
Balanced Paths in Colored Graphs?,??

A. Bianco, M. Faella, F. Mogavero, and A. Murano

Università degli Studi di Napoli "Federico II", Italy
{alessandrobianco, mfaella, mogavero, murano}@na.infn.it

Abstract. We consider finite graphs whose edges are labeled with elements, called
colors, taken from a fixed finite alphabet. We study the problem of determining whether
there is an infinite path where either (i) all colors occur with the same asymptotic fre-
quency, or (ii) there is a constant which bounds the difference between the occurrences
of any two colors for all prefixes of the path. These two notions can be viewed as re-
finements of the classical notion of fair path, whose simplest form checks whether all
colors occur infinitely often. Our notions provide stronger criteria, particularly suit-
able for scheduling applications based on a coarse-grained model of the jobs involved.
We show that both problems are solvable in polynomial time, by reducing them to the
feasibility of a linear program.

1 Introduction

In this paper, a colored graph is a finite directed graph whose edges are labeled with tags
belonging to a fixed finite set of colors. For an infinite path in a colored graph, we say that
the asymptotic frequency of a color is the long-run average number of occurrences of that
color. Clearly, a color might have no asymptotic frequency on a certain path, because its
long-run average oscillates. We introduce and study the problem of determining whether
there is an infinite path in a colored graph where each color occurs with the same asymptotic
frequency. We call such a path balanced. The existence of such a path in a given colored
graph is called the balance problem.

Then, we consider the following stronger property: a path has the bounded difference
property if there is a constant c such that, at all intermediate points, the number of occur-
rences of any two colors up to that point differ by at most c. The existence of such a path is
called the bounded difference problem for a given graph. It is easy to prove that each bounded
difference path is balanced. Moreover, each path that is both balanced and ultimately peri-
odic (i.e., of the form σ1 ·σω

2 , for two finite paths σ1 and σ2) is also a bounded difference
path. However, there are paths that are balanced but do not have the bounded difference
property, as shown in Example 1.

We provide a loop-based characterization for each one of the mentioned decision prob-
lems. Both characterizations are based on the notion of balanced set of loops. A set of simple
loops in the graph is balanced if, using those loops as building blocks, it is possible to build
a finite path where all colors occur the same number of times.
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We prove that a graph satisfies the balance problem if and only if it contains a balanced
set of loops that are mutually reachable (Theorem 1). Similarly, a graph satisfies the bounded
difference problem if and only if it contains a balanced set of loops that are overlapping, i.e.,
each loop has a node in common with another loop in the set (Theorem 2).

Using the above characterizations, for each problem we devise a linear system of equa-
tions whose feasibility is equivalent to the solution of the problem. Since the size of these
linear systems is polynomial, we obtain that both our problems are decidable in polynomial
time. Further, we can compute in polynomial time a finite representation of a path with the
required property. We also provide evidence that the problems addressed are non-trivial, by
showing that a closely related problem is NP-hard: the problem of checking whether there is
a perfectly balanced finite path connecting two given nodes in a graph.

We believe that the two problems that we study and solve in this paper are natural and
canonical enough to be of independent theoretical interest. Additionally, they may be re-
garded as instances of the well established notion of fairness.

Balanced paths as fair paths. Colored graphs as studied in this paper routinely occur in
the field of computer science that deals with the analysis of concurrent systems [MP91]. In
that case, the graph represents the transition relation of a concurrent program and the color of
an edge indicates which one of the processes is making progress along that edge. One basic
property of interest for those applications is called fairness and essentially states that, during
an infinite computation, each process is allowed to make progress infinitely often [Fra86].
Starting from this core idea, a rich theory of fairness has been developed, as witnessed by
the amount of literature devoted to the subject (see, for instance, [LPS81, Kwi89, dA00]).

Cast in our abstract framework of colored graphs, the above basic version of fairness asks
that, along an infinite path in the graph, each color occurs infinitely often. Such requirement
does not put any bound on the amount of steps that a process needs to wait before it is
allowed to make progress. As a consequence, the asymptotic frequency of some color could
be zero even if the path is fair. Accordingly, several authors have proposed stronger versions
of fairness. For instance, Alur and Henzinger define finitary fairness roughly as the property
requiring that there be a fixed bound on the number of steps between two occurrences of
any given color [AH98]. A similar proposal, supported by a corresponding temporal logic,
was made by Dershowitz et al. [DJP03]. On a finitarily fair path, all colors have positive
asymptotic frequency 1.

Our proposed notions of balanced paths and bounded difference paths may be viewed
as two further refinements of the notion of fair path. Previous definitions treat the frequen-
cies of the relevant events in isolation and in a strictly qualitative manner. Such definitions
only distinguish between zero frequency (not fair), limit-zero frequency (fair, but not fini-
tarily so), and positive frequency (finitarily fair). The current proposal, instead, introduces a
quantitative comparison between competing events.

Technically, it is easy to see that bounded difference paths are special cases of finitar-
ily fair paths. On the other hand, finitarily fair paths and balanced paths are incomparable
notions.

We believe that the two proposed notions are valuable to some applications, perhaps quite
different from the ones in which fairness is usually applied. Both the balance property and

1 For the sake of clarity, we are momentarily ignoring those paths that have no asymptotic frequency.
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the bounded difference property are probably too strong for the applications where one step
in the graph represents a fine-grained transition of unknown length in a concurrent program.
In that case, it may be of little interest to require that all processes make progress with the
same (abstract) frequency.

On the other hand, consider a context where each transition corresponds to some complex
or otherwise lengthy operation. As an example, consider the model of a concurrent program
where all operations have been disregarded, except the access to a peripheral that can only
be used in one-hour slots, such as a telescope, which requires some time for re-positioning.
Assuming that all jobs have the same priority, it is certainly valuable to find a scheduling
policy that assigns the telescope to each job with the same frequency.

As a non-computational example, the graph may represent the rotation of cultures on a
crop, with a granularity of 6 months for each transition [Wik09]. In that case, we may very
well be interested not just in having each culture eventually planted (fairness) or even planted
within a bounded amount of time (finitarily fair), but also occurring with the same frequency
as any other culture (balanced or bounded difference).

The rest of the paper is organized as follows. Section 2 introduces the basic definitions.
Section 3 establishes connections between the existence of balanced or bounded difference
paths in a graph and certain loop-based properties of the graph itself. Section 4 (respectively,
Section 5) exploits the properties proved in Section 3 to define a system of linear equations
whose feasibility is equivalent to the balance problem (resp., the bounded difference prob-
lem).

2 Preliminaries

Let X be a set and i be a positive integer. By X i we denote the Cartesian product of X with
itself i times. By N, Z, Q, and R we respectively denote the set of non-negative integer,
relative integer, rational, and real numbers. Given a positive integer k, let [k] = {1, . . . ,k} and
[k]0 = [k]∪{0}.

