

(Evolution) and identification of (high-redshifts) AGN: lessons for WFXT from COSMOS and CDFS

Marcella Brusa MPE

contributions from many people R. Gilli, A. Comastri, F. Fiore, P. Rosati, P. Tozzi, C. Vignali et al.

Bands (keV) [0.5–1] [1.0–2] [2.0–7]

WFXT Goal: evolution of high-z sources

Current knowledge of high-z (> 3) AGN from X-ray (and optical) surveys (see talks by R. Gilli & F. Fiore)

Challenges:
1) Statistics --> large area surveys
2) Identifications --> lessons from XMM/Chandra surveys
3) Redshifts --> multiwavelength follow-up

Resources needed....

Number Statistics

X-rays from high-z Quasars

1990-1994:

pioneering works with ROSAT Wilkes+92,Elvis+94, Bechtold+94 (record QSO z=4)

2002-2005: **Chandra/XMM contribution** Follow-up of optically SDSS QSOs Brandt+02, Mathur+02,Vignali+03,05 (record QSO z=6.4) XMM-COSMOS z>3 QSOs (Brusa et al. 09)

The number of high-z AGN detected so far

X-rays needed to get the LF faint end (more representative of the whole high-z population)

XMM and Chandra z>3 QSOs

Lg(Lx)>44 QSO:

same behaviour of optically selected bright QSOs (logLx~45)

based on 40 QSOs from XMM-COSMOS Brusa, Comastri et al. 09, ApJ

XMM and Chandra z>3 QSOs

Lg(Lx)>44 QSO:

same behaviour of optically selected bright QSOs (logLx~45)

based on 40 QSOs from XMM-COSMOS Brusa, Comastri et al. 09, ApJ

High fluxes (>5x10⁻¹⁶ cgs):

data and predictions robust; to have same statistics of SDSS need to survey >200 deg2 at COSMOS depth

Low fluxes (<10⁻¹⁶cgs):

data scarse, predictions uncertain [CDFS analysis predict a factor of ~2 more than extrapolations]

Expectations

From WFXT white paper

From Brusa+09 [Gilli et al. 2007 model]

	Table	3. Expect	dmun bed	ens of z>3 QS		10 ⁻¹¹			· · · · ·	·····	
z range	limiting erg cm ⁻¹		stant" leg ⁻²	decline ^s deg ⁻²		-s 2- 10 ⁻¹²	(") = angular in Half-E	nergy Width	EMSS (60")	CO STA	
z>3 z>4	$> 10^{-16}$ $> 4 \times 10^{-16}$ $> 10^{-14}$		230 80 14 1.8 80 30 3 0.6	75 30 6.2 0.75 12 7 0.5 0.07		Flux limit [0.5-2.0 kev] erg		ROSAT Serendip ROSAT Serendip Surveys (15") Clusters (15") Clusters (15") ROSAT Serendip Clusters (15") ROSAT Serendip Clusters (15") ROSAT (25") Clusters			
	9 10		0.0	0.07			10 ⁻¹ 10 ⁰	10 ¹ 10 ² Area (deg ²	10 ³	10⁴	10 ⁵
WFXT		flux(lir	n)	deg2		z>3		z>6			
wide		$4x10^{-15}$	5	20.000		1.26x	.10 ⁵	500			
mediun	n	5x10 ⁻¹⁶	5	3.000		2.25x	105	1000			
deep		3x10 ⁻¹⁷	7	100		3(6)x	104	300 (>30)0)		

Expectations

From WFXT white paper

From Brusa+09 [Gilli et al. 2007 model]

	Table -	3. Expected nu	mbars of z > 3 QS(Cε	10 ⁻¹¹ [[""""""""""""""""""""""""""""""""""		
z range	limiting: erg.cm ⁻²		decline ⁵ deg ⁻²		E	Energy Width	
x > 3 x > 4	$> 4 \times 10$ $> 10^{-16}$ $> 4 \times 10$ $> 10^{-14}$ $> 4 \times 10$ $> 10^{-16}$ $> 4 \times 10$ $> 10^{-14}$	80 14 1.8 -15 80 30	75 30 6.2 0.75 12 7 0.5 0.07		$ \begin{array}{c} \text{bis} 10^{-13} \\ image set in the set of the$	Rosuries Clus	Sters Ave The 10 ⁴ 10 ⁵
WFXT		flux(lim)	deg2		z>3	z>6	
wide		$4x10^{-15}$	20.000		1.26x10 ⁵	500	
eROSI	TA	flux(lim)	deg2		z>3	z>6	
all sky		10-14	30.000		2.25x10 ⁴	30	
mediur	n	4x10 ⁻¹⁵	400		2.5x10 ³	4	

Expectations

From WFXT white paper

* High-z QSOs in WFXT--> statistics will be even few orders of magnitude *larger* than SDSS

A LOT OF HIGH-Z AGN!

eROSITA	flux(lim)	deg2	z>3	z>6
all sky	10-14	30.000	2.25x10 ⁴	30
medium	4x10 ⁻¹⁵	400	2.5×10^3	4

