Cosmology with Galaxy Clusters: an X-ray Perspective

Stefano Borgani Dept. of Astronomy, University of Trieste (also INAF & INFN - Trieste) OPHEICA NOIZAN OL

(I) Tracing cosmic evolution with galaxy clusters
(II) The need to understand clusters as astrophysical objects:
II.a Are clusters in (hydrostatic) equilibrium?
II.b The role of cool cores.
(III) Why then WFXT?

Talk @ WFXT Workshop, Bologna, November 25th-26th 2009

The mass function as a cosmological test

Rosati, SB & Norman '02

Population of massive clusters highly sensitive to the structure growth rate

⇒ Sensitive test for the amount and nature of Dark Matter & Dark Energy

Observables in a flux-limited survey

Volume element:

 $\left(\begin{array}{c}c\end{array}\right)^{3}r^{2}(\tau)$

Radial coordinate the FLRW metric:

Volume element:
$$dV(z) = \left(\frac{c}{H_0}\right) \frac{r(z)}{E(z)}$$
Radial coordinate of
the FLRW metric: $r(z) = \begin{cases} \int_0^z dz E^{-1}(z) & \Omega_R = 0\\ \frac{2[\Omega_m z + (2 - \Omega_m)(1 - \sqrt{1 + \Omega_m z})}{\Omega_m^2(1 + z)} & \Omega_\Lambda = 0 \end{cases}$ $E(z) = [(1 + z)^3 \Omega_m + \Omega_R(1 + z)^2 + \Omega_\Lambda(1 + z)^{3(1 + w)}]^{1/2}$ w < -1/3 to have accelerated expansionL-observable function: $\phi(L; z) dL = \left(\frac{dn(M; z)}{dM} \frac{dM}{dL}(z) dL\right)$ Robust: from PS-like theoryTricky: depending on

cluster physics

Calibrating a ~universal n(M) with simulations

E.g., Sheth & Tormen 2001, Jenkins et al. 2001, Evrard et al. 2002, Springel et al. 2005, Warren et al. 2007, Tinker et al. 2009, Crocce et al. 2009

Cosmology with galaxy clusters as of 2002

SB et al. 01; RBN 02

~100 clusters out to z=0.8 from ROSAT: only L_x available

Results dependent on ICM physics....

 $\Omega_{\rm m}$ <0.6 at >3 σ

for the reference analysis.

The observed M-L_x relation...

Reiprich & Boehringer 02 ROSAT + ASCA Hydrostatic equil. + isothermal β-model

Resolved T_X profiles with Beppo-SAX (Ettori et al. '02) ⇒ Well-defined relation with ~40% scatter!

The relevance of calibrating the scatter

Eke et al. '98, SB et al. '01, Lima & Hu '04

⇒ Convolution with intrinsic (log-normal) scatter inflates the predicted XLF

 \Rightarrow Lower σ_8 required to fit the observed XLF!

WARNING: what if scatter isn't log-normal? (Shaw et al. '09)

How reliable is the hydrostatic equilibrium?

Hydrostatic equilibrium (HE):

 $M_{hyd}(< r) = -\frac{rkT}{G\mu m_p} \frac{d\ln(nkT)}{d\ln(r)}$

- ⇒ HE violated at the ~10% level within
 r₅₀₀
 ⇒ Larger deviations at larger radii
 (>R₅₀₀)
- ⇒Larger scatter in the core regions $(<0.15R_{500})$
- See also Rasia et al. 2006, Nagai et al. 2007, Morandi et al. 2007, Piffaretti & Valdarnini 2008
- ⇒Level of HE violation in simulations comparable to the X-ray/lensing mass ratio.

A new cluster mass proxy

Kravtsov, Nagai & Vikhlinin '06

X-ray "pressure":

 $Y_X = M_{gas}T_X$

- 1. Similar to Compton-y from SZ observations.
- Very small intrinsic scatter: ~ 5-7 % !
- 3. About 15 % offset wrt Chandra results.

A new cluster mass proxy

Vikhlinin et al. 08: 16 clusters observed with Chandra

 ⇒ Reassuring agreement with weak-lensing masses (Hoekstra 07).

Arnaud et al. 07: 10 nearby relaxed clusters observed with Chandra

⇒ Close agreement with Chandra results

Testing the robustness of the Y_x mass proxy

Fabjan, SB, et al. in preparation

- Y_X scaling calibrated with simulations only for
- Limited number of clusters (11)
- Non-radiative and Cooling+SF model
- ⇒ Expand the range of physical models: different feedback (SN & AGN), viscosity schemes, thermal conduction.
- ⇒ Calibrate scatter over a much larger number of clusters within a 300 h⁻¹Mpc box

What happens in cluster cores?

R < (0.1-0.15) R₅₀₀: Increased scatter in surface brightness and temperature profiles

⇒ Diversity introduced by complex astrophysical processes establishing the cool-core structure.

0.15 < R/R₅₀₀ < 1: Much better agreement with simulations

⇒ Simpler dynamics dominated by gravity and condition of pressure equilibrium.

Getting rid of cool cores...