A k-colored graph (or simply graph) is a pair G = (V,E), where V is a set of nodes
and E ⊆ V × [k]×V is a set of colored edges. We employ integers as colors for technical
convenience. All the results we obtain also hold for an arbitrary set of labels. An edge (u,a,v)
is said to be colored with a. In the following, we also simply call a k-colored graph a graph,
when k is clear from the context. For a node v ∈ V we call vE = {(v,a,w) ∈ E} the set of
edges exiting from v, and Ev = {(w,a,v) ∈ E} the set of edges entering in v. For a color
a ∈ [k], we call E(a) = {(v,a,w) ∈ E} the set of edges colored with a. For a node v ∈ V ,
a finite v-path ρ is a finite sequence of edges (vi,ai,vi+1)i∈{1,...,n} such that v1 = v. The
length of ρ is n and we denote by ρ(i) the i-th edge of ρ. Sometimes, we write the path ρ as
v1v2 . . .vn, when the colors are unimportant. A finite path ρ = v1v2 . . .vn is a loop if v1 = vn.
A loop v1v2 . . .vn is simple if vi 6= v j, for all i 6= j, except for i = 1 and j = n. An infinite
v-path is defined analogously, i.e., it is an infinite sequence of edges. Let ρ be a finite path
and π be a possibly infinite path, we denote by ρ · π the concatenation of ρ and π. By ρω

we denote the infinite path obtained by concatenating ρ with itself infinitely many times. A
graph G is strongly connected if for each pair (u,v) of nodes there is a finite u-path with last
node v and a finite v-path with last node u.
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For a finite or infinite path ρ and an integer i, we denote by ρ≤i the prefix of ρ containing
i edges. For a color a ∈ [k], we denote by |ρ|a the number of edges labeled with a occurring
in ρ. For two colors a,b ∈ [k], we denote the difference between the occurrences of edges
labeled with a and b in ρ by diff a,b(ρ) = |ρ|a−|ρ|b. An infinite path π is periodic iff there
exists a finite path ρ such that π = ρω. A loop σ is perfectly balanced iff diff a,b(σ) = 0 for all
a,b ∈ [k]. Finally, we denote by 0 and 1 the vectors containing only 0’s and 1’s, respectively.
We can now define the following two decision problems.

The balance problem. Let G be a k-colored graph. An infinite path ρ in G is balanced if
for all a ∈ [k],

lim
i→∞

|ρ≤i|a
i

=
1
k
.

The balance problem is to determine whether there is a balanced path in G.

The bounded difference problem. Let G be a k-colored graph. An infinite path ρ in G has
the bounded difference property (or, is a bounded difference path) if there exists a number
c≥ 0, such that, for all a,b ∈ [k] and i > 0,

|diff a,b(ρ
≤i)| ≤ c.

The bounded difference problem is to determine whether there is a bounded difference path
in G.

3 Basic Properties
In this section, we assume that G = (V,E) is a finite k-colored graph, i.e., both V and E are
finite. In the following lemma, the proof of item 1 is trivial, while the proof of item 2 can be
found in the Appendix.

Lemma 1. The following properties hold:

1. if a path has the bounded difference property, then it is balanced;
2. a path ρ is balanced if and only if for all a ∈ [k−1],

lim
i→∞

diff a,k(ρ≤i)
i

= 0.

The following example shows that the converse of item 1 of Lemma 1 does not hold.

Example 1. For all i > 0, let σi = (1 · 2)i · 1 · 3 · (1 · 3 · 2 · 3)i · 1 · 3 · 3. Consider the infinite
sequence σ = ∏

ω
i=1 σi obtained by a hypothetic 3-colored graph. On one hand, it is easy to

see that for all i > 0 it holds diff 3,1(σi) = 1. Therefore, diff 3,1(σ1σ2 . . .σn) = n, and σ is not
a bounded difference path.

On the other hand, since the length of the first n blocks is Θ(n2) and the difference
between any two colors is Θ(n), in any prefix σ≤i the difference between any two colors is
in O(

√
i). According to item 2 of Lemma 1, σ is balanced. ut
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Two loops σ,σ′ in G are connected if there exists a path from a node of σ to a node of σ′,
and vice-versa. A set L of loops in G is connected if all pairs of loops in L are connected.
Two loops in G are overlapping if they have a node in common. A set L of loops in G is
overlapping if for all pairs of loops σ,σ′ ∈ L there exists a sequence σ1, . . . ,σn of loops in L
such that (i) σ1 = σ, (ii) σn = σ′, and (iii) for all i = 1, . . . ,n−1, (σi,σi+1) are overlapping.
Given a set of loops L in G, the subgraph induced by L is G′ = (V ′,E ′), where V ′ and E ′ are
all and only the nodes and the edges, respectively, belonging to a loop in L .

Lemma 2. Let G be a graph, L be a set of loops in G, and G′ = (V ′,E ′) be the subgraph of
G induced by L , then the following statements are equivalent:

1. L is overlapping.
2. The subgraph G′ is strongly connected.
3. There exists u ∈V ′ such that for all v ∈V ′ there exists a path in G′ from u to v.

Proof. [1⇒ 2] If L is overlapping, then, for all pairs of loops σ1,σ2, there exists a sequence
of loops that links σ1 with σ2. Thus, from any node of σ1, it is possible to reach any node of
σ2. Hence, G′ is strongly connected.

[2⇒ 3] Trivial.
[3⇒ 2] Let u ∈V ′ be a witness for (3). Let v,w ∈V ′, we prove that there is a path from

v to w. We have that u is connected to both v and w. Since all edges in G′ belong to a loop,
for all edges (u′, ·,v′) along the path from u to v there is a path from v′ to u′. Thus, there is a
path from v to u, and, as a consequence, a path from v to w, through u.

[2⇒ 1] If G′ is strongly connected, for all σ1,σ2 ∈ L there is a path ρ in G′ from any
node of σ1 to any node of σ2. This fact holds since G′ is induced by L , so ρ uses only edges
of the loops in L . While traversing ρ, every time we move from one loop to the next, these
two loops must share a node. Therefore, all pairs of adjacent loops used in ρ are overlapping.
Thus L is overlapping. ut

The above lemma implies that if L is overlapping then it is also connected, since G′ is
strongly connected.

For all finite paths ρ of G, with a slight abuse of notation let diff (ρ) = (diff 1,k(ρ), . . . ,
diff k−1,k(ρ)) be the vector containing the differences between each color and color k, which
is taken as a reference. We call diff (ρ) the difference vector of ρ 2. For all finite and infinite
paths ρ we call difference sequence of ρ the sequence of difference vectors of all prefixes of
ρ, i.e., {diff (ρ≤n)}n∈N. Given a finite set of loops L = {σ1, . . . ,σl} and a tuple of positive
natural numbers c1, . . . ,cl , we call natural linear combination (in short, n.l.c.) of L with
coefficients c1, . . . ,cl the vector x = ∑

l
i=1 cidiff (σi).

A loop is a composition of a finite tuple of simple loops T if it is obtained by using all
and only the edges of T as many times as they appear in T . Formally, for a loop σ and an
edge e, let n(e,σ) be the number of occurrences of e in σ. The loop σ is a composition of
(σ1, . . . ,σl) if, for all edges e, it holds n(e,σ) = ∑

l
i=1 n(e,σi).

2 The difference vector is related to the Parikh vector [Par66] of the sequence of colors of the path.
Precisely, the difference vector is equal to the first k−1 components of the Parikh vector, minus the
k-th component.
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Lemma 3. Let σ be a loop of length n containing m distinct nodes. Then, σ is a composition
of at least d n

me simple loops.

