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Abstract. Graded path quantifiers have been recently introduced and investi-
gated as a useful framework for generalizing standard existential and universal
path quantifiers in the branching-time temporal logic CTL (GCTL), in such a
way that they can express statements about a minimal and conservative number of
accessible paths. These quantifiers naturally extend to paths the concept of graded
world modalities, which has been deeply investigated for the u-CALCULUS (Gu-
CALCULUS) where it allows to express statements about a given number of im-
mediately accessible worlds. As for the “non-graded” case, it has been shown
that the satisfiability problem for GCTL and the Gu-CALCULUS coincides and,
in particular, it remains solvable in EXPTIME. However, GCTL has been only
investigated w.r.t. graded numbers coded in unary, while Gu-CALCULUS uses for
this a binary coding, and it was left open the problem to decide whether the same
result may or may not hold for binary GCTL. In this paper, by exploiting an au-
tomata theoretic-approach, which involves a model of alternating automata with
satellites, we answer positively to this question. We further investigate the suc-
cinctness of binary GCTL and show that it is at least exponentially more succinct
than Gu-CALCULUS.

1 Introduction

Temporal logic is a suitable framework for reasoning about the correctness of concur-
rent programs [19, 20]. Depending on the view of the underlying nature of time, two
types of temporal logics are mainly considered [14]. In linear-time temporal logics,
such as LTL [19], time is treated as if each moment in time has a unique possible fu-
ture. Conversely, in branching-time temporal logics, such as CTL [4] and CTL* [5],
each moment in time may split into various possible futures and existential and uni-
versal quantifiers are used to express properties along one or all the possible futures.
Recently in [2], graded path modalities have been introduced as a useful extension of
these branching quantifiers in such a way that they can express statements about a min-
imal and conservative number of accessible paths. In particular, they allow to express
properties such as “there are at least n» minimal and conservative paths satisfying a for-
mula y”, by formally writing E="y, for suitable and well-formed concepts of minimal-
ity and conservativeness among paths. This generalization has been deeply investigated
in [2] for the logic CTL, where the extended logic has been named GCTL. In particu-
lar, GCTL has been proved to be very powerful as it results in a logic more expressive
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than CTL where system specifications can be expressed in a very succinct way, without
affecting the complexity of the logic. Indeed, the satisfiability problem for GCTL is
EXPTIME-COMPLETE, as for CTL. There are several practical examples that show the
usefulness of GCTL and we refer to [2, 6, 7] for a significant list.

Graded path modalities extend to paths the concept of graded word modalities,
which has been investigated for several logics such as ALC, u-CALCULUS, and the
first order logic [3, 8, 10, 11, 22]. In particular, as for GCTL, the graded word modal-
ities allow to extend the u-CALCULUS (Gu-CALCULUS, for short) in a very powerful
logic, without increasing its computational complexity. Indeed, the satisfiability prob-
lem for the Gu-CALCULUS remains solvable in EXPTIME. Despite its high expressive
power, the Gu-CALCULUS is considered in some sense a low-level logic (as this is in-
trinsic in the y-CALCULUS), making it an “unfriendly” logic for users. On the contrary,
although less expressive than the Gu-CALCULUS, GCTL can easily and naturally ex-
press complex graded properties of computation trees. However, we recall that the logic
introduced in [2] considers every number n appearing in a graded quantifier E="y as
coded in unary (unary GCTL), while the Gu-CALCULUS, as it has been introduced
and studied in [3, 11], considers these numbers as coded in binaryl. In particular, the
technique developed in [2] to solve the satisfiability problem for GCTL gives an expo-
nential upper bound only in the unary case, while it gives a double-exponential upper
bound if applied to the binary case. In [2], it was left as an open problem to check
whether a single exponential upper bound may also hold for binary GCTL. We further
remark that this problem was left open also in the case of “non-minimal” and “non-
conservative” graded path quantifiers [7]. In this paper, we positively answer to this
question. As for unary GCTL, we show an upper bound for the satisfiability of the bi-
nary GCTL, by exploiting an automata-theoretic approach [13, 23]. Before describing
the technique we develop here, let us first recall the one we used in [2] for unary GCTL
and discuss in detail the points that lead to a double-exponential upper bound when it
is applied to binary GCTL. Then, we explain as we have managed these aspects for
gaining the desired upper bound.

