X-ray emission from early type galaxies

Silvia Pellegrini, Dipartimento di Astronomia, UniBO

- Current status at z=0, and first/few results at z>~0
- A few science goals for WFXT

working definition for NORMAL early type galaxies (ETG):

X-ray emission not dominated by AGN $L_x \le 10^{42} \text{ erg/s}$

detailed studies with Einstein/ROSAT/XMM/Chandra: ~200 ETG more or less well known, at d<100 Mpc

L_X powered by: stellar sources (LMXBs) low luminosity AGN hot gaseous halo (kT<~1 keV)

Stellar sources

Major advances from Chandra

Deep pointings (few 10² ksec) for few nearby ETG with **low hot gas contents**

LMXBs resolved down to $\sim 5 \ 10^{36} \text{ erg s}^{-1}$

 L_x (10³⁸ erg s⁻¹)

LMXB's synthesis models

evolution of primordial field LMXB population with *StarTrack* code (Belczynski+ 07) and predictions for XLF (Fragos+ 08, 09)

main contributors to XLF: NS accretors with RG donors

GOAL: calibrate collective $L_X(LMXBs)$ on galaxy stellar mass, age, GC S_N , ...

Low luminosity nuclei

weak central sources down to ~10³⁸ erg s⁻¹ (Virgo or closer)

Loewenstein+ 01

2-10 keV

nuclei at d<60 Mpc L_{X,nuc} << 0.1 M_{in} c² V Iow radiative efficiency intermittent accretion dispersion?

Pellegrini 2005, and in preparation

Mostly XLF and logN-logS

NB: normal galaxies divided from AGN via X-ray/optical flux ratios, optical spectroscopic identification, hardness ratio, and X- ray luminosity.

Previous surveys with results at z>0 for ETGs:

ETGs & ref.

Chandra:

XMM:

NHS (70 fields, 11 deg², z<0.2) 27^* Georgantopoulos+ 05 1XMM catalog (6 deg², f(0.5-2 keV)>10⁻¹⁵erg/cm²/s, z<0.2) 34^{**} Georgakakis+ 06 [`2XMM` catalog cross-correlated with SDSS DR6 (Watson M.)]

^{*} including 22 from NHS and CDFs includ

The deepest 0.1<z<1.0

z<~1 probes lookback times of <~7.7 Gyrs

Galaxies rival AGN as the most numerous point source population at $f_{\chi}(0.5-2 \text{ keV}) < 10^{-17} \text{ cgs}$

 1. CDF-N : 36 X-ray selected galaxies, f_X/f₀<0.01 (Hornschemeier+ 03), median z~0.3, 0.1<z<0.845 179 arcmin² area, exposure>1500 ks, F(0.5-2 keV)>2.3 10⁻¹⁷ erg/cm²/s mainly spiral/irregular morphology

The intermediate z

ChaMP : wide area ~30 deg², 392 archival fields (through AO6), SDSS coverage 36 (will be ~110) normal galaxies at 0.01<z<0.3

 f_{χ}/f_{O} <0.01 most efficient to distinguish AGN and ETG when $0.01 < f_{\chi}/f_{O}$ <0.1 spectral hardness and optical line ratio also needed

4(

L_x (0

-1 for hot gas with kT < 1 keV

Luminosity evolution:

and

 $L_{\rm x40,hard}^{\rm EARLY}(L_*) = (3.6 \pm 1.5)(1+z)^{4.5\pm1.7}$ $L_{\rm x40,soft}^{\rm EARLY}(L_*) = (2.0 \pm 0.8)(1+z)^{2.8\pm1.1}$

More evolution in hard than in soft :

LMXBs and hot gas ~ constant for $z \le 0.5$ while AGN evolving

stellar mass density evolves slowly between z=0 and z=0.5 (Bell+04) \rightarrow little change in number of LMXBs $\rightarrow L_X = 10^{40} L_K/L_{K^*}$ erg/s for them out to z=0.5, as locally (Kim & Fabbiano 04).

