
Fundamenta Informaticae XXI (2001) 1–18 1

IOS Press

Reasoning about co–Büchi Tree Automata∗

Salvatore La Torre
Dipartimento di Informatica ed Applicazioni

Università degli Studi di Salerno

84081 Baronissi(SA), Italy

slatorre@unisa.it

Aniello Murano
Dipartimento di Scienze Fisiche

Università degli Studi di Napoli “Federico II”

I-80126 Napoli, Italy

murano@na.infn.it

Abstract. We consider co–Büchi tree automata along with both alternating and generalized para-
digms, as a characterization of the class of languages whose complement is accepted by generalized
Büchi tree automata. We first prove that for alternating generalized co–Büchi tree automata the sim-
ulation theorem does not hold and the generalized acceptance does not add to the expressive power
of the model. Then, we show that the emptiness problem for this class is EXPTIME-complete. For the
class of languages whose complement is accepted by deterministic generalized Büchi tree automata,
we get better complexity bounds: we give a characterization of this class in terms of generalized
co–Büchi tree automata that yields an algorithm for checking the emptiness that takes time linear in
the product of the number of states and the number of sets in the acceptance condition. Finally, we
compare the classes of languages whose complement is respectively accepted by deterministic and
nondeterministic Büchi tree automata with the main classes studied in the literature.

Keywords: tree automata, emptiness problem, language complementation

Address for correspondence: Aniello Murano, Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II”,
Via Cinthia, Complesso Monte S. Angelo, I-80126 Napoli, Italy
∗This research was supported by the MIUR grants 60% 2003-2004

2 S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata

1. Introduction

Since its early days the theory of automata had an astonishing impact in computer science. Several
models of automata have been extensively studied and applied to many fields. In the sixties, with their
pioneering work, Büchi [Büc62], McNaughton [McN66], and Rabin [Rab69, Rab70] enriched this the-
ory by introducing finite automata on infinite objects. Such automata turn out to be very useful for
those areas of computer science where nonterminating computations are studied. They give a unifying
paradigm to specify, verify, and synthesize reactive systems [Kur94, VW86, VW94]. A system speci-
fication can be translated into an automaton, and thus, questions about systems and their specifications
are reduced to decision problems in the automata theory. More precisely, given a system S and its spec-
ification ϕ, we can design an automaton AS representing the system and an automaton A¬ϕ accepting
all computations that violate the specification. Thus, we can check the correctness of S with respect
to ϕ by checking the emptiness of AS × A¬ϕ. The automata-theoretic approach separates the logical
and the combinatorial aspects of reasoning about systems. The translation of specifications to automata
handles the logic and shifts all the combinatorial difficulties to automata-theoretic problems. Recent
industrial-strength property-specification languages such as Sugar [BBE+01], ForSpec [AFF+02], and
the recent standard PSL 1.01 [www.accellera.org] include regular expressions and/or automata, making
the automata-theoretic approach even more essential.

Automata on infinite objects come in two varieties: automata on infinite words and automata on in-
finite trees. In the modelling of nonterminating systems, computations can be seen as infinite sequences
of system states and automata on infinite words are suitable to model such systems. To model nonde-
terminism, it is useful and natural to arrange computations in trees. It is worth noticing that some con-
current programs, such as operating systems, communication protocols, and air-traffic control systems,
are intrinsically nondeterministic and nonterminating. Moreover, nondeterminism is successfully used
to obtain models of concurrent programs in general (nondeterministic interleaving of atomic processes).
Here we mainly consider automata on infinite trees. Automata on infinite words can be seen as automata
on infinite trees with branching degree equal to one.

Automata on infinite trees recognize an input tree according to an acceptance criteria. In the litera-
ture, several acceptance criteria have been fruitfully investigated: recall Büchi, co–Büchi, Muller, Rabin,
Streett, and parity acceptance conditions. This criteria have been first introduced on infinite words and
then fruitfully extended to infinite trees (for more on these models see [GTW02]). Like automata on
finite trees, an automaton on infinite trees either accept, or reject an input tree, in accordance with a run
built as follows. Suppose that the automaton is in state q, is reading a node i of the input tree and sup-
pose that i has branching degree n and is labelled with a. The pair (q, a) is mapped into a tuple of states
(q1, . . . , qn), in accordance with the transition rules of the automaton. The intuition is that the automaton
splits into n copies, one at each child of i, and for each child j, it moves to state qj , from which it should
accept the subtree of the input tree rooted at j. Since a run on an infinite tree does not have final states,
acceptance is determined with respect to the sets of states visited infinitely often during all paths of the
run. For example, in the Büchi condition [Büc62, Rab70] a subset of the automaton states is defined
as accepting and a tree is accepted if and only if there exists a run such that for each path “at least an
accepting state repeats infinitely often”. The co–Büchi condition expresses the dual condition, that is,
it requires that for each path “all states that are not accepting repeats finitely often” or equivalently “all
the states that repeat infinitely often are accepting”. More general conditions are Muller, Rabin, Streett
and parity automata, whose acceptance conditions involve several sets of states. For example, in Rabin

S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata 3

automata [Rab69] the acceptance condition is a set α = {〈G1, B1〉, . . . , 〈Gk, Bk〉} of pairs of sets of
states, and a run is accepting if there is a pair 〈Gi, Bi〉 for which the set of states visited infinitely often
intersects Gi and is disjoint from Bi. In parity automata [Mos84, EJ91], the acceptance condition is a set
α = {F1, . . . , Fk} of sets of states, and a run is accepting if the minimal index i for which the set Fi is
visited infinitely often is even. Recall that Streett, Muller and parity automata are language equivalent to
Rabin automata.

Büchi and co–Büchi conditions can be generalized in the sense that more than one subset of states
can be defined as accepting. Thus, an infinite tree is accepted by a generalized Büchi automaton if and
only if for each accepting set there is at least a state that repeats infinitely often. Consistently, an infinite
tree is accepted by a generalized co–Büchi automaton if and only if there is an accepting set that contains
all the states that repeat infinitely often. Generalized Büchi and co–Büchi acceptance conditions lead to
automata with fewer states and simpler underlying structure than the corresponding standard conditions.
For example, the traditional translation of an LTL formula ϕ to a Büchi word automaton results in an
automaton with 2O(|ϕ|×|ϕ|) states [VW94], while using generalized Büchi automata we only need 2O(|ϕ|)

states [GPVW95]. Generalized conditions have become popular in system verification and now are
fruitfully used in several applications [Kur94]. The generalized co-Büchi condition was first introduced
and studied on infinite words in [Lan69]. Its extension to infinite trees has been investigated in [LMN02].