Proof. We use a decomposition algorithm on σ: the algorithm scans the edges of σ from the
beginning to the end. As soon as a simple loop is found, i.e., as soon as a node is repeated,
such a simple loop is removed from σ and added to the tuple. The tuple given by the removed
loops is the decomposition we are looking for. Since a simple loop contains at most m nodes,
the tuple contains at least d n

me loops. ut

3.1 The Balance Problem

The following lemma, whose proof can be found in the Appendix, shows that a sequence
of integral vectors has sum in o(n) only if there is a finite set of vectors that occur in the
sequence which have an n.l.c. with value zero.

Lemma 4. Let A ⊂ Zd be a finite set of vectors such that there is no subset A′ ⊆ A with an
n.l.c. of value zero. Let {(an,1, . . . ,an,d)}n∈N be an infinite sequence of elements of A, and
Sn,i = ∑

n
j=0 a j,i be the partial sum of the i-th component, for all n ∈ N and i ∈ [d]. Then,

there exists at least an index h such that limn→∞

Sn,h
n 6= 0.

The following result provides a loop-based characterization for the balance problem.

Theorem 1. A graph G satisfies the balance problem iff there exists a connected set L of
simple loops of G, with zero as an n.l.c.

Proof. [if] Let L = {σ0, . . . ,σl−1} be a connected set of simple loops having zero as an
n.l.c., with coefficients c0, . . . ,cl−1. For all i = 0, . . . , l− 1, let vi be the initial node of σi.
Since L is connected, there exists a path ρi from vi to v(i+1) mod l . For all j > 0, define

the loop π j = σ
j·c0
0 ρ0σ

j·c1
1 ρ1 . . .σ

j·cl−1
l−1 ρl−1. We claim that the infinite path π = ∏ j>0 π j is

balanced. Each time a π j block ends along π, the part of the difference vector produced by
the loops of L is zero. So, when a π j ends, the difference vector is due only to the paths ρi.
Since the index of the step k( j) at which π j ends grows quadratically in j and the difference
vector diff (π1 . . .π j) grows linearly in j, we have that lim j→∞ diff (π1 . . .π j)/k( j) = 0. It can
be shown that in the steps between k( j) and k( j + 1), the i-th component of the difference
vector differs from the one of diff (π1 . . .π j) no more than a function Ci, j that grows linearly
in j. Specifically, Ci, j = MPi + jMAi, where MPi is the sum, for all ρ j, of the maximum
modulus of the i-th component of the difference vector along ρ j, and MAi is the sum, for all
σ j, of the maximum modulus of the i-th component of the difference vector along σ j. As a
consequence, limk→∞ diff (π≤k)/k = 0 and π is balanced.

[only if] If there exists an infinite balanced path ρ, since the set of nodes is finite, there is
a set V ′ of nodes occurring infinitely often in ρ. Let ρ′ be a suffix of ρ containing only nodes
in V ′. The path ρ′ is balanced and it is composed by an infinite sequence of simple loops on
V ′, plus a remaining simple path (see the proof of Lemma 3 for further details). Let L be
the (finite) set of such simple loops, and let A⊂ Zk−1 be the set of difference vectors of the
loops in L .

Every time a loop trough V ′ closes along ρ′, the difference vector up to that point is the
sum of the difference vectors of the simple loops occurred so far, plus the difference vector
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of the remaining simple path. Since the remaining simple path cannot have length greater
than |V ′|, the difference vector up to that point differs from a sum of a sequence of elements
of A by a constant-bounded term. Let n(i) be the index of the i-th point where a loop is
closed along ρ′. Since ρ′ is balanced, by statement 2 of Lemma 1, each component of the
difference sequence {diff (ρ′≤i)}i∈N is in o(i). Hence, each component of the partial sum of
the difference vectors associated to the sequence of loops closed is in o(n(i)). By Lemma 4,
this is possible only if A has a subset A′ with an n.l.c. of value zero. Thus, the set of loops
L ′ with difference vectors in A′ has an n.l.c. with value zero. Moreover, since the loops in L ′
are constructed with edges of ρ′, they are connected. This concludes the proof. ut

3.2 The Bounded Difference Problem

Given a graph, if there exists a perfectly balanced loop σ, it is easy to see that σω is a periodic
bounded difference path. Moreover, if ρ is an infinite bounded difference path, then there
exists a constant c such that the absolute value of all color differences is smaller than c. Since
both the set of nodes and the possible difference vectors along ρ are finite, we can find two
indexes i < j such that ρ(i) = ρ( j) and diff (ρ≤i) = diff (ρ≤ j). So, σ′ = ρ(i)ρ(i + 1) . . .ρ( j)
is a perfectly balanced loop. Therefore, the following holds.

Lemma 5. Given a graph G, the following statements are equivalent:

1. There exists a bounded difference path.
2. There exists a periodic bounded difference path.
3. There exists a perfectly balanced loop.

We now prove the following result.

Lemma 6. Let G be a graph. There exists a perfectly balanced loop in G iff there exists an
overlapping set L of simple loops of G, with zero as n.l.c.

Proof. [only if] If there exists a perfectly balanced loop σ, by Lemma 3 the loop is the com-
position of a tuple T of simple loops. Let L be the set of distinct loops occurring in T ,
and for all ρ ∈ L , let cρ be the number of times ρ occurs in T . Since in the computation of
the difference vector of a path it does not matter the order in which the edges are consid-
ered, we have ∑ρ∈L cρ · diff (ρ) = diff (σ) = 0. Finally, since the loops in L come from the
decomposition of a single loop σ, we have that L is overlapping.

[if] Let L = {σ1, . . . ,σl} be such that ∑
l
i=1 ci ·diff (σi) = 0. We construct a single loop σ

such that diff (σ) = ∑
l
i=1 ci ·diff (σi). The construction proceeds in iterative steps, building a

sequence of intermediate paths ρ1, . . . ,ρl , such that ρl is the wanted perfectly balanced loop.
In the first step, we take any loop σi1 ∈ L and we traverse it ci1 times, obtaining the first
intermediate path ρ1 = σ

ci1
i1 . After the j-th step, since L is overlapping, there must be a loop

σi j+1 ∈ L that is overlapping with one of the loops in the current intermediate path ρ j, say
in node v. Then, we reorder ρ j in such a way that it starts and ends in v. Let ρ′j be such

reordering, we set ρ j+1 = ρ′j σ
ci j+1
i j+1

. One can verify that ρl is perfectly balanced. ut

The following theorem is a direct consequence of the previous two lemmas.
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Fig. 1. A 3-colored graph satisfying the balance problem, but not the bounded difference problem.

Theorem 2. A graph G satisfies the bounded difference problem iff there exists an overlap-
ping set L of simple loops of G, with zero as n.l.c.