Identification issues (whole X-ray population)

(some references: Sutherland & Saunders 1988, Ciliegi et al. 2003, Brusa et al. 2005)

(some references: Sutherland & Saunders 1988, Ciliegi et al. 2003, Brusa et al. 2005)

TOOLS:

1) a statistical, powerful, method, the "Likelihood Ratio Technique" (Sutherland & Sanders 1992) widely used in several Chandra/XMM surveys in recent years

2) combined information from different wavebands (optical / K-band / IR)

(some references: Sutherland & Saunders 1988, Ciliegi et al. 2003, Brusa et al. 2005)

TOOLS:

1) a statistical, powerful, method, the "Likelihood Ratio Technique" (Sutherland & Sanders 1992) widely used in several Chandra/XMM surveys in recent years

2) combined information from different wavebands (optical / K-band / IR)

LR=f(r)*q(m)/n(m)

- f(r) = distance term (distance X-cp + positional errors)
- n(m) = background distribution
- q(m) = overdensities of the counterparts

(some references: Sutherland & Saunders 1988, Ciliegi et al. 2003, Brusa et al. 2005)

TOOLS:

1) a statistical, powerful, method, the "Likelihood Ratio Technique" (Sutherland & Sanders 1992) widely used in several Chandra/XMM surveys in recent years

2) combined information from different wavebands (optical / K-band / IR)

LR=f(r)*q(m)/n(m)

- f(r) = distance term (distance X-cp + positional errors)
- n(m) = background distribution
- q(m) = overdensities of the counterparts

The LR is computed for **each** source in **each** band (I,K,3.6micron..)

The procedure gives, for each band, the most likely counterpart; in case of >=2 equally likely counterparts (in the same and/or from different bands) all the cp are considered ("ambiguous")

Important for XMM sources (at almost all fluxes) and Chandra sources mostly at F<10⁻¹⁵

XMM-COSMOS (note: XMM PSF worse than WFXT....)

BREAKDOWN:

85% unique associations; **15%** ambiguous associations at F>1e-15

95% unique + **5**% ambiguous associations at fluxes of the WFXT wide survey statistical properties of primary and secondary within ambiguous sources are indistinguishable - in most cases the two sources have same optical / K-band magnitudes

XMM-COSMOS (note: XMM PSF worse than WFXT....)

BREAKDOWN:

85% unique associations; **15%** ambiguous associations at F>1e-15

95% unique + **5**% ambiguous associations at fluxes of the WFXT wide survey statistical properties of primary and secondary within ambiguous sources are indistinguishable - in most cases the two sources have same optical / K-band magnitudes

RELIABILITY* of the method ["a posteriori" test on XMM-COSMOS id using Chandra]

- **98.7%** [only 9/712 unique sources resulted associated to the wrong optical cp]
- **99.6**% [only 1/245 unique sources at fluxes of the WFXT wide survey]

XMM-COSMOS (note: XMM PSF worse than WFXT....)

BREAKDOWN:

85% unique associations; **15%** ambiguous associations at F>1e-15

95% unique + **5%** ambiguous associations at fluxes of the WFXT wide survey statistical properties of primary and secondary within ambiguous sources are indistinguishable - in most cases the two sources have same optical / K-band magnitudes

(*see discussion in XMM-COSMOS ID paper; Brusa et al. to be subm)

CDFS (note: Chandra PSF better than WFXT....)

BREAKDOWN (Luo et al. 2Ms, AJ, submitted):

96% identifications, 4% not identified at fluxes comparable to WFXT deep

CDFS (note: Chandra PSF better than WFXT....)

BREAKDOWN (Luo et al. 2Ms, AJ, submitted):

96% identifications, 4% not identified at fluxes comparable to WFXT deep

[among identifications: **90%** "unique" associations; **10%** ambiguous associations] statistical properties of primary and secondary within ambiguous sources are *different* - in most cases the two sources have very different SED....

CDFS (note: Chandra PSF better than WFXT....)

BREAKDOWN (Luo et al. 2Ms, AJ, submitted):

96% identifications, 4% not identified at fluxes comparable to WFXT deep

[among identifications: **90%** "unique" associations; **10%** ambiguous associations] statistical properties of primary and secondary within ambiguous sources are *different* - in most cases the two sources have very different SED....

CDFS (note: Chandra PSF better than WFXT....)

BREAKDOWN (Luo et al. 2Ms, AJ, submitted):

96% identifications, 4% not identified at fluxes comparable to WFXT deep

[among identifications: **90**% "unique" associations; **10**% ambiguous associations] statistical properties of primary and secondary within ambiguous sources are *different* - in most cases the two sources have very different SED....

CDFS (note: Chandra PSF better than WFXT....)

BREAKDOWN (Luo et al. 2Ms, AJ, submitted):

96

Ę

sta

са

Message (2):

*WFXT wide --> identification "easy" (straightforward) [also for eROSITA...]