Recall that to develop a decision procedure automata-theoretic based for a logic
with the tree model property, one first develops an appropriate notion of tree automata
and studies their emptiness problem. Then, the satisfiability problem for the logic is
reduced to the emptiness problem of the automata. To this aim, in [2], it has first shown
that the tree model property for GCTL holds, by showing that each unary GCTL for-
mula @ is satisfiable on a Kripke structure iff it has a tree model whose branching degree
is polynomial in the size of ¢. Then, a corresponding tree automaton model named par-
titioning alternating Biichi tree automata (PABT) has been introduced and shown that,
for each unary GCTL formula ¢, it is always possible to build in linear time a PABT
accepting all tree models of @. Then, by using a nontrivial extension of the Miyano and
Hayashi technique [17] it has been shown an exponential translation of a PABT into a
non-deterministic Biichi tree automata (NBT). Since the emptiness problem for NBT is
solvable in polynomial time (in the size of the transition function that is polynomial in

' The Gu-CALCULUS was first considered in the unary case [9] and it required much effort to
be solved efficiently for the binary coding as well. This further gives an evidence that working
with binary logics is rather than an easy task.
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the number of states and exponential in the width of the tree in input) [24], we obtain
that the satisfiability problem for unary GCTL is solvable in EXPTIME.

A detailed analysis on the above technique shows two points where it fails to give a
single exponential-time algorithm when applied to binary GCTL. First, the tree model
property shows for binary GCTL the necessity to consider also tree models with a
branching degree exponential in the highest degree of the formula. Second, the number
of states of the NBT derived from the PABT is double-exponential in the coding of the
highest degree g of the formula. These two points reflect directly in the transition rela-
tion of the NBT, which turns to be double exponential in the coding of the degree g. To
take care of the first point, we develop a sharp binary encoding of each tree model. In
practice, for a given model 7 of ¢ we build a binary encoding 7y of 7, called delayed
generation tree, such that, for each node x in 7 having m + 1 children x-0,... x-m,
there is a corresponding node y of x in Zp and nodes y - 0’ having x - i as right child and
y- 00U+ ag left child, for 0 < i < m. To address the second point, we exploit a careful
construction of the alternating automaton accepting all models of the formula, in a way
that the graded numbers do not give any exponential blow-up in the translating of the
automaton into an NBT.

We now describe the main idea behind the automata construction. Basically, we
use alternating tree automata enriched with satellites (ATAS) as an extension of that
introduced in [12]. In particular, we use the Biichi acceptance condition (ABTS). The
satellite is a nondeterministic tree automaton and is used to ensure that the tree model
satisfies some structural properties along its paths and it is kept apart from the main
automaton. This separation, as it has been proved in [12], allows to solve the emptiness
problem for Biichi automata in a time exponential in the number of states of the main
automaton and polynomial in the number of states of the satellite. Then, we obtain the
desired complexity by forcing the satellite to take care of the graded modalities and by
noting that the main automaton is polynomial in the size of the formula.

The achieved result is even more appealing as we also show here that binary GCTL
is much more succinct than Gu-CALCULUS. We recall that some preliminary studies
on this aspect were already carried out in [2], but only for the unary case. There, some
examples in which unary GCTL is at least exponentially more succinct than binary
Gu-CALCULUS were also shown, but this does not hold in general as there are formu-
las from the latter that show the opposite®. In this paper, we show that binary GCTL is
at least exponentially more succinct than binary Gu-CALCULUS.

Finally, we report that in the full version we also discuss the application of the tech-
nique we have exploited for GCTL to the more expressive logic case of the binary
graded CTL* (GCTL*, for short), i.e., CTL* augmented with graded path quantifiers.
Clearly, we cannot simply use ABTS for GCTL¥, as the Biichi acceptance condition
is too weak already for CTL*. We use instead ATAS along with the hesitant condition
(AHTS). Due to the particular semantics of the logic, based on minimality and conser-
vativeness, we cannot use as automata states either formulas (as for GCTL) or atoms
(i.e., consistent sets of formulas, as for CTL¥). In fact, we need sets of atoms, instead.
All these peculiarities lead to a 3EXPTIME satisfiability procedure for GCTL*.