Example 2. Consider the graph G in Fig. 1. First note that, up to rotation, there are just three
simple loops in it: σ1 = A ·B ·A, σ2 = C ·D ·E ·F ·C, and σ3 = A ·B ·C ·D ·E ·A. It is easy
to see that diff (σ1) = (1,1), diff (σ2) = (−1,−1), and diff (σ3) = (−1,−3). On one hand,
since the connected set of simple loops {σ1,σ2} has zero as n.l.c., we obtain that there is a
balanced path in G. Example 1 shows a particular balanced sequence of colors obtained by
a non-periodic path of the subgraph G′ of G induced by these two loops. On the other hand,
for all the three overlapping sets of loops ({σ1,σ3}, {σ2,σ3}, and {σ1,σ2,σ3}) there is no
way to obtain a zero n.l.c. with all coefficients different from zero. So, there is no bounded
difference path in G. ut

3.3 2-Colored Graphs

When the graph G is 2-colored, the difference vector is simply a number. So, if L is a
connected set of simple loops having zero as n.l.c., then there must be either a perfectly
balanced simple loop or two loops with difference vectors of opposite sign. Notice that two
loops σ,σ′ with color differences of opposite sign have the following n.l.c. of value zero:
|diff (σ′)| · diff (σ)+ |diff (σ)| · diff (σ′) = 0. If the two loops are connected but not overlap-
ping, we can construct a sequence of adjacent overlapping simple loops (the details can be
found in the Appendix) connecting them. In this sequence, we are always able to find a
perfectly balanced simple loop or two overlapping simple loops with difference vectors of
opposite sign. Therefore, the following holds.

Lemma 7. Let G be a 2-colored graph. If there exists a connected set of simple loops of G
with zero as n.l.c., then there exists an overlapping set of simple loops of G with zero as n.l.c.

Due to the above characterization, both decision problems can be solved efficiently, by
using a minimum spanning tree algorithm to find two loops of opposite color difference sign,
if such exist.

Theorem 3. A 2-colored graph G = (V,E) satisfies the bounded difference problem iff it
satisfies the balance problem. Both problems can be solved in time O(|V | · |E| · log |V |).
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3.4 A Related NP-Hard Problem

In this section, we introduce an NP-hard problem similar to the bounded difference problem.
Given a k-colored graph G and two nodes u and v, the new problem asks whether there exists
a perfectly balanced path from u to v. We call this question the perfectly balanced finite path
problem. To see that this problem is closely related to the bounded difference problem, one
can note that it corresponds to the statement of item 3 in Lemma 5, by changing the word
loop to finite path. The following result can be proved using a reduction from 3SAT. Due to
space constraints, the following result is proved in the Appendix.

Theorem 4. The perfectly balanced finite path problem is NP-hard.

4 Solving the Balance Problem
In this section, we define a system of linear equations whose feasibility is equivalent to the
balance problem for a given strongly connected graph.

Definition 1. Let G = (V,E) be a k-colored graph. We call balance system for G the follow-
ing system of equations on the set of variables {xe |e ∈ E}.

1. for all v ∈V ∑e∈Ev xe = ∑e∈vE xe
2. for all a ∈ [k−1] ∑e∈E(a) xe = ∑e∈E(k) xe
3. for all e ∈ E xe ≥ 0
4. ∑e∈E xe > 0.

Let m = |E| and n = |V |, the balance system has m variables and m + n + k constraints. It
helps to think of each variable xe as a load associated to the edge e∈E, and of each constraint
as having the following meaning.

1. For each node, the entering load is equal to the exiting load.
2. For each color a ∈ [k−1], the load on the edges colored by a is equal to the load on the

edges colored by k.
3. Every load is non-negative.
4. The total load is positive.

The following lemma justifies the introduction of the balance system.

Lemma 8. There exists a set L of simple loops in G with zero as n.l.c. iff the balance system
for G is feasible.

Proof. (Sketch) [only if] If there exists an n.l.c. of L with value zero, let cσ be the coef-
ficient associated with a loop σ ∈ L . We can construct a vector x ∈ Rm that satisfies the
balance system. First, define h(e,σ) as 1 if the edge e is in σ, and 0 otherwise. Then, we set
xe = ∑σ∈L cσh(e,σ). Considering that, for all σ ∈ L and v ∈V , it holds that ∑e∈vE h(e,σ) =
∑e∈Ev h(e,σ), it is a matter of algebra to show that x satisfies the balance system.

[if] If the system is feasible, since it has integer coefficients, it has to have a rational
solution. Moreover, all constraints are either equalities or inequalities of the type aT x ∼
0, for ∼∈ {>,≥}. Therefore, if x is a solution then cx is also a solution, for all c > 0.
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Accordingly, if the system has a rational solution, it also has an integer solution x ∈ Zm. Due
to the constraints (3), such solution must be non-negative. So, in fact x ∈ Nm.

Then, we consider each component xe of x as the number of times the edge e is used in a
set of loops, and we use x to construct such set with an iterative algorithm. At the first step,
we set x1 = x, we take a non-zero component x1

e of x1, we start constructing a loop with the
edge e, and then we subtract a unit from x1

e to remember that we used it. Next, we look for
another non-zero component x1

e′ such that e′ exits from the node e enters in. It is possible to
show that the edge e′ can always be found. Then, we add e′ to the loop and we subtract a unit
from x1

e′ . We continue looking for edges e′ with x1
e′ > 0 and exiting from the last node added

to the loop, until we close a loop, i.e., until the last edge added enters in the node the first
edge e exits from. After constructing a loop, we have a residual vector x2 for the next step.
If such vector is not zero, we construct another loop, and so on until the residual vector is
zero. In the end we have a set of (not necessarily simple) loops, and we show that it has zero
as n.l.c. Finally, we decompose those loops in simple loops with the algorithm of Lemma 3,
and we obtain a set L of simple loops having zero as a natural linear combination. ut

Since in a strongly connected graph all loops are connected, from the previous lemma,
we have:

Corollary 1. If G is strongly connected, there exists a balanced path in G iff the balance
system for G is feasible.

In order to solve the balance problem in G, first we compute the maximal connected
components of G using the classical algorithm [CLRS01]. This algorithm is polynomial in n
and m. Then, in each component we compute whether the balance system is feasible, by using
the polynomial algorithm for feasibility of sets defined by linear constraints [NW88]. This
second algorithm is used at most n times and it is polynomial in the number of constraints
(n+m+k) and in the logarithm of the maximum modulus of a coefficient in a constraint (in
our case, the maximum modulus is 1).

Theorem 5. The balance problem is in P.

We remark that the feasibility algorithm can also provide the value of a solution to the
system in input. By the proof of Lemma 8, such a solution allows us to compute in poly-
nomial time a set of connected simple loops and the coefficients of an n.l.c. of value zero.
As shown in the if part of the proof of Theorem 1, this in turn allows us to constructively
characterize a balanced path in the graph.

5 Solving the Bounded Difference Problem

In this section, we solve the bounded difference problem using the same approach as in
Section 4.

Definition 2. Let G = (V,E) be a k-colored graph with m = |E|, n = |V |, and sG = min{n+
k−1,m}, and let u∈V be a node. We call bounded difference system for (G,u) the following
system of equations on the set of variables {xe,ye |e ∈ E}.
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1-4. The same constraints as in the balance system for G
5. for all v ∈V \{u} ∑e∈Ev ye−∑e∈vE ye = ∑e∈vE xe
6. ∑e∈uE ye−∑e∈Eu ye = ∑v∈V\{u}∑e∈vE xe
7. for all e ∈ E ye ≥ 0
8. for all e ∈ E ye ≤ (m · sG!)xe.

The bounded difference system has 2m variables and 3m + 2n + k constraints. It helps to
think of the vectors x and y as two loads associated to the edges of G. The constraints 1-4 are
the same constraints of the balance problem for G, and they ask that x should represent a set
of simple loops of G having zero as a natural linear combination.

