part
of the multiking wrapper script.

- The procedure assumes that there are sources on both ACS chips, so
when providing a list of sources include at least a source for each of
them.

- Photometric filter is read from input image but counts/flux conversion
is hardcoded in the procedure (assuming F606W band) and must be
changed manually in kingmod_addacs.pro if filter changes. Also An-
derson library currently included in the package is for F606. Need to
change this as well if you want to use a different band.

- The scripts have been developed for specific purposes and thus the
paths and several parameters are not generalized but still hardcoded
into the software.

- The accuracy of the code depends on the accuracy of the Anderson
PSF library [2] (or of TinyTim if you edited the source code to use
it) in simulating the actual ACS PSF, depending on which is used to
generate the simulated PSF. Current version uses Anderson library
2], but the code includes a section to use TinyTim (must be edited
manually)

- initial XY pos within pixel is hardcoded in the procedure to be at

11

the center of a pixel when performing simulations, but derived from
Ra,Dec if reading positions from file.

- Due to ACS conventions detl is upper one, det2 is lower one, but the
fits extensions in the final image follow the opposite rule.

References

[1] Koekemoer, A. M., Fruchter, A. S., Hook, R., Hack, W. 2002 HST
Calibration Workshop, 337

[2] Anderson, J., & King, I. R. 2006, Instrument Science Report ACS 2006-
01, 34 pages, 1

12