2 Note that in [2] it was erroneously stated that unary GCTL is in general exponentially more
succinct than Gu-CALCULUS.
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Related work Graded modalities along with CTL have been also studied in [6, 7], but
under a different semantics. There, the authors consider overlapping paths (as we do) as
well as disjoint paths, but they do not consider the concepts of minimality and conserva-
tiveness, which we deeply use in our logics, as it is well described and motivated in [2].
In [6] the model checking problem for non-minimal and non-conservative unary GCTL
has been investigated. In particular, by opportunely extending the classical algorithm for
CTL [4], they show that, in the case of overlapping paths, the model checking problem
is PTIME-COMPLETE (thus not harder than CTL), while in the case of disjoint paths, it
is in PSPACE and both NPTIME-HARD and CONPTIME-HARD. The work continues
in [7], by showing a symbolic model checking algorithm for the binary coding and,
limited to the unary case, a satisfiability procedure. Regarding the comparison between
GCTL and graded CTL with overlapping paths studied in [6], it can be shown that
they are equivalent by using an exponential reduction in both ways, whereas we do not
know whether any of the two blow-up can be avoid. However, it is important to note
that our technique can be also adapted to obtain an EXPTIME satisfiability procedure
for the binary graded CTL under the semantics proposed in [6]. Indeed, it is needed
only to slightly modify the transition function of the main automaton (w.r.t. until and
release formulas), without changing the structure of the whole satellite. Moreover, it
can be used to prove that, in the case of unary GCTL, the complexity of the satisfiabil-
ity problem is only polynomial in the degree. Finally, our method can be also applied
to the satisfiability of the Gu-CALCULUS while the technique developed in [11] cannot
be used for GCTL.

Due to space limitation, all proofs are omitted and reported in a full version of the
paper. Preliminary materials on the subject can be found in [2].

2 Preliminaries

Given two sets X and Y of objects, we denote by |X| the size of X, i.e., the number of
its elements, by 2X the powerset of X, i.e., the set of all its subsets, and by YX C 2XxY
the set of rotal functions f : X — Y. By X" we denote the set of all n-tuples of elements
from X, by X* = ,fﬁ’o X" the set of finite words on the alphabet X, and by X® the set
of infinite words, where as usual, ® is the numerable infinity and € is the empty word.
Moreover, by |x| we denote the length of a word x € X™ = X* UX®. As special sets, N
is the sets of natural numbers and [n] is its subset {k € N | k < n}, with n € NU{w}.

For a set A, we define a A-tree as a set T C A* closed under prefix, i.e.,if w-w' €T,
with w’ € A, then also w € T, and we say that it is full iff it also holds that w-w"” € T,
for all w” < w', where <C A x A is a strict order on the directions. The elements of T
are called nodes and the empty word € is the root of T. For every w € T and w' € A, the
node w-w' € T is a successor of w in T. For a finite set T, a X-labeled A-tree is a pair
(T,v), where T is a A-tree and v : T +— X is a labeling function. When A and X are clear
from the context, we call 7 = (T,v) simply a (labeled) tree.