The constraints 5-8 are connection constraints, asking that y should represent a connec-
tion load, from u to every other node of the simple loops defined by x, and carried only on
the edges of those loops. Thus, constraints 5-8 ask that the loops represented by x should be
overlapping, because of Lemma 2.

5. Each node v∈V \{u} absorbs an amount of y-load equal to the amount of x-load travers-
ing it. These constraints ensure that the nodes belonging to the x-solution receive a pos-
itive y-load.

6. Node u generates as much y-load as the total x-load on all edges, except the edges exiting
u.

7. Every y-load is non-negative.
8. If the x-load on an edge is zero, then the y-load on that edge is also zero. Otherwise,

the y-load can be at most m · sG! times the x-load. More details on the choice of this
multiplicative constant follow.

In Lemma 9, whose proof can be found in the Appendix, we show that if there is a so-
lution x of the balance system, then there is another solution x′ whose non-zero components
are greater or equal to 1 and less than or equal to sG!, so that ∑e∈E x′e ≤ m · sG!. In this way,
the constraints (8) allow each edge that has a positive x-load to carry as its y-load all the
y-load exiting from u.

Lemma 9. Let G = (V,E) be a k-colored graph, with |V | = n, |E| = m, and sG = min{n +
k−1,m}. For all solutions x to the balance system for G there exists a solution x′ such that,
for all e ∈ E, it holds (xe = 0⇒ x′e = 0) and (xe > 0⇒ 1 ≤ x′e ≤ sG!). As a consequence,
1≤ ∑e∈E x′e ≤ m · sG!.

The following lemma states that the bounded difference system can be used to solve the
bounded difference problem.

Lemma 10. There exists an overlapping set of simple loops in G, passing through a node u
and having zero as n.l.c. iff the bounded difference system for (G,u) is feasible.

Proof. [only if] Let L be an overlapping set of simple loops having an n.l.c. of value zero.
Let cσ be the coefficient associated with the loop σ ∈ L in such linear combination. We start
by constructing a solution x∈Rm to the balance system as follows. Define h(e,σ)∈ {0,1} as
1 if the edge e belongs to the loop σ, and 0 otherwise. We set xe = ∑σ∈L cσh(e,σ). We have

11



that x is a solution to the balance system for G, or equivalently that it satisfies constraints
(1)-(4) of the bounded difference system for (G,u).

By Lemma 9, there exists another solution x′ ∈ Rm to the balance system, such that
xe = 0⇒ x′e = 0 and xe > 0⇒ 1 ≤ x′e ≤ sG!. If any loop of the overlapping set L passes
through u, by Lemma 2, there exists a path ρv from u to any node v occurring in L . We set
ye = ∑v∈V ′−{u}(h(e,ρv)∑e∈vE x′e). Simple calculations show that (x′,y) is a solution to the
bounded difference system for (G,u).

[if] If there exists a vector (x,y) ∈ R2m satisfying the bounded difference system, then
like we did in the second part of Lemma 8, using x, we can construct a set of simple loops L
having zero as n.l.c. Since ∑e∈uE ye−∑e∈Eu ye = ∑v∈V−{u}∑e∈vE xe, we have that u belongs
to at least one edge used in the construction of L . If we set G′ = (V ′,E ′) as the subgraph of
G induced by L , we are able to show by contradiction that there is a path in G′ from u to
every other node of V ′. Indeed if for some v ∈ V ′−{u} there is no path in G′ from u to v
then there is some load exiting from u that cannot reach its destination using only edges of
G′. Since the constraints (8) make it impossible to carry load on edges of G that are not used
in L , the connection constraints cannot be satisfied. So, for all v ∈ V ′ there is a path in G′

from u to v. By Lemma 2, L is overlapping. ut

In order to solve the bounded difference problem in G, for all u ∈ V we check whether
the bounded difference system for (G,u) is feasible, by using a polynomial time algorithm
for feasibility of linear systems [NW88]. This algorithm is used at most n times and it is
polynomial in the number of constraints (2n+3m+k) and in the logarithm of the maximum
modulus M of a coefficient in a constraint. In our case, M = m ·sG!. Using Stirling’s approxi-
mation, we have log(m · sG!) = log(m)+Θ(sG log(sG)). Therefore, we obtain the following.

Theorem 6. The bounded difference problem is in P.

Acknowledgements. The second author would like to thank Luca de Alfaro and Krish-
nendu Chatterjee for the fruitful discussions on a preliminary version of this work.
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A Additional Proofs

A.1 Proof of Item 2 of Lemma 1

In the following lemma, we use the trivial property that, given a sequence of real numbers
r1, . . . ,rn such that ∑

n
i=1 ri = C, then at least one ri is greater than or equal to C

m .

Proof. [only if] The property is easy to prove since when the inner limits exist, the limit of
the difference is equal to the difference of the inner limits.

[if] We first show that (i) lim j→∞ |ρ≤ j|k/ j = l = 1/k. Then, we show that (ii) for all
a ∈ [k− 1], the sequence {|ρ≤ j|a/ j} j also converges to l, or else the difference sequence
{diff a,k(ρ≤ j)/ j} j would not converge to zero.

First we show (i). Indeed, if by contradiction the sequence is not convergent to l we have
that

∃ε > 0 .∀m ∈ N .∃nm ≥ m .

(
|ρ≤nm |k

nm
> l + ε or

|ρ≤nm |k
nm

< l− ε

)
.

The points {nm}m form a sequence, from which we can extract two subsequences {nmi}i,
given by all the points such that |ρ≤nmi |k/nmi > l +ε, and {nm′i

}i, given by all the points such

that |ρ≤nm′i |k/nm′i
< l−ε. We know that at least one subsequence is infinite. Moreover, for all

i ∈ N, we have that mi ≥ i and m′i ≥ i. We remind that for every path ρ, we have ∑
k
a=1 |ρ|a =

|ρ|, since all edges are colored. Then, for all j ∈ N, we have ∑
k−1
a=1 |ρ≤ j|a = j−|ρ≤ j|k. Now

there are two possible situations: {nmi}i is infinite or {nm′i
}i is infinite. The two situations are

dual and we only discuss the first one.
Assume that {nmi}i is infinite. For all i ∈ N, we have that |ρ≤nmi |k > (l + ε)nmi . Then,

∑
k−1
a=1 |ρ

≤nmi |a ≤ nmi − nmi(l + ε) = nmi(1− l − ε). So, there exists at least one color a ∈
[k− 1] such that |ρ≤nmi |a ≤ nmi(1− l− ε)/(k− 1) = nmi(l− (ε/(k− 1))). Then, there is a
color a ∈ [k− 1] and a subsequence {nma

i
}i of {nmi}i such that for all i ∈ N we have that

|ρ≤nma
i |a ≤ nma

i
(l− (ε/(k−1))). Moreover, for all i ∈ N, we have that ma

i ≥ i. For all i ∈ N,
we then have that

diff k,a(ρ
≤nma

i )
nma

i

=
|ρ≤nma

i |k−|ρ
≤nma

i |a
nma

i

≥ (l + ε)−
(

l− 1
k−1

ε

)
=

k
k−1

ε.

Then, due to ε′ = kε/(k−1) the following holds.

