

Young Stellar Populations in the Galaxy, X-rays, & WFXT S. Sciortino INAF - Osservatorio Astronomico di Palermo Giuseppe S. Vaiana Special thanks to G. Micela, E. Feigelson, E. Flaccomio, and F. Damiani for discussions and various material

Young stellar populations, X-rays & WFXT

Items of interest

- The nearby young (< 10⁹ yr) stellar population & the recent star formation history in the Galaxy
- The nature of Gould Belt (Disk ?)
- Formation and evolution of Young Stellar Clusters (YSC) & their IMFs

Remarks: Multiwavelenght approach is generally needed. Spitzer, Kepler, Herschel & expecially Gaia ... are/will be crucial parts of the game

Example of another possible program:

- X-ray Cycles of late-type stars
- and serendipitous discoveries expected: BDs ..

A key propertie of stellar coronae

- X-ray luminosity decays by 1000-10000 from the PMS to the solar age, mainly during the main sequence.
- Explanation related to the complex rotation history

Different symbols refer to different masses

The nearby young stellar population

- X-ray surveys are essential to constrain
 - i) the spatial distribution of young (< 10⁹ yr) stellar population (i.e. its density and scale height)
 - ii) the star formation rate in the last billion year
 - Indeed at this ages optical surveys are "blind"
- Early results based on the EMMS -> Excess of yellow stars, either young or active binaries

The nearby young stellar population

- Why X-ray surveys? -> Lx decreases by 3-4 orders of magnitude during the main sequence lifetime
- We can observe young stars at much larger distances than old stars => <u>Young stars</u> dominate <u>shallow</u> stellar X-ray selected sample while <u>old stars</u> dominate <u>deep</u> <u>high latitude</u> stellar X-ray selected samples.
- Comparisons with stellar galactic models allow us to derive the spatial distributions of stellar populations
- Active binaries, with high Lx, are selected as well so companion optical data are required to disentangle the case

XCOUNT: A stellar X-ray Galactic model

Favata, Micela, Sciortino & Vaiana 1992 Micela, Sciortino & Favata 1993 Sciortino, Favata & Micela 1995

- Average Stellar spatial distribution
- Average Spatial model of interstellar gas
- X-ray luminosity functions from selected well studied open clusters and stellar samples

Constraints on Stellar Birthrate (Micela, Sciortino & Favata, 1993)

The pointed Rosat Galactic Plane Survey (Morley, Briggs, Pye, Favata, Micela & Sciortino 2001)

The density of active stars in the Galactic Plane is larger than assumed in XCOUNT

The star formation rate is increased in the last billion year

OR

Scale heights are smaller tha assumed in XCOUNT (as in Besancon model)

Young stellar populations, X-rays & WFXT

ROSAT NEP: 9 x 9 sq. deg, 445 sources, 152 stars, Fx ~ 10⁻¹⁴ erg/s/cm²

 A-F and dM predicted stars agree well with the observations. A significant • excess of yellow stars is present, as in the EMSS

Young stellar populations, X-rays & WFXT

The Chandra and XMM/Newton contribution: Higher Sensitivity

- We reach and go beyond the scale heights of the youngest stars
- All young and intermediate age stars detected
 Hence --->
- Stellar content of high-latitude deep X-ray surveys is dominated by old low mass stars

- Total Stellar Population with V < 22.5 (Thin solid)
- X-ray Selected Stellar population (Thick solid)
- "Standard" XCOUNT model prediction (Thin dashed)
- XCOUNT model prediction with rapid (Lx ~ age⁻²) decay above 1 Gyr (Thick dashed)
 Years stallage and the second state of the second state o

Young stellar populations, X-rays & WFXT

Young stellar population from RASS (Guillout et al. 1998)

and Tycho stars --> Putative structure of young stars in the solar neighborhood likely coincident with the Gould Belt

Questions: Real Physical Structure ? Belt or Disk? Nearby SF process(es) and triggering?