A Kripke structure (KRIPKE, for short) is a tuple X = (AP,W,R,L), where AP is
a finite non-empty set of atomic propositions, W is an enumerable non-empty set of
worlds, R C W x W is a fransition relation, and L : W — 24P ig a labeling function
that maps each world to the set of atomic propositions true in that world. By |X| =
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IR| < |W|? we denote the size of &, which is also the size of the transition relation.
A finite Kripke structure is a structure of finite size. A path of X is a finite or infinite
sequence of worlds T € W UW® such that (7;,7;41) € R, for all 0 <i < || — 1. By
Pth™(w) C WHUW® (resp., Pth(w) C W) we denote the sets of all (resp., finite) paths
starting at the world w € W, i.e., © € Pth®(w) implies Ty = w. Let T and ' be two
paths. We say that @’ is a subpath of T, in symbols ' < 7, iff ' is a non-necessarily
proper prefix of . Moreover, we say that T and ' are comparable iff (i) & < 7' or (ii)
7' < wholds, otherwise they are incomparable. For a set of paths X, we define the set of
minimal subpaths (antichain) min(X) as the set consisting of the <-minimal elements
of X, i.e., it is the set containing all and only the paths © € X such that for all T’ € X,
it holds that (i) T < @’ or (ii) T £ m. Note that all paths in min(X) are incomparable
among them. A path T is minimal w.r.t. a set X (or simply minimal, when the context
clarify the set X) iff © € min(X). A set of paths X is minimal iff X = min(X).

The unwinding of a KRIPKE X starting at the world w is a 2AP-labeled W-tree
Txw= (T,v) for which there exists a bijective function unw, called unwinding function,
such that (i) unw(w) =€, (ii) unw(m) = unw(my - ... - Ty_2) - Ty, and (iii) v(unw(m;)) =
L(m;), for all ® € Pth(w) and 0 <i <[ =|r| > 1. In this work, we also consider as
unwindings of X also all 24P _labeled N-tree that are isomorph to T .

Finally, let n € N\ {0}. Then, we define P(n) as the set of all solutions {p;} of
the linear Diophantine equation 1xpy +2%py+...+nxp, = n and C(n) as the set
of all the cumulative solutions {c;} obtained by summing increasing sets of elements
from {p;}. Formally, P(n) = {{p;} e N* | ¥, i* p; =n} and C(n) = {{¢;} € N"|
Hpi} € P(n).V1 <i<n.c;=Y]_;p;} Note that |C(n)| = [P(n)| and, since for each
solution {p;} of the above Diophantine equation there is exactly one partition of n, we
have that |C(n)| = p(n), where p(n) is the number of partitions of n. By [1], it holds
that |C(n)| = ©(L - 26V), with k = - loge - \/2/3.

3 Full graded computation tree logic

We now define syntax and semantics of GCTL*.

Syntax The graded computation tree logic (GCTL¥) extends CTL* by using two spe-
cial path quantifiers, the existential EZ¢ and the universal A<¢, where g denotes the
corresponding degree. As in CTL¥, these quantifiers can prefix a linear-time formula
composed of an arbitrary combination and nesting of the temporal operators X (“effec-
tive next”), X (“hypothetical next”), U (“until”), and R (“release™). The quantifiers
A<¢ and E=¢ can be respectively read as “all but g minimal paths” and “there exist at
least g minimal paths”. The formal syntax of GCTL* follows.

Definition 1. (Syntax) GCTL* state (@) and path (y) formulas are built inductively
from AP using the following context-free grammar, where p € AP and g € N\ {0}:

L ou=p|-0|ong|oVe|E=Sy|Aty,

22yz=0 |y wAY | yvy [ Xy Xy |yUy|yRy.

The class of GCTL* formulas is the set of state formulas generated by the above gram-
mar. In addition, the simpler class of GCTL formulas is obtained by forcing each
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temporal operator, occurring in a formula, to be coupled with a path quantifier, as in
the classical definition of CTL.

For a state formula ¢, we define the degree ¢ of ¢ as the maximum natural number
g occurring among the degrees of all its path quantifiers. We assume that all such de-
grees are coded in binary. The length of @, denoted by ||, is defined as for CTL*
and does not consider the degrees at all. Accordingly, the size of @, denoted by |||,
is defined in the same way that the length, by considering |[EZ8y]| and |[A<8y| to
be equal to log(g+ 1) + ||w]|. Clearly, it holds that log(¢) < |@| and || < |¢@|. We
use cl(@) to denote the classical Fischer-Ladner closure of ¢ augmented in a way that
if EZ8@ R @, € cl(9) (resp., A<¢@,U @, € cl(¢)) then also EZ'@R @, € cl(@) (resp.,
A<®@,U @, € cl(9)). Moreover, by ecl(@) (resp., ecl(9)?, ecl(9)”) we denote the set
of all the (resp., existential, universal) quantification formulas in cl(¢) deprived of the
degree. Finally, by rcl(@) we denote the set of quantification formulas in cl(@) U ecl(¢)
of the form EZ'@;R @y, A<®@, U @,, and A@;R ¢s.