The kind of acceptance condition influences both the closure properties and the complexity of the
decision algorithms. For generalized Büchi and generalized co-Büchi tree automata non-emptiness is
decidable in polynomial time [VW86, LMN02], for Rabin tree automata it is known to be NP-complete
[Rab69]. On the other hand, generalized Büchi and generalized co-Büchi tree automata are not closed
under language complementation, while Rabin tree automata are [Tho90].

Another way to control the expressive power of automata is by restricting their transition relation
to be deterministic. In a nondeterministic automaton, given a tree t and a node i on it labelled with a,
the transition function maps the pair (q, a) into a (possibly empty) set of tuples of states (q1, . . . , qn),
where n is the branching degree of the node i. In a deterministic automaton, the transition function
maps q and a into a single tuple of states. Thus, a deterministic automaton has a single run over an
input tree, while a nondeterministic automaton may have many runs, and it accepts a tree if one of them
is accepting. Reasoning about deterministic automata is usually simpler and is also motivated by the
discovery that many natural specifications correspond to deterministic fragments: an LTL formula ψ
has an equivalent alternation-free µ-calculus formula iff ψ can be recognized by a deterministic Büchi
word automaton [KV98]. On the other side, nondeterministic automata are usually more expressive and
succinct compared to the deterministic ones.

Nondeterminism can be viewed as if the automaton operates in an existential mode (a tree is accepted
if there exists an accepting run). Dually, in a universal mode, a tree is accepted if all the runs of the au-
tomaton on it are accepting. In an alternating automaton [BL80, CKS81], both existential and universal
modes are allowed and the transitions are given as Boolean formulas over sets of states. Thus, alternat-
ing automata generalize the standard notion of nondeterministic automata by allowing several successor
states to go down along the same branch of the tree. The richer combinatorial structure of alternating
automata have recently lead to their fruitful application in several industrial projects. For example, the
Intel ForSpec compiler uses an intermediate language called SPIF, using alteranting automata as tempo-
ral connectives. The ForSpec compiler translates ForSpec Temporal Logic formulas into SPIF, and from
SPIF into nondeterministic Büchi automata [AFF+02].

Alternating tree automata along with the co–Büchi paradigm characterize the complement of lan-

4 S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata

guages nondeterministically accepted by Büchi tree automata [MS87]. Here, we consider these au-
tomata along with the generalized paradigm, namely, we consider alternating generalized co–Büchi tree
automata (AGCTA), as a direct characterization of the class of languages whose complement is accepted
by generalized Büchi tree automata (co–GBTA). In [MS87], it is shown that while alternation does not
give more expressive power to Muller, parity, Rabin, Street and Büchi paradigms (simulation theorem),
it allows us to get more succinct automata. For example, translating an alternating Büchi tree automaton
to a Büchi tree automaton might involve an exponential blow-up [MS95]. Once the simulation theo-
rem holds, emptiness for alternating automata can be checked in an easy, and often efficient, way via
translation to the corresponding nondeterministic model. For example, for an alternating Büchi tree au-
tomaton, we can construct a language equivalent Büchi tree automaton (which involves an exponential
blow-up) and thus we can check for emptiness the starting automaton in exponential time which matches
the known lower bound for the computational complexity of this problem.

Here, we prove that unfortunately the simulation theorem does not hold for AGCTA. In fact, we ob-
serve that generalized co–Büchi tree automata are not sufficiently powerful to characterize co–GBTA. We
also prove that AGCTA and alternating co–Büchi tree automata (ACTA) are polynomially time equiva-
lent, that is, there exists a polynomial translation from an AGCTA to a language equivalent ACTA and
viceversa. We observe that, when the generalized and the corresponding non-generalized paradigms are
language equivalent, the generalized one is still of interest since it can lead to more succinct automata
with evident benefits in designing efficient algorithms. As an example, we recall that nondeterministic
generalized Büchi word automata and nondeterministic Büchi word automata are polynomially equiva-
lent [Cho74]. However, computing the complement of a nondeterministic generalized Büchi automaton
without constructing first the language equivalent nondeterministic Büchi automaton, may result in an
automaton that is more succinct by an exponential factor [KV04].

Using the equivalence between AGCTA and ACTA, it follows that an AGCTA A can be translated
to a parity tree automaton with two parity sets whose size is polynomial in the size of A. Thus, the
emptiness problem for alternating generalized co–Büchi tree automata can be decided in exponential
time. This result is also complete, since we can reduce the emptiness problem for weak alternating
Büchi tree automata that is known to be EXPTIME–hard [KVW00].

To characterize the class of languages whose complement is accepted by generalized deterministic
Büchi tree automata (co–DGBTA) we use the generalized co–Büchi paradigm along with the request
that at least one path of an accepting run must be successful (∃–acceptance). This kind of “existential”
acceptance differs from the usual request for tree automata that all paths need to be successful in order
to accept. With respect to the emptiness problem, this “existential” acceptance condition is equivalent to
consider the tree automaton as a word automaton: each transition is split into several transitions (one for
each state successor). Thus, given a DGBTA A with n states and k accepting sets, we can construct a
Büchi word automaton B with O(nk) states such that the language accepted by B is empty if and only
if the complement of the language accepted by A is empty. Using the fact that for Büchi word automata
the emptiness problem is decidable in linear time [EL85], checking the emptiness for co–DGBTA can
be decided in quadratic time. We recall that an elegant characterization of co-DGBTA can be obtained
via weak alternating Büchi tree automata. Unfortunately, this characterization gives an exponential-
time algorithm to solving the emptiness problem for co–DGBTA, since the emptiness problem for weak
alternating Büchi tree automata is EXPTIME–complete [KVW00].

The rest of the paper is organized as follows. In Section 2, we give some basic definitions and recall
some results of the theory of finite automata on infinite trees. In Section 3, we recall the concept of alter-

S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata 5

nation and the main properties of alternating tree automata. In Section 4, we consider alternation along
with the generalized co–Büchi paradigm and compare the corresponding class of accepted languages
with the main classes of languages considered in the literature. In Section 5, we deal with the class of
languages whose complement is accepted by deterministic Büchi tree automata. Finally, we conclude
with few remarks in Section 6.

2. Preliminaries

Let Σ be an alphabet, k be a positive integer, and DOM = {0, 1, . . . , k − 1}∗. We define an infinite
k-ary Σ-tree t as a map t : DOM → Σ. The elements in DOM are the nodes of the tree, the empty
word ε corresponds to the root and for each w ∈ Dom, wi is its i-child for i ∈ {0, 1, . . . , k − 1}. In
the following, unless differently stated, an infinite k-ary Σ-tree will be referred to simply as a tree. Let
u, v ∈ DOM, we say that u precedes v, denoted as u < v, if there exists an x such that v = ux. Let
π ⊆ DOM, π is a path of a tree t if it is a maximal subset of DOM linearly ordered by <. If π is a path
of a tree t, then t/π denotes the restriction of the function t to the set π. We say that a symbol a ∈ Σ
occurs infinitely often in t/π if there exists an infinite number of nodes u ∈ π such that t(u) = a. The
set of symbols that occur infinitely often in t/π is denoted by Inf(t/π).