Pratt et al. '09: representative sample of 31 nearby clusters observed with XMM

 \Rightarrow With cool cores: $\sigma_{InL} \sim 0.4$

 \Rightarrow After excising cool cores: $\sigma_{lnL} \sim 0.16$

Cluster cosmology as of today

Vikhlinin et al. '09

~90 ROSAT clusters, followedup with Chandra, out to z~0.9 \Rightarrow Constraints on the DE EoS Rapetti et al. '09 ROSAT BCS (78) + REFLEX (126) + MACS (34) clusters out to z~0.9, followed-up with Chandra \Rightarrow Constraints on deviations from GR: $\frac{d\delta}{dt} = \frac{\Omega_{\rm m}(a)^{\gamma}}{\delta} \delta$ da γ =0.55 : standard GR

γ=0.68 : DGP brane-world model

The Wide Field X-Ray Telescope (WFXT) US: JHU, Marshall, CfA - Italy: ASI/INAF (Milano, Trieste, Bologna, Napoli) - ESO http://wfxt.pha.jhu.edu/

RFI Whitepaper submitted to the Decadal Survey:

S. Murray et al.: Wide Field X-Ray Telescope Mission

Whitepaper on Cluster Science submitted to the Decadal Survey:

R. Giacconi et al.: Galaxy Clusters and the Cosmic Cycle of Baryons across Cosmic Times (arXiv:0902.4857)

Table 1: WFXT Mission Performance Requirements

Parameter	Requirement	Goal
Area (1 keV)	$6,000cm^2$	$10,000cm^2$
Area (4 keV)	$2,000cm^2$	$3,000 cm^2$
Field of View	1º diameter	1.25° diameter
Angular Resolution	< 10'' HEW	\leq 5" HEW
Energy Band	0.2 - 4 keV	0.1 - 6 keV
Energy Resolution	$\frac{E}{\Delta E} > 10$	$\frac{E}{\Delta E} > 20$
Time Resolution	< 3 seconds	< 1 second

WFXT cluster surveys

<u>Detection</u>: 50-100 counts $T_{\underline{X}}$ measurements: 1500 counts $T_{\underline{X}}$ profiles: 15.000 counts

The ultimate cluster survey

WFXT improves wrt eROSITA by about as much as eROSITA improves wrt RASS!

Not just a cluster-counting machine:

Lifetime: 5 years - 3 surveys

Deep: 100 deg² (400 ksec): CDF depth over 1000x area!

Medium: 3,000 deg² (13 ksec) to deep Chandra/XMM sens.

Wide: 20,000 deg² (4 ksec) to 3-5×10⁻¹⁵ erg/cm²/s

The potential of a WFXT survey

With 13 ks: \sim L_{*} clusters at z=1.6 detected with \sim 500 counts.

With 400 ks: the simulated Spiderweb cluster detected with > 10⁴ counts.

Redshift ,easured with ~500 counts for the 17 brightest clusters in this field

⇒ Completely X-ray based cluster redshift survey!

P. Tozzi, A. Bignamini, J. Santos (Trieste) and the WFXT Team

Selection functions of WFXT surveys

Sartoris, SB et al. '09 in prep.

 Take F_{lim} corresponding to 1500 photons:

⇒ Precise determination of redshift

⇒ Robust mass proxy (e.g. $Y_X = T_{500}M_{gas}$; Kravtsov et al. 06)

• Use the observed L_X - M_{500} relation (Maughan et al. 07)

• Deep survey to calibrate the Y_X-M_{500} relation down to F_{lim} for detection in the Wide Survey

Calibrating the reference model

Cosmological parameters:

 $Ω_m$ =0.26 (flat) , $Ω_{bar}$ =0.046 $σ_8$ =0.80 , n_s=0.96 , h=0.72 w_0 =-1 , w_a =0 Halo mass function from Jenkins et al. (2001)

Nuisance parameters:

Mass bias: -15% evolving as $(1+z)^{\alpha}$, $\alpha=1$

Intrinsic scatter in L_X-M conversion: 30% evolving as $(1+z)^{\beta}$, $\beta=1$

Constraining non-Gaussian models

Collab. with C. Fedeli & L. Moscardini

Non-Gaussian perturbations:

$$\Phi(\mathbf{x}) = \Phi_{\mathrm{L}}(\mathbf{x}) + f_{\mathrm{NL}} \left[\Phi_{\mathrm{L}}^{2}(\mathbf{x}) - \left\langle \Phi_{\mathrm{L}}^{2}(\mathbf{x}) \right\rangle \right]$$

WMAP5: -9 < f_{NL}^{CMB} < 111 (95% C.L.) (Komatsu et al. 09)

LSS: $-29 < f_{NL}^{CMB} < 69 (95\% C.L.)$ (Slosar et al. 08)

Positive skewness: collapse of halos at higher z, for fixed σ_8 .

CONCLUSIONS

- 1. Galaxy clusters ARE powerful probes of cosmic growth!!
- 2. 0.1 < R/R₅₀₀ < 1: Gas dynamics much simpler <u>and already well</u> <u>described by simulations</u>
 - ⇒ Regime where clusters can be robustly calibrated as tools for cosmology!
- Sensitivity (grasp & PSF) of WFXT crucial to:
- **a.** Robust mass proxies (e.g. $Y_{X_1} M_{gas}$) for ~10⁵ clusters out to z~1.5

 b. Characterize emission from cool cores in the measure of mass proxies: 10" subtends a scale of ~80 kpc @ z=1

Lots of highly interesting astrophysics while doing "cluster cosmology"....