Semantics We now define the semantics of GCTL* w.r.t. a KRIPKE X = (AP,W R,
L). For a world w € W, we write &, w |= ¢ to indicate that a state formula ¢ holds at
w, and, for a path T € Pth*(w), we write &, T,k |= ¥ to indicate that a path formula y
holds on 7 at position k € [|t| — 1]. Note that, the relation &,k =y does not hold
for any point k € N, with k > |rn|. For a better readability, in the semantics definition
of GCTL* we use the special set Pa(y,w) and its dual Pg(y,w), with the following
meaning: Pa (W, w) contains every path 7 starting in w such that all its extensions T
(including ) satisfy the path formula y. The semantics of GCTLF state formulas of the
form A<8y and E=8y follows. The semantics of the remaining GCTL* state formulas
and all GCTL* path formulas is defined as usual in CTL*.

Definition 2. (Semantics of E=¢ and A<¢) Given a KRIPKE X = (AP,W,R,L), a
world w € W, a natural number g € N\ {0}, and a GCTL* path formula W, we have:

1. K, = B8y i min(Pa ()| > g

2 Kow = A<Sy ffmin(Pti=(w) \ Pe (w,) | < g

where Pa(y,w) = {m € Pth®(w) | V' € Pth”(w).n <7’ = K, 7,0 =y} and Pe(v,
w) ={m € Pth®(w) | In' e Pth™(w) :n < ' A K, 7,0 = y}.

Note that GCTL* formulas with degrees 1 are CTL* formulas. Moreover, the above
definition of Pa(y,w) and Pg(y,w) formally states that they are dual of each other,
ie., Pa(y,w) =Pth™(w)\ Pe(—y,w).

In the rest of the paper, we only consider formulas in positive normal form (pnf,
for short), i.e., the negation is applied only to atomic propositions. Under this assump-
tion, we consider —@ as the pnf formula equivalent to the negation of ¢. Moreover,
we only consider formulas that do not contain any subformula of the form EZ¢X ¢ or
A<8X @. This can be done w.L.o.g. since each formula can be linearly translated into
another formula not containing the above quantifications (see [2] for more). Finally, as
abbreviation we use the boolean values t (“true”) and f (“false”).

We now give the formal definition of conservativeness and then, by means of two
examples, we clarify the need of the concepts of minimality and conservativeness. A
path 7 of X is conservative w.r.t. a path formula W iff, for all paths 7’ extending 7, i.e.,
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with © < 7, it holds that %, 7',0 = . Note that this concept of conservativeness is
automatically embedded in the definition of the set Pa (W, w), since we consider only
paths w € Pth™(w) that, if extended, continue to satisfy the formula y. Now, for the
minimality, consider a finite tree 7 having just three nodes all labeled by p, the root and
two of its successors. Also, consider the formula ¢ = E22F p. Because of the minimality,
the two paths of length two that satisfy F p collapse into the path containing just the
root, hence 7 £ @. For the conservativeness, consider another tree 7’ equal to ‘T, but
with one of the two root successors not labeled with p. Also, consider the formula
¢’ = E=2G p. At this point, by the conservativeness, we have that 7’ [~ ¢/ even if there
are two paths satisfying the formula G p, the root alone and its extension with one of
the children, since the former is not conservative. Indeed, this path can be extended into
a path that does not satisfy G p.

Let % be a Kripke structure and ¢ be a GCTL* formula. Then, X is a model for @,
denoted by X |= ¢, iff there is w € W such that &, w |= ¢. In this case, we also say that
X is a model for @ on w. A GCTL* formula @ is said satisfiable iff there exists a model
for it. For all state formulas @ and @, (resp., path formulas y; and y;), we say that ¢
is equivalent to @, formally @1 = @, (resp., Y is equivalent to Y, formally y| = )
iff for all Kripke structures % and worlds w € W it holds that &, w |= ¢ iff K, w = @,
(resp., min(Pa(y1,w)) = min(Pa(y2,w))).