∃ε′ > 0 .∀i ∈ N .∃ma
i ≥ i .

diff k,a(ρ
≤nma

i )
nma

i

≥ ε
′.

So, the sequence {diff k,a(ρ
≤nma

i )/nma
i
}i does not converge to zero, so does not the sequence

{diff k,a(ρ≤ j)/ j} j, since {diff k,a(ρ
≤nma

i )/nma
i
}i is one of its subsequences.

So, we have lim j→∞(|ρ≤ j|k)/ j = l, i.e.,

∀ε > 0 .∃m ∈ N .∀n≥ m . l− ε <
|ρ≤n|k

n
< l + ε. (1)
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Now, we show (ii). Assume by contradiction that {|ρ≤ j|a/ j} does not converge to l, for a
certain a ∈ [k−1]. Then, we have

∃ε > 0 .∀m ∈ N .∃nm ≥ m .

(
|ρ≤nm |a

nm
> l + ε or

|ρ≤nm |a
nm

< l− ε

)
. (2)

Let ε̄ be a witness for (2). By (1), there is m̄ ∈ N such that for all n≥ m̄, we have l− ε̄/2 <
(|ρ≤n|k)/n < l+ ε̄/2. So, for all m≥ m̄, there exists nm≥m such that one of the two following
conditions holds (depending which disjunction in (2) holds).

1. |ρ
≤nm |a
nm

> l + ε̄, and l− ε̄

2 < |ρ≤nm |k
nm

< l + ε̄

2 . So,
diff a,k(ρ

≤nm )
nm

> ε̄

2 .

2. |ρ
≤nm |a
nm

< l− ε̄, and l− ε̄

2 < |ρ≤nm |k
nm

< l + ε̄

2 . So,
diff a,k(ρ

≤nm )
nm

<− ε̄

2 .

Summarizing,

∃ε̄ > 0 .∃m̄ ∈ N .∀m≥ m̄ .∃nm ≥ m .
∣∣∣diff a,k(ρ≤nm)

nm

∣∣∣ >
ε̄

2
.

Thus, we have that {diff a,k(ρ≤n)/n}n does not converge to 0, which is a contradiction. ut

A.2 Proof of Lemma 4

We first introduce a preliminary lemma.

Lemma 11. Let Ax = 0 be a linear homogeneus system with A ∈Qn×m. If the system has a
solution x such that x≥ 0 and ∑

m
i=1 xi = 1, then it has a solution with all natural components,

and at least one strictly positive component.

Proof. Let S be the set containing all and only the solutions x of Ax = 0, with all non-negative
components and such that ∑

m
i=1 xi = 1. By hypothesis, S is not empty. Let A′ = ( A

1,1,...,1 )
and b′ = ( 0

1 ), we have S = {x ∈ Rm |A′x = b′,x ≥ 0}. By a well known result in linear
programming (see, for instance, Theorem 3.5 of [NW88]), S contains a basic solution, i.e.,
there exists a non-singular submatrix C ∈ Rr×r of A′, given by the columns i1, . . . , ir and the
rows j1, . . . , jr of A′, such that there is a point (z1, . . . ,zm)∈ S such that z′= (zi1 , . . . ,zir) is the
unique solution to the system of linear equations Cz′ = b where b = (b′j1 , . . . ,b

′
jr)

T , and for

all i 6∈ {i1, . . . , ir}, zi = 0. By Cramer’s theorem, for all k∈ [r], we have zik =
det(C′ik )
det(C′) where C′ik

is the matrix obtained from C′ by replacing the ik-th column with the column vector b. Since
the determinant of a rational matrix is rational, z is a point of S with all rational coefficients,
i.e., z is a solution of Ax = 0 with all non-negative rational coefficients such that ∑

m
i=1 zi = 1.

Clearly, z has at least one positive coefficient. Now, since the system Ax = 0 is homogeneus,
by multiplying each component of z by the least common denominator of all components,
we obtain the thesis. ut

Now we are ready to prove Lemma 4.
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Proof. Let A = {(x1,1, . . . ,x1,d), . . . ,(xm,1, . . . ,xm,d)} and f : Rm 7→R+ be the function f (c1,
. . . ,cm) = max1≤i≤d{|∑m

j=1 c j · x j,i|}. By construction, f is a continuous function. Let now
K⊂Rm be the set {(c1, . . . ,cm)∈ [0,1]m | ∑m

i=1 ci = 1}. Note that 0 6∈K and that K is compact,
since it is a finite dimensional space defined by a linear equation. Hence, by Weierstrass’
Theorem, f admits a minimum value M on K. Now, since A is a set of convexly independent
vectors, M must be strictly positive. Indeed, if by contradiction M = 0, there is a non-null
vector (c1, . . . ,cm) ∈ K such that ∑

m
j=1 c j · x j,1 = . . . = ∑

m
j=1 c j · x j,d = M = 0. By Lemma 11

the system ∑
m
j=1 c j · x j,i = 0 has a natural solution c with at least one positive component.

This solution gives rise to an n.l.c. of some vectors of A (those corresponding to positive
components of c) with value zero, which contradicts the hypotheses on A.

Then, consider the sequence {(an,1, . . . ,an,d)}n and its partial sums Sn,i = ∑
n
j=0 a j,i. More-

over, let δi,n be the number of times for which the vector (xi,1, . . . ,xi,d) occurs in the pre-
vious sequence up to position n and let ci,n = δi,n/n. Then, (Sn,1, . . . ,Sn,d) = ∑

m
i=1 δi,n ·

(xi,1, . . . ,xi,d) = n ·∑m
i=1 ci,n · (xi,1, . . . ,xi,d). Since we have ∑

m
i=1 δi,n = n for all n ∈ N, it is

obvious that (c1,n, . . . ,cm,n) ∈ K. By the convex independence hypothesis on A, it holds that
for all n∈N there exists at least an index i, with 1≤ i≤ d, such that Sn,i 6= 0. Let { jn}n be an
index sequence such that |Sn, jn | = max1≤i≤d{|Sn,i|} > 0, for all n ∈ N. Since { jn}n can as-
sume at most d different values, there exists a value h which occurs infinitely often in it. Let
{hi}i be the index sequence such that jhi = h and there is no l ∈]hi,hi+1[ with jl = h. Then,
from {Sn,h}n we can construct the extracted sequence {Shi,h}i. Now, we have that |Shi,h| =
max1≤ j≤d{|Shi, j|} = hi ·max1≤ j≤d{|∑m

k=1 ck,hi · xk, j|} = hi · f (c1,hi , . . . ,c1,hi) ≥ hi ·M > 0.

Hence, limi→∞

|Shi ,h|
hi
≥ M > 0. Since

{ |Shi ,h|
hi

}
i is an extracted sequence of

{ |Sn,h|
n

}
n, we fi-

nally obtain that limn→∞

Sn,h
n 6= 0. ut

A.3 Proof of Lemma 7

Proof. In a 2-colored graph, the difference vector of any path ρ is simply an integer. Let L
be a connected set of simple loops with zero as a n.l.c. If L contains a simple loop σ such
that diff (σ) = 0, then {σ} is trivially an overlapping set.

If L contains no perfectly balanced loop, then all the difference vectors of the loops
in L cannot have the same sign, otherwise it is not possible to have a non-trivial natural
combination ∑σ∈L cσdiff (σ) = 0.