Given a tree t and a node u ∈ DOM, we define the subtree of t rooted at u as the tree tu such that
tu(v) = t(uv), for uv ∈ DOM. Let Σ be a finite alphabet, we denote by Tω

Σ the set of Σ-valued trees.
A language is a subset of Tω

Σ . Given a language L ⊆ Tω
Σ we denote with L the complement of L, that

is, L = Tω
Σ\L. In the following, we deal exclusively with binary trees (DOM = {0, 1}∗). All the results

we obtain also hold for k-ary trees, where k ≥ 2. According to the introduced notation, we use t0 and
t1 to denote, respectively, the subtrees of t rooted respectively at 0 and 1 (the two children of the root).
Moreover, we notice that in a binary tree each path corresponds to a unique word in {0, 1}ω. In particular,
with with π0 we denote the leftmost path 0ω.

A finite automaton on infinite trees (TA) is a tuple A = 〈Σ, Q, Q0, δ, F 〉 where Σ is the input al-
phabet, Q 6= ∅ is a finite set of states, Q0 ⊆ Q is the set of initial states, δ ⊆ Q × Σ × Q × Q is the
transition relation, and F specifies the acceptance condition (a condition that defines a subset of Qω,
we define several types of acceptance conditions below). Intuitively, each transition suggests a nonde-
terministic choice for the next configuration of the automaton. If |Q0| = 1 and δ is a total function
δ : Q×Σ → Q×Q, then A is a deterministic automaton (DTA). Given an input tree t, a run r of A on t
is a Q–tree such that r(ε) ∈ Q0, and (r(u), t(u), r(u0), r(u1)) ∈ δ, for all u ∈ DOM. With RunA(t) we
denote the set of runs of a TA A on a tree t. Clearly, if A is deterministic then |RunA(t)| = 1. Different
classes of languages are obtained defining different notions of successful run. A tree t is accepted by a
TA A if there exists a successful run r of A on t, that is, r satisfies the acceptance condition on all the
paths of t. We consider here the following conditions:

• a run r satisfies a generalized Büchi condition F = {F1, . . . , Fk} ⊆ 2Q iff for each path π of r
and for each set Fi ∈ F , Inf(r/π) ∩ Fi 6= ∅;

• a run r satisfies a generalized co–Büchi condition F = {F1, . . . , Fk} ⊆ 2Q iff for each path π of
r there is a set Fi ∈ F such that Inf(r/π) ⊆ Fi;

• a run r satisfies a Muller condition F = {F1, . . . , Fk} ⊆ 2Q iff for each path π of r, Inf(r/π) ∈
F ;

6 S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata

DBTA

MTA

DMTA BTA

GCTA

DGCTA

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 1. Relationships between (D)BTA, (D)MTA and (D)GCTA.

• a run r satisfies a Rabin condition F = {(B1, G1), . . . , (Bk, Gk)} ⊆ 2Q×Q iff for each path π of
r, there is a pair (Bi, Gi) ∈ F such that Inf(r/π) ∩Bi = ∅ and Inf(r/π) ∩Gi 6= ∅;

• given a partition F = {F1, F2, . . . , F2k}, k ≥ 1, of the set of states, a run r satisfies the parity
condition F iff for each path π of r the minimal index i for which Inf(r/π) ∩ Fi 6= ∅ is even.

In the following, we refer to the number k appearing in the acceptance condition as the index of the
corresponding automaton. Recall that Büchi and co–Büchi conditions are defined as the corresponding
generalized conditions defined above with index 1. With L(A) we denote the language accepted by a TA
A, that is, the set of accepted trees.

To denote the different types of tree automata, we will use acronyms of the form DXTA and XTA,
where X is one of B, GB, C, GC, M, R, P. The letter D stands for deterministic and the X is used to denote
the kind of acceptance condition: Büchi (B), generalized Büchi (GB), co-Büchi (C), generalized Co–
Büchi (GC), Muller (M), Rabin (R) and parity (P). For example, deterministic co–Büchi tree automata
are denoted by DCTA. We also use the same acronyms to denote the corresponding class of accepted
languages.

Figure 1 recalls the known relationships between all the considered classes of tree languages (au-
tomata) [Rab70, LMN02, Tho90, GTW02]. Since Rabin and parity conditions are equivalent to the
Muller condition, the classes of languages accepted by the corresponding tree automata coincide in both
the deterministic and nondeterministic paradigms. Thus, when we compare the class of languages we
only refer to MTA and DMTA, and the obtained results clearly apply to the other classes. Analogously,
since the class of languages (D)GBTA and (D)BTA coincide, in the language comparisons we only refer
to (D)BTA.

The following theorem summarizes the closure properties of the above classes of automata and lan-
guages [Tho90, LMN02].

Theorem 2.1.

• DMTA, DGBTA, and DGCTA are closed under intersection, but they are not closed under union
and complementation.

S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata 7

• GBTA and GCTA are closed under intersection and union, but they are not closed under comple-
mentation.

• MTA is closed under intersection, union, and complementation.

Given a tree automaton A, the emptiness problem for A is a well-known decision problem, used to
establish if the language accepted by A is empty. Dually, the universal problem for A is used to decide
if L(A) = Tω

Σ . In the following theorem, we recall some known results on the emptiness problems for
Büchi, generalized co–Büchi, Rabin, and parity tree automata.

Theorem 2.2.

• The emptiness problem for BTA is decidable [Rab70], and is LOGSPACE-complete for PTIME[VW86].

• The emptiness problem for GCTA is decidable and is in PTIME [LMN02].

• The emptiness problem for PTA is UP ∩ co–UP [Jur98] 1.

• The non-emptiness problem for RTA is NP-complete [Rab69, EJ88].

3. Alternating tree automata

Alternating automata generalize the notion of nondeterminism by allowing several successor states along
the same branch of the tree [MS87]. Muller and Schupp were the first to apply to tree automata the
concept of alternation, introduced by Chandra, Kozen, and Stockmeyer [CKS81]. Here we briefly recall
the basic definitions and refer to [MS95] for more details.

An alternating tree automaton is a TA with the transition relation defined as a function δ : Q×Σ →
B+(K ×Q), where K is the set of directions in the tree (K = {0, 1}, for binary trees) and B+(K ×Q)
is the set of all positive boolean combinations of pairs (d, q), where d is a direction and q is a state.

As an example, δ(q, a) = ((0, q0)∨(1, q1))∧(1, q0) means that the automaton has two nondetermin-
istic choices: one copy of the automaton proceeds to the 0-child of the current node entering state q0 and
another copy proceeds to the 1-child also entering state q0; or two copies proceed to the 1-child entering
respectively states q1 and q0. Hence, ∨ and ∧ in δ(q, a) represent, respectively, choice and concurrency.