The following lemma shows two exponential fixed point equivalences that extend
to “graded” formulas the correspondign well-known result for “ungraded” formulas.
These interesting equivalences among GCTL* formulas, are useful to describe impor-
tant properties of the GCTL semantics.

Lemma 1 ([2]). Let @1 and @2 be state formulas, g > 1, and ex(¥,g) = V(¢ yec(e)
N:_ E=X E=I\. Then, the following equivalences hold:

. EoiU@ =g Vo /\ex<(p1U(p2, 1>

E=801U @2 = —02 A 91 Aex(01U g2, g)

. EQiIR@2 = @a A (@) VEX §Vex{Q1R¢,1))

. EZ201R@; =02 A= AEXE—(91R@2) Aex(91R¢2,8)

AW N~

Finally, by using a simple proof by induction, it is possible to show that GCTL* is
invariant under the unwinding of a model. Hence, the next theorem follows.

Theorem 1. GCTL* satisfies the tree model property.

4 Succinctness

In this section, we show that binary GCTL is at least exponentially more succinct than
binary Gu-CALCULUS. We prove the statement by showing a class of GCTL formulas
@ whose minimal equivalent Gu-CALCULUS formulas ), needs to be in size exponen-
tially bigger than (the size of) ¢g. Classical techniques ([15, 16, 25]) rely on the fact
that in the more succinct logic there exists a formula having a least finite model whose
size is double exponential in the size of the formula, while in the less succinct logic
every formula has finite models of size at most exponential in its size. Unfortunately,
in our case we cannot apply this idea, since, as far as we know, both GCTL and the
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Gu-CALCULUS satisfy the small model property, i.e., all their satisfiable formulas have
always a model at most exponential in their size. To prove the succinctness of GCTL,
hence, we explore a technique based on a characteristic property of our logic. Specifi-
cally, it is based on the fact that, using GCTL, we can write a set of formulas @, each
one having a number of “characterizing models” that is exponential in the degree g
of @,, while every Gu-CALCULUS formula has at most a polynomial number of those
models in its degree.

Consider the property “in a tree, there are exactly g grandchildren of the root labeled
with p and having only one path leading from them, while all other nodes are not”. Such
a property can be easily described by the GCTL formula @, = ¢’ A @y, where ¢’ = —p A
AX (~p AAX (p AAXAG (~p AA2X f))) and @) = E=5F p. Its size is @([log(g+1)]).
We claim that a Gu-CALCULUS formula ), requires exponential size to express the
same property. More formally, our aim is to prove the following theorem.

Theorem 2. Let ¢, = (EZ$F p) A@', with g € N and ¢' = ~pAAX(—pAAX(pAAXAG(—p
AA<ZXf))). Then, each Gu-CALCULUS formula X, equivalent to 9q has size Q(2loelh,

The proof of this theorem proceeds directly by proving the following lemma and ob-
serving that, since ||, | = @([log(g+1)]), we can easily derive that ||y| = Q(21%).

Lemma 2. Every Gu-CALCULUS formula Xg equivalent to @ is of size Q(g).

S GCTL Satisfiability

In this section, we describe the satisfiability procedure for GCTL. As we discussed in
the introduction, we exploit an automata-theoretic approach by using satellites that are
used to accept binary tree-encodings of tree models of a formula. So, we first introduce
the automata model, then we discuss the binary tree encoding, and finally, we show how
to build the automaton accepting all tree-model encodings of a given formula.

Tree automata with satellites Alternating tree automata (ATA) [18] are a generalization
of nondeterministic tree automata. Intuitively, on visiting a node of the input tree, while
the latter sends exactly one copy of itself to each of the successors of the node, an ATA
can send several copies of itself to the same successor. As a generalization of ATA, here
we consider alternating tree automata with satellites (ATAS), in a similar way it has
been done in [12], with the main difference that our satellites are nondeterministic and
can work on trees and not only on words. The satellite is used to ensure that the input
tree satisfies some structural properties and it is kept apart from the main automaton as
it allows to show a tight complexity for the satisfiability problem. The formal definitions
follow.