 $L_{X,hard}$ is ~10x brighter than this estimate

Watson+ 09

3. E-CDF-S (Lehmer+ 07): 0.3 deg² = CDF-S + 4 contiguous 250 ks Chandra pointings $F(0.5-2 \text{ keV}) > 5 \ 10^{-17} \text{ cgs}$ and 3 10^{-16} cgs over most of the field (L>3 10^{41} erg/s at z=0.7)

Start from optically selected 539 ETG with **0.1<z<0.7**, R<24 13 normal + 32 AGN detected, the other stacked in z-bins

2 luminosity bins:

 $L_{B} \sim 10^{10} L_{B,sun}$ critical luminosity to separate hot ISM dominated from LMXB dominated

Optically faint samples at z=0.22, 046 are brighter than locally

- ➔increased AGN level?
- →younger st. pop. and larger LMXB
 - contribution?

Optically luminous samples at z=0.25, 0.47, 0.58, 0.66 follow local relation

long-lasting (~6 Gyr) balance between heating and cooling of gas

darker symbol=higher z Lehmer+ 07

The latest

Tzanavaris & Georgantopoulos 08

101 ETG up to z~1.4 Data from *Chandra* deep fields (north, south and extended) and XBootes Optical counterparts in Barger+ 03 (CDF-N), Szokoly+ 04 (CDF-S), <u>cross-corr with the COMBO-17</u> survey (ECDF-S), with SDSS DR5 (XBoötes).

X-ray selection criteria: (after accounting for k-correction) $L_X < 10^{42} \text{ erg s}^{-1}$; $HR = (H-S)/(H+S) \le 0$ (soft sources); $f_X/f_O < 0.1 + v$ isual checks of optical surveys

no significant evolution for ETGs

XLF from Georgakakis+ 06 based on 34 ETGs at z<0.2, shifted to the median redshifts of the two z-bins (0.17 and 0.67) (steep cutoff due to their taking f_X/f_0 <0.01 ?)

Important questions for WFXT

i.e., to be solved with large samples few " angular resolution good spectral resolution

Locally:

measure LMXBs + LLAGN + hot gas $(L_X, ...)$ for a large, complete sample, for different environments

→ baseline for low/medium-z studies

Iargest catalog (401 ETG with B_T<13.5), ROSAT all contributions (stars+LLAGN+ISM) included in the (soft) X-ray emission (O' Sullivan et al. 2001) ✓ larger sample ✓ less upper limits (at low L_B) ✓ for hard and soft bands

Figure 2. Log L_X versus Log L_B for our full catalogue of 401 early-type galaxies. Triangles are cluster central galaxies; asterisks are AGNs; circles are all other detections; arrows are upper limits. The lines shown are: the best-fit line to the early-type galaxies excluding AGNs, BCGs and dwarfs (solid line); the best fit to the galaxies excluding all questionable objects (dashed line); and an estimate of the discrete-source contribution taken from Ciotti et al. (1991).

<~200 ETGs with Chandra, only a minority (gas rich) shows AGN outburst / jets inflating radio lobes / hot gas displacement & heating

(Forman+ 05, McNamara & Nulsen 2007)

 ✓ how is feedback working
IN GENERAL?
(impact, duty cycle,

nuclear luminosities...)

✓ is the large dispersion
in L_X/L_B due to
nuclear activity?
environment?

versus $Log L_B$ for our full catalogue of 401 early-type galaxies. Triangles are cluster central galaxies; asterisks are AGNs; circles are all other are upper limits. The lines shown are: the best-fit line to the early-type galaxies excluding AGNs, BCGs and dwarfs (solid line); the best fit to ding all questionable objects (dashed line); and an estimate of the discrete-source contribution taken from Ciotti et al. (1991).