A run of an alternating automaton on a binary tree t is a ({0, 1}∗×Q)–labeled (possibly non binary)
tree such that the root is labelled (ε, q0) and labels of each node and its successors must satisfy the
transition relation δ. For example, if t(ε) = a and δ(q0, a) = ((0, q1)∨ (0, q2))∧ ((0, q3)∨ (1, q2)), then,
a run r on t at level 1 must include a node labeled (0, q1) or a node labeled (0, q2), and must include a
node labeled (0, q3) or a node labelled (1, q2).

As for standard tree automata, we can couple different acceptance conditions to an alternating tree
automaton, defining different classes of languages and automata. To denote alternating automata, we use
a prefix “A” to the acronyms used so far. For example, we use ABTA to denote alternating Büchi tree
automata, as well as the class of languages accepted by these automata.

In [MS87], it is shown that while alternation does not give more expressive power to Büchi, Muller,
Rabin, Streett and parity paradigms, it gives more succinct automata as reported in the following theorem
known in literature as (simulation theorem).
1The class UP is a subset of NP, where each word accepted by the Turing machine has a unique accepting run

8 S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata

Theorem 3.1. (Simulation theorem [MS87]) There exists an effective procedure which, when given an
alternating Büchi, Muller, Rabin, Streett or parity tree automata produces an equivalent nondeterministic
Büchi, Muller, Rabin, Streett or parity tree automata, respectively. Moreover, the above procedure takes
exponential time for Büchi automata and double exponential time in the other cases.

In [Cho74], it is shown that GBTA and BTA are polynomially equivalent. In the next lemma, we
extend this result to the alternating paradigm. That is, given an AGBTA with m states and index k, we
can build a language equivalent ABTA with O(m(k + 1)) states.

Lemma 3.1. Given an AGBTA A, there exists an ABTA A′ accepting L(A) and whose size is polyno-
mial in the size of A.

Proof:
Let A = 〈Q,Σ, δ,Q0, {F1, . . . Fk}〉 be an AGBTA. Consider A′ = 〈Q×{0, . . . k},Σ, δ′, Q0×{0}, Q×
{k}〉 as an ABTA, such that, for each formula δ(q, σ) in A, the automaton A′ contains a formula
δ′(q, i, σ) obtained from δ(q, σ) by coupling each pair (q′, d) in δ(q, σ) with a value j as follows: (i)
j=0 if i = k, (ii) j = i + 1 if q ∈ Fj , or (iii) j = i otherwise. Thus, A′ enters an accepting state if at
least one state for all accepting sets from A has been visited infinitely often. Thus, L(A′) = L(A) and
the size of A′ is polynomial in the size of A. ut

Directly from the previous result we obtain the following.

Corollary 3.1. The simulation theorem holds for AGBTA.

In [MS87], Muller and Schupp introduced weak alternating Büchi tree automata (WABTA) as a
special case for ABTA. In a WABTA, we have a Büchi acceptance condition F ⊆ Q and there exists a
partition of Q into disjoint sets, Q1, . . . , Qm, such that for each set Qi, either Qi ⊆ F , in which case Qi

is an accepting set, or Qi ∩ F = ∅, in which case Qi is a rejecting set. In addition, there exists a partial
order ≤ on the collection of the Qi’s such that for every q ∈ Qi and q′ ∈ Qj for which δ(q, σ, q′, q′′)
or δ(q, σ, q′′, q′) occurs, we have Qj ≤ Qi. Thus, transitions from a state in Qi lead to states in either
the same set Qi or in a lower one. It follows that every infinite path of a run of a WABTA ultimately
gets “trapped” within some Qi . The path then satisfies the acceptance condition if and only if Qi is an
accepting set.

The main properties about weak alternating Büchi, alternating Büchi, and alternating parity tree au-
tomata are summarized in the following theorem. We recall that an alternating automaton is deterministic
if and only if the transition relation δ does not use ∨ [MS95].

Theorem 3.2.

• Given an A(D)BTA (resp., an A(D)PTA) A, there exists a (D)BTA (resp., a (D)PTA) accepting
L(A), whose size is exponential in the size of A [MS87].

• The emptiness problem for (W)ABTA is EXPTIME–complete [KVW00, MS87].

• The emptiness problem for APTA is in EXPTIME [EJ91, Wil01].

Directly from Lemma 3.1 and Theorem 3.2 we also get the following result.

S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata 9

Corollary 3.2. The emptiness problem for AGBTA is decidable in exponential time.

As discussed in [MS87], an advantage of using alternation is that one can complement an alternating
automaton by dualizing its transition function and acceptance condition. Formally, given a transition
function δ, let δ̃ denote the dual function of δ. That is, for every ϕ ∈ δ, we have ϕ̃ in δ̃, where ϕ̃ is
obtained by ϕ switching ∨ and ∧ and by switching true and false. The dual of an acceptance condition
F , denoted as F̃ , is a condition that holds exactly on all the runs on which F does not hold. In particular,
by denoting with Ã = 〈Q,Σ, δ̃, Q0, F̃ 〉 the dual automaton of an automaton A = 〈Q,Σ, δ,Q0, F 〉, the
following holds.

Theorem 3.3. [MS87] For an ABTA A, the ACTA Ã accepts L(A), and viceversa.

4. Alternating generalized co–Büchi tree automata

In this section, we deal with alternating tree automata along with the generalized co–Büchi paradigm
(AGCTA, for short). The definition of duality given in the previous section, along with the result shown
in Theorem 3.3 makes this class a suitable choice for a direct characterization of the class of languages
whose complement is in AGBTA, as pointed out in the following.

Corollary 4.1. Given an AGBTA A, its dual Ã is an AGCTA accepting L(A), and viceversa, given an
AGCTA A, its dual Ã is an AGBTA accepting L(A).

Since A(G)CTA accepts the class of languages whose complement is accepted by (G)BTA, in the
following, we also denote the class of languages accepted by A(G)CTA as co–(G)BTA. Lemma 4.1
shows that the class of languages accepted by AGCTA is polynomially equivalent to that accepted by
ACTA.

Lemma 4.1. Given an AGCTA A, there exists an ACTA A′ accepting L(A) and whose size is polyno-
mial in the size of A.

Proof:
Let A be an AGCTA, from Corollary 4.1, it follows that there exists an AGBTA B such that L(B) =
L(A). From Lemma 3.1, it is possible to build an ABTA B′ whose size is polynomial in the size
of B such that L(B) = L(B′). From Theorem 3.3, there exists an ACTA A′ dual to B′ such that
L(B′) = L(A′). Thus, L(A′) = L(B′) = L(B) = L(A) and the size of A′ is polynomial in the size of
A, from the definition of duality. ut

The above lemma is useful to show the following result.