X-ray optical / X-ray - infrared correlations; low density of bkg sources ^{it}

*WFXT deep --> secure identification **not trivial**

high density of bkg sources; different sources emerges in different bands; 5" HEW really auspicable

Depth of optical / infrared images (1): WFXT wide

 \rightarrow At the limiting flux of the WFXT wide survey an optical coverage to I~24 and infrared coverage to K~22 would be enough...BUT this should be on the entire area...

Sensitivity of future large area surveys

~20000-30000 deg² – shallow sensitivity surveys

PanSTARRS: $I_{\sim}^{2}/2$ (+grzy)

I~24.2 (+grzy)

LSST: I~25.5 (+ugrzy)

EUCLID: K~23.5 (+zJH)

LOFAR:

0.8 mJy at 120 MHz (= 0.1 mJy at 1.4 GHz) "radio" emitters (AGN and starburst)

(VISTA VHS, K=20, not enough..)

Depth of optical / infrared images (2): WFXT deep

From 2Ms CDFS (Luo et al. AJ, submitted; see also Brusa, Fiore et al. A&A, arXIv:0910.1007)

 \rightarrow At the limiting flux of the WFXT deep survey an optical coverage to I~27 and infrared coverage to K~24 over 100 deg2 is needed

Sensitivity of future deep surveys

~20-100 deg2 – deep sensitivity surveys [need more coordination...]

LSST: I~26.7 (+ugrzy) - over 500 deg² cp for 90% of the sources

EUCLID: K~25 (deep survey, on 50 deg² ...)

PanSTARRS: I~28 (+grzy) - over 28 deg²

VISTA VIDEO: K=23.5 (+zYJH) - over 15 deg²

IWST

Sensitivity of future deep surveys

 $K=23.5 (+zYJH) - over 15 deg^2$

JWST

Redshift determination: how to pick up z>3 (or z>6) QSOs among million sources?

XMM-COSMOS z>3 QSOs

- How to isolate them?
- 1) Get spectroscopy or photometric redshifts for all the (million) sources
- 2) Impose color pre-selection
- 3) Get redshifts from Iron line.... (only a fraction)

40* over ~1650 sources!!

2% of the XMM population

* historical note: the original XMM-COSMOS proposal claimed ~160 QSOs at z>3 in the survey....

"complete" redshifts sample

XMM-COSMOS (almost 100%)

1640 XMM sources at 10⁻¹⁵ cgs

~840 "secure" spectroscopic redshifts (>50%)

~800 "good" photometric redshifts (Salvato et al. 2009)

Feasible only for small samples and/or when many optical/infrared filters are available.. SDSS-like survey needed

key resources:

LSST (optical photometry); EUCLID (IR photometry & spectra); SDSSIII-BOSS (spectra)

Are depth/#of bands enough to get photz?

(Brusa et al. 2009, to be submitted)

z>3 color-color selection v-I vs. b-v (proposed, e.g. in Casey et al. 2008, Siana et al. 2007)
U-dropout techniques (see Fabrizio talk)
8 objects would not have been selected

z>3 color-color selection v-I vs. b-v (proposed, e.g. in Casey et al. 2008, Siana et al. 2007)
U-dropout techniques (see Fabrizio talk)
8 objects would not have been selected
High contaminant fraction (~50%)

z>3 color-color selection v-I vs. b-v (proposed, e.g. in Casey et al. 2008, Siana et al. 2007)
U-dropout techniques (see Fabrizio talk)
8 objects would not have been selected
High contaminant fraction (~50%)

z>6 (optical): contaminants overwhelmingly more abundant (e.g. brown dwarfs 15x QSOS)

J-band used to discriminate between brown dwarfs and z=6 QSOs, still spectroscopy success rate is ~20% (Jiang+09):

success rate is ~20% (Jiang+09):

High contaminant fraction (~50%)

Summary and WFXT Synergies

Summary and WFXT Synergies

Message (I):

* High-z QSOs in WFXT --> statistics will be even few orders of magnitude **better** than SDSS

Message (2):

*WFXT wide --> identification "easy" (straightforward) [also for eROSITA...]

*WFXT deep --> secure identification **not trivial 5" HEW really auspicable**

Message (3):

 * currently planned and ongoing optical / IR all sky surveys can **do the game** (PanSTARRS, LSST, EUCLID, JWST...); deep coverage need coordination
 * IR more important than optical for faint and very high-z sources!

Message (4):

* multiwavelength information *mandatory*

* X-rays very efficient when coupled with other (less efficient) optical/IR criteria

LSST coverage (from Science book)

Figure 2.1: The distribution of the r band visits on the sky for one simulated realization of the baseline main survey. The sky is shown in Aitoff projection in equatorial coordinates and the number of visits for a 10-year survey is color-coded according to the inset. The two regions with smaller number of visits than the main survey ("minisurveys") are the Galactic plane (arc on the left) and the so-called "northern Ecliptic region" (upper right). The region around the South Celestial Pole will also receive substantial coverage (not shown here).