X-ray survey (selection) & GAIA (dist, vel)

Will jontly sort out the questions

Young stellar populations, X-rays & WFXT

Gould Belt/Disk and (RASS) X-ray horizons

Going ~10 times deeper we have an horizon of ~ 1 kpc → Entire Gould Belt/Disk explored

Young stellar populations, X-rays & WFXT

Issues on the Formation and Evolution of YSCs embedded in GMCs ? (cf. Feigelson et al. 2009, Decadal White Paper)

- Do clusters form rapidly during a single collapse event or slowly over many crossing times ?
- Why are massive stars rare ? Do they form via accretion disks or stellar mergers ?
- How does the feedback from OB stars both halt and promote further star formation?
- Is the stellar IMF truly universal over a wide range of cloud conditions, and what produces its distinctive shape ?
- When and why does primordial mass segregation (if any) occur ?
- What effect do shocked OB winds have on the physics of the HII region and the confining GMC ?
- What fraction of stars in the Galaxy form from triggered processes?
- What determines whether a YSC survives the dispersal of its parental molecular gas and becomes a bound open or globular cluster?
- How does the cluster environment influence the evolution of protoplanetary disks and subsequent formation of planetary systems?

Young stellar populations, X-rays & WFXT

How to tackle these questions ?

- Pancromatic studies required: Optical, Infrared (from ground and space), millimiter (ALMA), <u>as</u> <u>well as X-rays</u> observations are needed.
- IRAC Spitzer data are having an impressive impact in the field, but, just as an example, IMF can hardly be derived from Spitzer data alone (missing a [large ?] fraction of WTTs)

Star Forming Regions: where we are currently

X-rays has discovered very young stars without or with weak disks and accretion (WTTS, e.g. Walter et al. 1988, then Rosat All Sky Survey)

X-rays are the best way to identify the WTTS

=> crucial tool for IMF study in the Galaxy

Chandra and XMM studies of several tens of SFRs:

- mostly down to ~ 1 Msun due to limiting sensitivity
- Initial Mass Function
- Disk frequency and evolution => angular momentum evolution and formation of planetary systems
- Clues to Star-Disk "magnetic" interactions

NGC6530 and M8, Chandra ACIS mosaic (~20'x30'), ~1500 X-ray sources (central/eastern part studied by Damiani et al. 2004); a complex structure. ~ 200 ks of Chandra Time

Too far, too crowded for WFXT ? Probably not if Ang. Res is ~ 5"

Young stellar populations, X-rays & WFXT

An XMM-Newton Survey of the nearby (140 pc) Taurus SFR

Only a limited coverage has been possible given the extent of XMM fov and realistic time allocation

Young stellar populations, X-rays & WFXT

Taurus-Auriga

NGC 2362

 λ and σ Ori clusters

from optical

alone (Sung et al. 1998):

NGC 2264

NGC 6530

Young stellar populations, X-rays & WFXT

Disk frequency vs. age and environment

Possibly, low disk frequency (in *Cyg OB2* and *NGC6231*) caused by fast disk evolution under the effect of the radiation field of OB stars (*photoevaporation*). Disk frequency deduced by IR observations

Another clue to the same effect in *NGC6611*: Disks are less frequent where OB stars summed UV flux is larger! (Guarcello et al. 2007)

→ age is not the only relevant parameter for disk evolution.

CYCLE FOUND in HD 81809 - A Sun-like star

Large squares: Lx measured with XMM since 2001. Small dots: Ca II data available until 2007. Apparent difference in behavior between the coronal and chromospheric cycles near the 2002 maximum..

Young stellar populations, X-rays & WFXT

Summary

- WFXT surveys will allow deriving the properties of <10^9 yr old population in the Galaxy. A follow-up program is needed.
- The joint use of shallow, medium and deep WFXT surveys will allow determining densities and scale heights of young, intermediate and old stellar populations & of the (history of) star formation rate in the last billion year.
- A properly planned survey at low-galactic latitude will allow investigating the nature and origin of the Gould Belt/Disk and of its low-mass stellar population.
- WFXT can step forward our knowledge of various aspect of star forming process and of the physics at work in Young Stellar Clusters (& associated proto-planetary systems) formation and early evolution.
- Key laboratories are the nearby SFRs dispersed on a large areas of sky.
- Some time to be devoted to surveying properly selected regions of and/or around the Galactic Plane. Medium/Deep pointings are required.