Thus, let diff (σ) > 0 and diff (σ′) < 0, for σ,σ′ ∈ L . If σ and σ′ are overlapping, then
{σ,σ′} is the overlapping set we are looking for. If σ and σ′ are not overlapping, since
they are connected, there exist a path ρ1 from σ to σ′ and a path ρ2 from σ′ to σ. So,
there exist four indexes i, i′, j, j′ such that ρ1(i) is the last node of ρ1 in σ, ρ1( j) is the
first node of ρ1 in σ′, ρ2(i′) is the last node of ρ2 in σ′, and ρ2( j′) is the first node of
ρ2 in σ. Then, within the loop σ there exists a simple path ρ from ρ2( j′) to ρ1(i) and,
within the loop σ′, there exists a simple path ρ′ from ρ1( j) to ρ2(i′). We then set ρ′1 =
ρ1(i) . . .ρ1( j) and ρ′2 = ρ2(i′), . . . ,ρ2( j′). We observe that the pairs of paths (ρ,ρ′1), (ρ′,ρ′1),
(ρ′,ρ′2), and (ρ,ρ′1) have only one node in common. Moreover, ρ and ρ′ have no node in
common since σ and σ′ are not overlapping. So, the loop σ′′ = ρρ′1ρ′ρ′2 is not simple iff
ρ′1 and ρ′2 have a node in common. Now, observe that two loops π1 and π2 with difference
vectors of opposite sign have zero as n.l.c. with coefficients |diff (π2)| and |diff (π1)|, since
|diff (π2)|diff (π1)+ |diff (π1)|diff (π2) = 0. We conclude with the following case analysis.
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1. If σ′′ is simple, then (σ,σ′′) and (σ′,σ′′) are pairs of overlapping sets.
(a) If diff (σ′′) = 0 then {σ′′} is an overlapping set having zero as an n.l.c.
(b) If diff (σ′′) > 0 then {σ′,σ′′} is an overlapping set having zero as an n.l.c.
(c) If diff (σ′′) < 0 then {σ,σ′′} is an overlapping set having zero as an n.l.c.

2. If ρ′1 and ρ′2 have nodes in common, there exist two indexes k,k′ such that ρ′1(k) = ρ′2(k
′).

So, we can construct two loops σ′1 = ρρ′1(1) . . .ρ′1(k) . . .ρ
′
2(|ρ′2|) and σ′2 = ρ′ρ′2(1) . . .

ρ′2(k
′) . . .ρ′1(|ρ′1|).

(a) If diff (σ′i) = 0, for some i ∈ {0,1}, then {σ′i} is an overlapping set having zero as
an n.l.c.

(b) If diff (σ′2) > 0 then {σ′,σ′2} is an overlapping set having zero as an n.l.c.
(c) If diff (σ′1) < 0 then {σ,σ′1} is an overlapping set having zero as an n.l.c.
(d) If diff (σ′1) > 0 and diff (σ′2) < 0, then {σ′1,σ′2} is an overlapping set having zero as

an n.l.c.
ut

A.4 Proof of Theorem 4
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Fig. 2. Proof of Theorem 4: The j-th subgraph G j of G.

Proof. We prove the statement by a reduction from 3SAT which is known to be NP-hard
[CLRS01].

Given a 3SAT formula ϕ on n variables x1, . . . ,xn with k clauses C1, . . . ,Ck, we construct
a k-colored graph G such that each color i is associated with the clause Ci. Precisely, for each
variable x j, we construct a subgraph G j of G with a starting node q j and an ending node q j+1,
as shown in Figure 2. For 1 ≤ j ≤ n, the labels a j,1, . . . ,a j,k j are the colors corresponding
to the clauses in which x j occurs affirmed and a′j,1, . . . ,a

′
j,k′j

are the colors of the clauses

in which x j occurs negated. Moreover, the edges labeled with 1, . . . ,k concisely represent a
sequence of k edges, each labeled with a different color. Finally, the graph G is obtained by
concatenating each graph G j with G j+1, as they share the node q j+1, for 1≤ j < n.

We show that the formula ϕ is satisfiable iff there exists a perfectly balanced path in G
from q1 to qn+1.
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First, assume that ϕ is satisfiable. Then, there exists a truth assignment for the variables
that satisfies ϕ. Using this assignment, we construct a perfectly balanced path in which each
color appears exactly 2n + 3 times. In particular, for all subgraphs G j, the path takes the
upper branch if x j is assigned true and the lower branch otherwise. For each clause Ci, let
Li be the indexes of the variables that render Ci true, under the given truth assignment. We
obtain that the constructed path passes through at least 2n+ |Li| non-self-loop edges colored
with i. This holds because at each subgraph it passes through the edges labeled 1, . . . ,k once
at the beginning and once at the end. Moreover, for all j ∈ Li, the path passes through another
non-self-loop edge labeled with i in G j. Since |Li| ≥ 1, the path may pass through a self-loop
labeled with i at least once in the graph. Thus, by taking 3−|Li| times one of those self-loops,
we get the desired number 2n+3 of occurrences of i, for all colors i.

Conversely, assume that there exists a perfectly balanced path from q0 to qn+1. For all
subgraphs G j the path takes either the upper or the lower branch. Then, there are two possible
situations:

1. Each color occurs 2n + l times with l ≥ 1. We define the assignment in the following
way: we set x j to true if the path takes the upper branch in the subgraph G j, and to false
otherwise. We claim that such assignment satisfies ϕ. For all colors i the path passes
through an i-colored edge α such that it is not a self-loop and it is not a starting or an
ending edge of a subgraph G j (those edges are the first 2n). Such edge α is on a branch
of a subgraph G j, consequently the assignment for x j satisfies the clause Ci. Being i
arbitrary, all clauses Ci are satisfied by the assignment of the variable.

2. Each color occurs 2n times in the path. We define the assignment as follows: we set x j to
true if the path takes the lower branch in G j, and to false otherwise. We claim that such
assignment satisfies ϕ. For all colors i there exists at least one variable x j appearing in
the clause Ci. However, the path does not pass through any edge colored with i, except
the mandatory edges at the beginning and end of each G j. Then, in G j the path takes the
branch opposite to the assignment of x j that makes Ci true Then, the opposite assignment
of x j (the one we choose) makes Ci true. ut

A.5 Proof of Lemma 9

We first introduce two preliminary lemmas.

Lemma 12. Let t ∈N be a natural number and A∈ [t]m×m
0 be a square matrix, then |det(A)| ≤

tmm!. Moreover, if A is not singular then |det(A)| ≥ 1.

Proof. We prove the first statement by induction on m.