Theorem 4.1. The emptiness problem for AGCTA is EXPTIME–complete.

Proof:
We first show that given an AGCTA A there exists an APTA B accepting L(A) and whose size is
polynomial in the size of A. From Lemma 4.1, we first translate A into an ACTA A′, whose size is
polynomial in the size of A. Let A′ = 〈Q,Σ, δ,Q0, {F}〉 be the obtained ACTA. An APTA accepting

10 S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata

L(A′) is the automaton B = 〈Q,Σ, δ,Q0, {Q\F, F}〉. Thus, for the emptiness problem for AGCTA
membership to EXPTIME follows from the fact that the size of B is linear in the size of A′, the size of A′

is polynomial in the size of A, and the emptiness problem for APTA is in EXPTIME (see Theorem 3.2).
For the lower bound, we observe that each weak alternating Büchi tree automaton A can be translated

into a language equivalent alternating co–Büchi tree automaton by simply interpreting its acceptance set
as a co–Büchi condition. In fact, by the structure of the transition relation of a WABTA and the property
that each set of the partition of its states is either contained into or disjoint from the acceptance set, we get
that, along the paths of an accepting run of A, the states that repeat infinitely often are only states within
the acceptance set. Since the emptiness problem for weak alternating Büchi tree automata is EXPTIME–
hard [KVW00], we get that the emptiness problem for ACTA, and thus AGCTA, is EXPTIME-hard. ut

Directly from the above result, we also obtain the following.

Corollary 4.2. The universality problem for GBTA is EXPTIME-complete.

Proof:
The upper bound follows from Corollary 4.1 and from the fact that the emptiness problem for AGCTA
is decidable in exponential time (Theorem 4.1). For the lower bound, we observe that the universality
problem for automata on finite trees is EXPTIME–hard [Sei90]. ut

We now study the relationships between co–BTA and the classes of languages we have introduced
in the previous sections. For this purpose, in Figure 2 we list some languages along with their ranking
relatively to the classification illustrated in Figure 1. For more details see [LMN02]. For all these
languages we assume that Σ = {a, b}. Since the classes of languages co–GBTA, co–BTA, AGCTA, and
ACTA coincide, in the following we only use co–BTA to refer to this class.

Languages Ranking

L1 = {t ∈ Tω
Σ | ∃ π, either a 6∈ Inf(t/π) or b 6∈ Inf(t/π)} (GCTA ∩ BTA) \ DMTA

L1 = {t ∈ Tω
Σ | ∀ π, a ∈ Inf(t/π) and b ∈ Inf(t/π)} DBTA \ GCTA

L2 = {t ∈ Tω
Σ | ∀ π, either a 6∈ Inf(t/π) or b 6∈ Inf(t/π)} DGCTA \ BTA

L2 = {t ∈ Tω
Σ | ∃ π, a ∈ Inf(t/π) and b ∈ Inf(t/π)} BTA \ GCTA

L3 = {t ∈ Tω
Σ | a 6∈ Inf(t/π0)} (BTA ∩ GCTA ∩ DMTA) \ DBTA

L3 = {t ∈ Tω
Σ | a ∈ Inf(t/π0)} DBTA

Figure 2. Some tree languages and their classification [LMN02].

Lemma 4.2. co–BTA * GCTA.

Proof:
This result can be shown using the languages L1 and L1. From the table in Figure 2, we know that L1 ∈
BTA, thus L1 ∈ co–BTA, while L1 6∈ GCTA. ut

Directly from the non–equivalence between generalized co–Büchi and alternating generalized co–
Büchi paradigms shown in Lemma 4.2, we get the following important result for the latter.

S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata 11

Theorem 4.2. The simulation theorem does not hold for alternating generalized co–Büchi tree automata.

The following lemma states the results of all the remaining comparisons involving the class co–BTA.
The complete picture of the relationships among all discussed classes is given in Figure 3.

Lemma 4.3.

1. GCTA ⊂ co–BTA.

2. DMTA ⊂ co–BTA.

3. BTA and co–BTA are not comparable.

4. co–BTA 6⊆ (GCTA ∪ BTA ∪ DMTA).

5. (BTA \ (GCTA ∪ DMTA)) ∩ co–BTA 6= ∅.

6. BTA ∪ co–BTA ⊂ MTA.

Proof:
To prove that GCTA⊆ co–BTA, we recall that any GCTA A is also an AGCTA, and thus, from Theorem
3.3, L(A) is the complement of a language accepted by the AGBTA B dual of A. Thus, the result
follows from the fact that the generalized Büchi paradigm is equivalent to Büchi. Strict containment is a
consequence of Lemma 4.2. Thus part 1 holds.

To prove that DMTA ⊆ co–BTA, we first observe that on a tree t, a deterministic tree automaton
can only check that the acceptance condition holds on a fixed path of t, or on all paths of t. Thus,
given a DMTA M , L(M) consists of all trees such that the acceptance condition of M does not hold
on a fixed path or on a nondeterministicly selected path of t. Since a nondeterministic selection can be
easily done in BTA, and since on a single path the deterministic Muller paradigm is equivalent to the
nondeterministic Büchi one (see [Tho90]), we conclude that L(M) is in BTA, thus, L(M) is in co–BTA.
Moreover, since GCTA ⊆ co–BTA and DMTA ⊆ co–BTA but GCTA and MTA are not comparable (see
Figure 1), we get that part 2 holds.

Part 3 follows directly from the non–closure under complementation of BTA (Theorem 2.1).
To prove part 4, we use the language L = {t ∈ Tω

Σ | t0 ∈ L1 and t10 ∈ L2 and t11 ∈ L1} (we
recall that t0, t10, t11 are, respectively, the left subtree of t, the left subtree of t1 and the right subtree
of t1). Since L1 6∈DMTA, L2 6∈BTA, and L1 6∈GCTA (see the table in Figure 2), we obtain that L is
not in (BTA ∪ GCTA ∪ DMTA). We conclude this part by noticing that L is accepted by a BTA that
nondeterministically checks that either t0 is in L1, t10 is in L2, or t11 is in L1. Indeed, from table 2 we
recall that L1, L2, and L1 are in BTA.

To prove part 5, we use the language L = {t ∈ Tω
Σ | t0 ∈ L1 and t1 ∈ L1}. From the table in

Figure 2 and the relationships among the introduced classes of languages shown in Figure 1, it follows
that L is in BTA \ (GCTA ∪ DMTA). To prove that L is also in co–BTA we notice that L is accepted by
a BTA that nondeterministically checks that either t0 is in L1, or t1 is L1.