Definition 3. An ATA is a tuple A = (X,A,Q,9,q0,F), where ¥, A, and Q are non-
empty finite sets of input symbols, directions, and states, respectively, qo € Q is an
initial state, F is an acceptance condition o be defined later, and 8 : Q x L — BT (Ax Q)
is an alternating transition function that maps a state and an input symbol to a positive
boolean combination of moves in A X Q.
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Definition 4. A run of an ATA 4 on a X-labeled A-Tree T = (T,v) is a (Q x T)-labeled
N-tree (Tr,r) such that (i) r(€) = (qo,€) and (ii) for all y € Tr with r(y) = (q,x), there
is a set S C Ax Qwith S = 08(q,v(x)), such that, for all (i,q') € S, there is a j € N for
which r(y-j) = (¢',x-i) holds.

In the following, we consider ATA along with the Biichi acceptance condition F C Q
(ABT) (see [13] for more). By £(4) we denote the language accepted by the automaton
A4, 1i.e., the set of all trees T accepted by 4. Moreover, 4 is said to be empty if L(4) = 0.
The emptiness problem for 4 is to decide whether £(4) = 0.

We now define automata with satellite.

Definition 5. An ATAS is a tuple (4,S), where 4 = (£ x P',A,Q,8,q0,F) is an ATA
and S = (£,A,P,C Py) is a satellite, where P =P’ x P" is a non-empty finite set of states,
Py C P is a set of initial states, and : P x X +— 2P* s 4 nondeterministic transition
function that maps a state and an input symbol to a set of functions from directions to
states.

For the coming definition we need an extra notation. Given a (¥’ x £”)-labeled A-tree
T = (T,v), we define the projection of ‘T on ¥’ as the X'-labeled A-tree 7' = (T,V')
such that, for all nodes x € T, we have v(x) = (V/(x),5), for some ¢ € £".

Definition 6. A tree T is accepted by an ATAS (4,S), where A= (L x P',A,Q,8,qo,
F), S = (X,A,P.{,R), and P =P x P", iff there exists a run R _of S on T, ie., a
(X x P)-labeled A-tree, whose projection on ¥ x P' is accepted by the ATA A.

In words, first the satellite § guesses and adds to the input tree 7 and additional label-
ing on the set P/, thus returning the augumented tree K. Then, the main automaton .4
computes a new run on X as input.

In the following, we also consider ATAS along with the Biichi condition (ABTS).

Note that satellites are just a convenient way to describe an ATA in which the state
space can be partitioned into two components, one of which is nondeterministic and
independent from the other, and has no influence on the acceptance. Indeed, it is just
a matter of technicality to see that automata with satellites inherit all the closure prop-
erties of alternating automata. In particular, the following theorem, directly derived by
the proof idea of [12], shows how the separation between 4 and S gives a tight analysis
of the complexity of the relative emptiness problem.

Theorem 3. The emptiness problem for an ABTS (4,S), where 4 has n states and d
(n-log(m)-d)

directions and S has m states, can be decided in time 2° .

Binary tree model encoding As first step, we define the infinite widening of a formula
tree model 7, i.e., a transformation that, taken 7, returns a full infinite tree Zy having
infinite branching degree and embedding 7. This transformation ensures that in 7" all
nodes have the same branching degree and all branches are infinite. To this aim, we use
a fresh label # as described in the following definition.