1. If m = 1 then |det(A)|= |a1,1| ≤ t.
2. If the statement holds for m−1, then for any j ∈ [m] it holds that

det(A) =
m

∑
i=1

(−1)i+ jai, jdet(Mi, j),

where Mi, j ∈ [t](m−1)×(m−1)
0 is a matrix obtained from A by removing the i-th row and

the j-th column. So, |det(A)| ≤ |∑m
i=1 ai, jdet(Mi, j)| ≤ ∑

m
i=1 |ai, j||det(Mi, j)| ≤ ∑

m
i=1 t ·

tm−1(m−1)! = (tm)tm−1(m−1)! = tmm!.
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Moreover, if A is not singular, since A has an integer determinant it must be |det(A)| ≥ 1. ut

Lemma 13. Let t be a natural number and A ∈ [t]n×m
0 , A′ ∈ [t]n

′×m
0 , B ∈ [t]n×1

0 , and B′ ∈
[t]n

′×1
0 be four matrices. Let S = {x ∈ Rm |Ax≥ B,A′x≥ B′,x≥ 0} and M = min{n+n′,n+

m}. If S is not empty, then there exists a vector x ∈ S such that x ∈Qm and every component
xi is less than or equal to k = M!tM .

Proof. Let I ∈Nn×n be the identity matrix. At first, we convert every inequality of the system
Ax ≥ B in an equivalent equality by adding a new variable: the inequality ∑

m
j=1 ai, jx j ≥ bi

becomes ∑
m
j=1 ai, jx j = bi + yi with yi ≥ 0. If we set C = ( A

A′ |
−I
0 ) ∈ R(n+n′)×(n+m), and B′′ =

( B
B′ ) we can define the set S′ = {(x,y) ∈ Rm+n |C(x,y) = B′′,(x,y) ≥ 0}. It is easy to see

that S = {x ∈ Rm |∃y ∈ Rn .(x,y) ∈ S′}, thus in our hypothesis S′ is not empty. We define
r the rank of C, so m ≤ r ≤ M since −I is not singular submatrix. By a well known result
in linear programming (see, for instance, Theorem 3.5 of [NW88]), the set S′ has a basic
solution, i.e. there exists a non-singular submatrix C′ ∈ Rr×r of C, given by the columns
i1, . . . , ir and by the rows j1, . . . , jr of C, such that in S there is the point (z1, . . . ,zm+n)∈Rm+n

such that z′ = (zi1 , . . . ,zir) is the unique solution to the system of linear equations Cz′ =
(b′′j1 , . . . ,b

′′
jr)

T = B′′′, and for all j 6∈ {i1, . . . , ir} z j = 0. By Cramer’s theorem, for all k ∈ [r]
we have zik = det(C′ik)/det(C′) where C′ik is the matrix obtained from C′ by replacing the ik-th
column with the matrix B′′′. So z′ and z have components in Q. Since C′,C′i1 , . . . ,C

′
ir ∈ [t]r×r

0 ,
by Lemma 12 |det(Ci)| ≤ r!tr. Moreover, since C′ is not singular we have |det(C)| ≥ 1. In
conclusion, zik ≤ |det(Ci)|/|det(C)| ≤ (r)!tr ≤M!tM , as requested. ut

Now, we are ready to prove Lemma 9.

Proof. Let x be a solution to the balance system for G, and let I be the set of all edges e
such that xe > 0. By construction, |I| > 0. We represent the first two sets of equalities of
the balance system in matrix form as Dx = 0. Then, the set of points satisfying the balance
system is P = {y ∈Rm |Dy = 0,y≥ 0,∑e∈E ye > 0}. Now the subset of P, P′ = {y ∈ P |∀e ∈
I .ye ≥ 1 and ∀e 6∈ I .ye = 0}= {y ∈ P |∀e ∈ E .(xe > 0⇒ ye > 1) and (xe = 0⇒ ye = 0)} is
not empty. Indeed, the vector z = x(mine∈I xe)−1 is in P′, since (i) Dz = (mine∈I xe)−1Dx = 0,
(ii) for all e ∈ I, we have ze = xe(mine∈I xe)−1 ≥ 1, and (iii) for all e 6∈ I, we have ze = 0.

The set of inequalities “∀e ∈ I .ye ≥ 1” can be represented as the system of linear equa-
tions Fy ≥ 1, with 1 ∈ {1}l×1. Similarly, the set of equalities “∀e 6∈ I .ye = 0” can be rep-
resented as F ′y = 0. If we define D′ = ( D

F ′ ) ∈ {−1,0,1}(2n+k−l−1)×m, we have P′ = {y ∈
Rm |D′y = 0,Fy≥ 1}. Since D′,F,1,0 all have elements in {−1,0,1}, by Lemma 13 the set
P contains an element x′ ∈ Qm such that for all i ∈ [m], x′i ≤ (min{2n + k− 1, l + m})! ≤
(min{2n+ k−1,n+m})! = sG!, which concludes the proof. ut

B The Perfectly Balanced Finite Path Problem is NP-Complete

In this appendix, we report the proof sketch of the NP membership for the perfectly balanced
finite path problem, as defined in Section 3.4. This is a new result that is not contained into
the main paper, since proved after the submission of the final version of this work.

We recall a result of integer programming presented in [Sch86].
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Lemma 14. Let A ∈ Zn×n and B ∈ Zn×1. Let S = {x ∈ Zn |Ax ≤ B} be an integer convex
set. If S is not empty then there exists a point x ∈ S such that the sum of the components of x
is bounded by 6n3ϕ, where ϕ is the maximum sum of the coefficients of an inequality of the
system Ax≤ B.

Definition 3. Let G = (V,E) be a k-colored graph and u,w ∈ V be two distinct nodes. We
call perfectly balanced path system for (G,u,w) the following system of equations on the set
of variables {xe,ye |e ∈ E}.

1. for all v ∈V \{u,w} ∑e∈Ev xe = ∑e∈vE xe
2. ∑e∈Eu xe = 1+∑e∈uE xe
3. ∑e∈Ew xe =−1+∑e∈wE xe
4. for all a ∈ [k−1] ∑e∈E(a) xe = ∑e∈E(k) xe
5. for all e ∈ E xe ≥ 0
6. ∑e∈E xe > 0

7. for all v ∈V \{u} ∑e∈Ev ye−∑e∈vE ye = ∑e∈vE xe
8. ∑e∈uE ye−∑e∈Eu ye = ∑v∈V\{u}∑e∈vE xe
9. for all e ∈ E ye ≥ 0
10. for all e ∈ E ye ≤ (6(d−1)3ϕ)xe.

11. for all e ∈ E xe,ye ∈ Z

where ϕ is the maximum sum of the coefficients of an inequality in the first six sets of
constraints.

Let m = |E| and n = |V |, the perfectly balanced path system has 2m variables and 3m+2n+k
constraints. It helps to think of the vectors x and y as two integer loads associated to the edges
of G. The constraints 1-6 are almost the same constraints of the balance problem for G, and
they ask that x should represent a path from u to v and a set of simple loops such that the
latter have a n.l.c. equal to the inverse of the color difference vector of the path.

The constraints 5-8 are connection constraints, asking that y should represent a connec-
tion load, from u to every other node of the simple loops defined by x, and carried only on
the edges of those loops. Thus, the constraints 5-8 ask that the loops represented by x should
be reachable by u, using only edges represented by x, similarly to the bounded difference
system of Section 5. The only difference is the bound in the contraints 10, which is directly
justified by Lemma 14.

Lemma 15. There exists a perfectly balanced path in G from u to w iff the perfectly balanced
path system (G,u,w) is feasible.

The proof of the previous lemma is similar to that for the balance problem. Since the
feasibility problem for an integer linear system is in NP, and by Theorem 4, we obtain the
following.

Theorem 7. The perfectly balanced finite path problem is NP-complete.
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