Finally, to prove part 6 we use the language L = {t ∈ Tω
Σ | t0 ∈ L2 and t1 ∈ L2}. From the table

in Figure 2 and from Figure 1, it follows that L is in MTA since L2 is in DGCTA, L2 is in BTA and
DGCTA ∪ BTA is in MTA. On the other hand, L is not in BTA since L2 is not in BTA. Moreover, for
L in co–BTA, L must be in BTA, and thus, there must be a BTA that nondeterministically checks that

12 S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata

BTADBTADMTA

GCTA

MTA

co−BTA

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 3. Summary of the comparisons involving co–BTA.

either t0 is in L2 or t1 is in L2. From table in Figure 2, it is not possible, since L2 is not in BTA. Hence,
L ∈ MTA \(BTA ∪ co–BTA). ut

5. co–DGBTA

In this section, we deal with the class of languages whose complement is deterministically accepted by
generalized Büchi tree automata (co–DGBTA, for short). We study the relationships of co–DGBTA with
the other classes introduced so far and the complexity of the emptiness problem. Clearly, from the results
obtained in the previous sections, the fact that DGBTA is polynomially equivalent to DBTA, and the fact
that DBTA is a special case of BTA, it follows that the emptiness problem for co–DGBTA can be solved
in exponential time. Here, we prove that this problem is indeed decidable in polynomial time.

The first example of class within BTA closed under complementation has been the remarkable char-
acterization by Rabin [Rab72] of languages defined by a formula of weak monadic logic (where only
quantifiers over finite sets are allowed): A language L is weakly definable if and only if both L and its
complement L are accepted by Büchi tree automata. In [MS87], it is shown that a language is weakly
definable if and only if it is accepted by a weak alternating Büchi tree automaton. The class of languages
accepted by these automata includes co–DBTA. In general, we have the following strict containment.

Lemma 5.1. DBTA ∪ co–DBTA ⊂ WABTA.

Proof:
Let L = {t ∈ Tω

Σ | t0 ∈ L3 and t1 ∈ L3}, where L3 and L3 are given in Figure 2. Since L3 is in BTA
and L3 is in DBTA, L is in BTA. On the other hand, L is not in DBTA, since L3 is not in DBTA. Notice
now that L contains trees t such that either t0 ∈ L3 or t1 ∈ L3. By the same reasoning as above, it
follows that L is in BTA and since L3 is not in DBTA, also L is not. Thus, L is also not in co–DBTA.
Notice that since L and L are in BTA, then L is accepted by a WABTA. Hence, L ∈ WABTA \(DBTA
∪ co–DBTA). ut

Recall that an alternating automaton is deterministic if and only if the transition relation δ does
not use ∨ [MS95]. Directly form this definition and from the fact that complementing a WABTA by

S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata 13

dualization gives an automaton with the same paradigm [MS87], we get the following characterization
for co–DBTA.

Corollary 5.1. Each language in co–DBTA is accepted by a WABTA whose transition relation contains
only disjunctions.

From Theorem 3.2, it follows that the emptiness problem for co–DBTA with the characterization
given by Corollary 5.1 can be solved in exponential time. As we show in the following, this complexity
can be reduced to a polynomial if we use a direct approach. First observe that a tree is not accepted by a
DGBTA A if and only if the unique run r of A on t contains a path π that does not satisfy the acceptance
condition. Thus, it is possible to characterize the complement of a language accepted by a DGBTA
A with an automaton that, for each tree, nondeterministically selects a path and then deterministically
checks that π does not satisfy the acceptance condition of A. This last corresponds to check that π
satisfies the generalized co–Büchi condition obtained dualizing the acceptance condition of A. Thus,
we modify the definition of accepting run. Given a tree t and a GCTA B with an accepting condition
F = {F1, . . . , Fk}, we say that a run r ∈ RunB(t) is ∃–successful if there exists a path π of r, such
that Inf(r/π) ⊆ Fi for some Fi ∈ F . A tree t is ∃–accepted by B if there exists an ∃–successful run
of B on t. The language ∃–accepted by B is denoted by L∃(B). In the next lemma, we show that the
∃–acceptance along with the generalized co–Büchi paradigm suffices to accept co–DGBTA.

Lemma 5.2. Given a DGBTA B, there exists a DGCTA A such that L∃(A) = L(B). Moreover, if B is
DBTA then A is DCTA.

Proof:
Let L be a language whose complement is accepted by a DGBTA B = 〈Q,Σ, δ,Q0, {F1, . . . , Fk}〉.
Let A = 〈Q,Σ, δ,Q0, {Q\Fi | i = 1, . . . , k}〉 be a DGCTA. A tree t 6∈ L(B) if and only if the only
run r in RunB(t) (B is deterministic) is not successful. That is, r contains at least a path π such that
Inf(r/π) ∩ Fi = ∅, for some i. Thus, by the definition of ∃-acceptance, t 6∈ L(B) if and only if
t ∈ L∃(A). ut

With respect to the emptiness problem, notice that the characterization of co–DGBTA via “existen-
tial” tree automata is equivalent to consider tree automata as word automata2. In more details, given a
DGBTA B, consider a generalized co-Büchi word automaton C that is obtained from B by dualizing the
acceptance condition and splitting each transition into several transitions, one for each state successor.
That is, for each transition (s, σ, s′, s′′) of B, we get two transitions (s, σ, s′) and (s, σ, s′′) of C. It is
easy to verify that there is a tree that is not accepted by B if and only if there is a word accepted by C.
Using this observation, we get an efficient algorithm for solving the emptiness problem for co–DGBTA.
First, we notice that a generalized co-Büchi word automaton can be easily translated into a language
equivalent generalized Büchi word automaton whose size is linear in the size of the starting automaton.
Thus, given a DGBTA B with n states and k accepting sets, we can construct a Büchi word automaton
A with O(nk) states such that the language accepted by A is empty if and only if the complement of the
language accepted by B is empty. Since the emptiness problem for Büchi word automata is decidable in

2Tree automata generalize word automata, in the sense that a word is a tree of arity 1. Thus, we omit a formal definition of
word automata here.

14 S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata

linear time [EL85], we get that checking for the emptiness of L(B) can be done in O(nk) time. Thus,
the following theorem holds.

Theorem 5.1. Given a DGBTA B with n states and index k, checking if L(B) is empty can be done in
O(nk) time.

The rest of the section is devoted to compare co-DGBTA with the other classes considered in this
paper.

Lemma 5.3. Given a DGBTA B, there exists a GCTA A such that L(A) = L(B). Moreover, if B is
DBTA then A is CTA.