At z>0, evolution of:

LMXBs

fossil record of past star formation : their collective L_X could be higher than that in the local galaxies depending on epoch of major SF (e.g., Ghosh and White 2001, Fragos+ 08)

Fragos+ 08

The total number of (luminous) sources decreases steadily with time

hot gas

Iow/moderate nuclear activity :

ETGs are the typical hosts of quasars at high z > 2, tracking the decay of nucler activity to lower z important to understand the whole MBH accretion history

feedback

accretion rate declines on $\tau \sim 1$ Gyr reaching $L_{BH} / L_{Edd} \sim 10^{-2}$ (Hopkins+ 05) SED becomes increasingly dominated by X-rays (Steffen+ 06, Vasudevan& Fabian 07)

As $L_{BH} / L_{Edd} \sim 10^{-3}$ accretion shifts to radio-bright mode: radiatively inefficient, jet-dominated outbursts fueled by accretion directly from the hot gas (e.g., Croton+ 06)

Hickox+ 09

accretion rate declines on $\tau \sim 1$ Gyr reaching $L_{BH} / L_{Edd} \sim 10^{-2}$ (Hopkins+ 05) SED becomes increasingly dominated by X-rays (Steffen+ 06, Vasudevan& Fabian 07)

Kauffmann & Heckman 09: the MBH grows at a rate indep of the ISM characteristics, as long as gas is plentiful; when the gas runs out, growth is regulated by rate of mass loss from evolved stars

Hickox+ 09

Simulations with central MBH

high resolution hydrodynamical code, with detailed treatment of **radiative + mechanical energy input from the MBH & transfer to the ISM** (Ciotti & Ostriker 97, 01, 07; Ciotti, Ostriker & Proga 09)

- ✓ **mass model**: stars + dark halo + MBH ; **internal dynamics**: from Jeans eqs
- ✓ gas evolution with **heating** and **cooling**

SUMMARIZING: For I ~ 1 \rightarrow high $\varepsilon \sim 0.1$, high $\varepsilon_{W} \sim \varepsilon_{W}^{max}$, low ε_{jet} "radiative mode" For I < 0.01 \rightarrow low $\varepsilon < 0.1$, $\varepsilon_{W} \sim 0$, high $\varepsilon_{jet} \sim 0.01$ "kinetic mode" (Allen+ 06, Merloni & Heinz 08)

Time evolution: hot gas

gas luminosity

On average, slow decrease in hot gas content $(\dot{M}_* \propto t^{-1.3})$

emission weighted T within the optical Re

Pellegrini+ 09, and in preparation

large variations up to ~8 Gyrs (=last major nuclear outburst), then hot accretion

Ciotti+ 07, 09

Time evolution: nuclear luminosities

Strong intermittencies at early times, $L_{\rm BH}$ close to $L_{\rm Edd}$

Smooth, very sub-Eddington accretion at low redshift

At the present epoch:

$$I = L_{BH} / L_{Edd} \sim 10^{-4}$$

m=0.001

→ RIAF radiative regime (ε ~ 0.02)

WFXT

0.1 or 0.4 - 7 keV: ok

PSF=5"

0.5-2 keV flux limits and area:

	Wide	Medium	Deep
Area (deg²)	~20,000	~3,000	~100
F _{lim,ext} (cgs)	5×10 ⁻¹⁵	1×10 ⁻¹⁵	1×10 ⁻¹⁶
F _{lim,pt} (cgs)	3×10 ⁻¹⁵	5×10 ⁻¹⁶	3×10 ⁻¹⁷

WFXT could drastically increase the number of detected ETGs → revolutionize the field: >~few x10³ ETGs in the local universe (d<100 Mpc) with good image/spectra [F(0.4-7 keV)>1e-14 cgs and d<100 Mpc]

For a size~20 kpc, the angular dimensions are :

10" at z=0.1 ---> distinguish nucleus/halo 5" at z=0.3 3" at z=0.5 2.4" at z=1

Using flux limits for point sources, 1e41 erg/s will be detected out to z=1 in the DEEP out to z=0.3 in the MEDIUM out to z=0.1 in the WIDE (for the extended sources flux limit)

Distances and galactic parameters from matches with surveys as 2MASS, SDSS, Galex, LSST, SDSS III/BOSS...