Proof:
Let L be a language whose complement is accepted by a DGBTA B = 〈Q,Σ, δ,Q0, {F1, . . . , Fk}〉.
We build a GCTA A that nondeterministically selects a path and on this path checks that the acceptance
condition of B does not hold. Formally, A = 〈{q} ∪ Q,Σ, δ′, Q0, {{q} ∪ Q\Fi | i = 1, . . . , k}〉 be a
GCTA, where q 6∈ Q and δ′ is defined as follows. For each (s, σ, s′, s′′) ∈ δ, the transition relation δ′

contains (s, σ, q, s′′) and (s, σ, s′, q); moreover, δ′ contains (q, σ, q, q). A tree t 6∈ L(B) if and only if
the only run r in RunB(t) (B is deterministic) is not successful. That is, r contains at least a path π such
that Inf(r/π) ∩ Fi = ∅, for some i. Thus, there exists a run r in RunA(t) such that for each path π,
either Inf(r/π) = {q} or there is an i such that Inf(r/π) ⊆ Q\Fi. Hence, t 6∈ L(B) if and only if
t ∈ L(A). ut

From the above construction, notice that co–DGBTA can be linearly characterized by GCTA. In the
next lemma, we show that co–DGBTA can be polynomially characterized by BTA (notice that it is linear
starting from co–DBTA).

Lemma 5.4. Given a DGBTA B, there exists a BTA A accepting L(B), whose size is polynomial in the
size of B.

Proof:
By [Cho74], we can restrict to DBTA. Let L be a language whose complement is accepted by a DBTA
B = 〈Q,Σ, δ,Q0, F 〉. We build a BTA A that nondeterministically selects a path and on this path
checks that the acceptance condition of B does not hold. Formally, A = 〈Q′, Σ, δ′, Q′

0, F
′〉 is such

that (i) Q′ = Q×{0, 1, 2}; (ii) Q′
0 = Q0×{0}; (iii) F ′ = Q×{1, 2}; (iv) if (s, σ, s′, s′′) ∈ δ, the

transition relation δ′ contains: ((s, 0), σ, (s′, h), (s′′, 1)) and ((s, 0), σ, (s′, 1), (s′′, h)), for h ∈ {0, 2},
((s, 1), σ, (s′, 1), (s′′, 1)), ((s, 2), σ, (s′, 2), (s′′, 1)) for s′ ∈ Q \ F , and ((s, 2), σ, (s′, 1), (s′′, 2)) for
s′′ ∈ Q \ F . First, observe that size of A is linear in the size of B. Moreover, A accepts a tree t if and
only if, for the only run r of B on t (B is deterministic), there exists a path π of r on which final states
of B occur only finitely often. This is done by nondeterministically selecting a path π (unselected paths
are marked with 1 in the second component of the states) and then checking that the property holds on
π. For this purpose, on the selected path the second component of the states is nondeterministically set
to 2. Once 2 is entered the run stops unless only states in Q \ F are met on the selected path. Thus,
L(B) = L(A), and the lemma is shown. ut

S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata 15

BTADBTA

MTA

DMTA

GCTA

DGCTA co−DBTA

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 4. Summary of the comparisons involving co–DBTA.

Let us observe that the characterizations of co–DGBTA given in Lemmas 5.3 and 5.4 yield solutions
to the emptiness problem for co–DGBTA via reductions to the same problem for GCTA and BTA, re-
spectively. Since the best known upper bounds on the time complexity of the emptiness problem for
GBTA and GCTA are both quadratic in the number of states and linear in the index of the automaton
[Rab70, LMN02], the time complexity resulting from these approaches is asymptotically worse than the
upper bound stated in Theorem 5.1.

In the following lemmas, we complete the comparisons involving co–DBTA and the classes GCTA,
(D)BTA and DMTA. The complete picture of the comparisons is given in Figure 4.

Lemma 5.5. co–DBTA⊂GCTA∩BTA.

Proof:
The inclusion co–DBTA⊆GCTA∩BTA is a direct consequence of Lemmas 5.3 and 5.4. To complete
the proof, we only need to show that there exists a language in (BTA∩GCTA)\ co–DBTA. Let L be
the language defined as {t ∈ Tω

Σ | t0 ∈ L1 and t1 ∈ L1}. Since L1 ∈BTA∩GCTA, L is also in
BTA∩GCTA. To show that L is not in co–DBTA, we prove that the language L = {t ∈ L | t0 ∈ L1

or t1 ∈ L1}, corresponding to its complement, is not in DBTA. Assume that there exists a DBTA B
accepting L. Let t ∈ L such that t0 ∈ L1 and t1 ∈ L1, and let r be a successful run from RunB(t).
Consider now a tree t′ obtained from t by exchanging the two subtrees t0 and t1, that is t′0 = t1 and
t′1 = t0. Obviously, t′ ∈ L. Denoting by r′ a successful run of B on t′, replace t′1 for t1 in t, and call
the obtained tree t′′. Clearly, t′′ 6∈ L. Since B is deterministic, and r and r′ are both successful runs, we
have that replacing r′1 for r1 in r, we obtain a successful run of B on t′′. Thus, t′′ ∈ L(B) and hence we
get a contradiction. ut
Lemma 5.6.

1. (a)co–DBTA ∩ DBTA 6= ∅;
(b)co–DBTA ∩ (DMTA \ DBTA) 6= ∅;
(c)co–DBTA \ DMTA 6= ∅.

2. (a)((BTA ∩ GCTA ∩ DMTA) \ DBTA) 6⊆ co–DBTA;
(b)((BTA ∩ GCTA) \ DMTA) 6⊆ co–DBTA.

16 S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata

Proof:
Consider first part 1. To prove statement (a), we use the language L = {t ∈ Tω

Σ | ∀ x ∈ π0, t(x) = a}
and L = {t ∈ Tω

Σ | ∃i ∈ π0 such that t(i) = b}. We first notice that both L and L are in DBTA.
Indeed the DBTA accepting L is B = 〈{qa, qb, q}, {a, b}, δ, {qa}, {qa, q}〉 where δ = {(qa, a, qa, q),
(qa, b, qb, q) (qb, x, qb, q), (q, x, q, q) | x ∈ Σ}, while the DBTA accepting L is the automaton B with
acceptance condition {qb, q}. Finally, from the fact that L ∈DBTA we also have that L ∈ co–DBTA.
To prove statement (b), we use L3 which is in DMTA \DBTA and L3 which is in DBTA (see table in
Figure 2). For statement (c) we use L1 which is not in DMTA and L1 which is in DBTA (see table in
Figure 2). Thus, L1 is in co–DBTA.

Consider now part 2. To prove statement (a) we use L = {t ∈ Tω
Σ | t0 ∈ L3 and t1 ∈ L3}.

From the ranking of L3 (see Figure 2), L ∈ ((BTA∩GCTA∩DMTA) \ DBTA). Notice that L contains
trees t such that either t0 ∈ L3 or t1 ∈ L3. From a reasoning analogously to that used in the proof
of Lemma 5.5, it follows that L cannot be accepted by a DBTA. Thus, L 6∈ co–DBTA. For statement
(b) we use L = {t ∈ L | t0 ∈ L1 and t1 ∈ L1}. Since L1 ∈ (BTA∩GCTA) \ DMTA, also L is in
(BTA∩GCTA) \ DMTA. L contains trees t such that either t0 ∈ L1, or t1 ∈ L1. Thus, as before, L is
not in DBTA and, thus, L 6∈ co–DBTA.

6. Conclusion

Büchi and co–Büchi conditions are of interest for expressing requirements over nonterminating computa-
tions [GTW02]. For example, consider a drink-dispenser machine, we may want to express a requirement
such as “users can always choose in the future coffee or tea” (typically a Büchi condition). In system
verification, we may want to prove that the computations of a system do not violate a requirement. In
particular, in the automata theoretic approach, given a system model S and its specification ϕ, we can
construct an automaton A capturing the computations of S and an automaton B capturing the negation of
ϕ. Thus, S is correct with respect to ψ if L(A)∩L(B) is empty [VW86, VW94]. In the above example,
the negation of the assertion consists of requiring that “users can be prevented from choosing both coffee
and tea from a given point on” (a co–Büchi condition). Thus, to prove a model A of the drink-dispenser
correct with respect to the first requirement, we can model the second requirement as a tree automaton
with co–Büchi acceptance and check if its intersection with A is empty.

In this paper, we have dealt with co–Büchi acceptance for branching time specifications. As a charac-
terization of this class we have considered alternating generalized co–Büchi tree automata (AGCTA). We
have compared the corresponding class of tree languages with the main classes of languages accepted by
tree automata, showing interesting relationships. In particular, it is worth to remark that this class strictly
contains the class accepted by co–Büchi tree automata and is not comparable with that characterized via
Büchi tree automata. As a consequence of the first result we obtain that the simulation theorem does not
hold for the co–Büchi acceptance condition on tree automata.

We have also investigated the emptiness problem for AGCTA and its sub-class of languages whose
complement is accepted by deterministic generalized Büchi tree automata (co–DGBTA). For the general
class, using a simple translation to parity automata, we have proved that the emptiness for AGCTA is
in EXPTIME. This results is also complete since the emptiness problem for weak alternating Büchi
tree automata is EXPTIME-hard. For the class co–DGBTA, we have shown a better bound, that is,
the emptiness problem is decidable in quadratic time. For this purpose, we have used a linear-time

S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata 17

characterization of this class of languages via generalized co-Büchi tree automata. In particular, given a
deterministic generalized Büchi tree automaton A with n states and index k, we can check the emptiness
for the complement of L(A) in time O(nk).

References

[AFF+02] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,
E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The ForSpec temporal logic: A new tem-
poral property-specification logic. In Proc. 8th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, volume 2280 of Lecture Notes in Computer Science, pages
296–211, Grenoble, France, April 2002. Springer-Verlag.

[BBE+01] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The temporal logic sugar. In
Proc. 13th International Conference on Computer Aided Verification, volume 2102 of Lecture Notes
in Computer Science, pages 363–367, Paris, France, July 2001. Springer-Verlag.

[BL80] Janusz A. Brzozowski and Ernst L. Leiss. On equations for regular languages, finite automata, and
sequential networks. Theor. Comput. Sci., 10:19–35, 1980.

[Büc62] J.R. Büchi. On a decision method in restricted second-order arithmetic. In Proceedings of the In-
ternational Congress on Logic, Methodology, and Philosophy of Science 1960, pages 1–12. Stanford
University Press, 1962.

[Cho74] Y. Choueka. Theories of automata on ω-tapes: a simplified approach. Journal of Computer and
System Sciences, 8:117–141, 1974.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the ACM, 28(1):114 – 133,
1981.

[EJ88] E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics of programs. In Proceedings
29th Annual IEEE Symp. on Foundations of Computer Science, FOCS’88, pages 328 – 337, 1988.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In Proceedings 32nd
Annual IEEE Symp. on Foundations of Computer Science, FOCS’91, pages 368–377, 1991.

[EL85] E.A. Emerson and C.L. Lei. Modalities for model-checking: Branching time logic strikes back. In
Proceedings of the 12th ACM Symposium on Principles of Programming Languages, pages 84–96,
1985.

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear
temporal logic. In Protocol Specification Testing and Verification, pages 3 – 18. Chapman & Hall,
1995.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A Guide to
Current Research, volume 2500 of LNCS, 2002.

[Jur98] Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Information Processing
Letters, 68(3):119–124, 1998.

[Kur94] R.P. Kurshan. Computer-aided Verification of Coordinating Processes: the automata-theoretic ap-
proach. Princeton University Press, 1994.

[KV98] O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism: from linear-time to branching-
time. In Proc. 13th IEEE Symp. on Logic in Computer Science, pages 81–92, June 1998.

18 S. La Torre, A. Murano / Reasoning about co–Büchi Tree Automata

[KV04] O. Kupferman and M.Y. Vardi. From complementation to certification. In 10th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems, LNCS. Springer-Verlag,
2004.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model
checking. Journal of the ACM, 47(2):312–360, 2000.

[Lan69] L. H. Landweber. Decision problems for ω-automata. Mathematical System Theory, 3:376–384,
1969.

[LMN02] S. La Torre, A. Murano, and M. Napoli. Weak muller acceptance condition for tree automata. In 3rd
Workshop in Verification, Model Checking, and Abstract Interpretation, VMCAI 2002. LNCS, volume
2294: 240-254, 2002.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information and
Control, 9:521–530, 1966.

[Mos84] A. Mostowski. Regular expressions for innite trees and a standard form of automata. 1984.

[MS87] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoretical Computer Science,
54:267–276, 1987.

[MS95] D. E. Muller and P. E. Schupp. Simulating alternating tree automata by nondeterministic automata:
new results and proofs of theorems of Rabin, McNaughton, and Safra. Theoretical Computer Science,
141:69–107, 1995.

[Rab69] M.O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math.
Soc., 141:1 – 35, 1969.

[Rab70] M.O. Rabin. Weakly definable relations and special automata. Mathematical Logic and Foundations
of Set theory, 1970.

[Rab72] M.O. Rabin. Automata on infinite objects and church’s problem. Trans. Amer. Math. Soc., 1972.

[Sei90] H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal of Computing, 19:424–437,
1990.

[Tho90] W. Thomas. Automata on infinite objects. In J.van Leeuwen, editor, Handbook of Theoretical Com-
puter Science, Vol.B, pages 133 – 191. 1990.

[VW86] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. Journal of
Computer and System Sciences, 32:182 – 211, 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation,
15:1 – 37, 1994.

[Wil01] Thomas Wilke. Alternating tree automata, parity games, and modal µ-calculus. Bull. Soc. Math.
Belg., 8(2), May 2001.