Definition 7 (Infinite Widening). Let T = (T,v) be a L-labeled A-tree, with A C N and
such that # ¢ ¥. Then, the infinite widening of T is the Ly -labeled N-tree Tyy = (N*,
v ) such that (i) Zw = ZU{#}, (i) for x € T, vy (x) = v(x), and (iii) for y € N*\ T,
v (y) =#.
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Now, we define a sharp transformation of Zy in a full binary tree 7p. This is in-
spired but different from that used to embed the logic S®S into S2§ [21]. Intuitively,
the transformation allows to delay n decisions, to be take at a node y in Ty and corre-
sponding to its successors y - i, along some corresponding nodes x,x-0,x-00,... in Zp.
In particular, when we are on a node x - 0%, we are able to split the decision on y-i into
an immediate action, which is sent to the right (effective) successor x - 0’ 1, while the
remaining actions are sent to its copy x-0'*!. To differentiate the meaning of left and
right successors we use the fresh symbol L.

Definition 8 (Delayed Generation). Let Ty = (N*,vy) be the infinite widening of
a X-labeled tree T such that | & ¥. Then, the delayed generation of I is the Lp-
labeled {0,1}-tree Ip = ({0,1}*,vp) such that (i) £p = Xw U {L} and (ii) there ex-
ists a surjective function f : {0,1}* — N*, with f(g) =g, f(x-0) = f(x), and f(x-
0°-1) = f(x) - i, where x € {0,1}* and i € N, such that (ii.i) vp(x) = vy (f(x)), for
all x € {e} U{0,1}*- {1}, and (i) if viw(f(x)) # # then either vp(x-0) = L and
vp(x-1) ##orvp(x-0) =vp(x-1) =4 else vp(x-0) =#, for all x € {0,1}*.

To complete the tree encoding, we have also to delay the degree associated to each
node in the input tree model. We recall that, an original tree model of a graded formula
may require a fixed number of paths satisfying the formula going through the same
node. Such a number is the degree associated to that node and which we need to delay.
To this aim, we enrich the label of a node with a function mapping a set of elements,
named bases, into triples of numbers representing the splitting of the node degree into
two components. The first is the delayed degree, while the second is the degree associ-
ated to one of the effective successors of the node. Such a splitting is the delayed action
mentioned above customized to the need of having information on the degrees. This is
formalized in the following four definitions.

Definition 9 ((X,B)-Enriched g-Degree Tree). Let ¥ and B be two sets, g € N, and
H(g) C N? be the set of triples (d,dy,d>) such that d = dy +dy < g. Then, a (X,B)-
enriched g-degree tree is a (X x H(g)?)-labeled {0,1}-tree T = ({0,1}*,v).

We now introduce (Xp,B)-enriched g-degree trees Ip, , as the extension of the de-
layed generation I of 7 with degree functions in its labeling. Intuitively, each function
in a node represents how to distribute and propagate an information on the degrees along
its successors.

Definition 10 (B-Based g-Degree Delayed Generation). Let B be a set, g € N, and
TIp = ({0,1}*,vp) be the delayed generation of a X-labeled tree ‘T. Then, the B-based
g-degree delayed generation of T is the (Lp, B)-enriched g-degree tree Ip, , = ({0, 1},
VD) such that there is an h € H(g)B with VD, (¥) = (vp(x),h), for all x € {0,1}".

In order to have a sound construction for TDB,g’ we need to impose a coherence on
the information between a node and its two successors. In particular, whenever we enter
anode x labeled with # in its first part, as it represents that the node is fictitious, we have
to take no splitting of the degree by sending to x the value 0. On the other nodes, we
have to match the value of the first (resp., second) component of the splitting with the
degree of the left (resp., right) successor.
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Definition 11 (Sup/Inf Coherence). Ler T = ({0,1}*,v) be a (XU {#},B)-enriched
g-degree tree. Then, T is superiorly (resp., inferiorly) coherent w.r.t. a base b € B iff,
for x € {0,1}* and i € {0,1} with v(x) = (o,h), h(b) = (d,do,d1), v(x-i) = (c;,h;),
and h;(b) = (dﬂdé,d’i), it holds that (i) if 6; = # then d; = 0 and (i) d; < d" (resp.,
di>d).

Finally, with the following definition, we extend the local concept of sup/inf coher-
ence of a particular base to a pair of sets of bases.

Definition 12 (Full Coherence). A (XU {#}, B)-enriched g-degree tree T is full coher-
ent w.r.t. a pair (Bgup, Bint), where By, U Bins € B iff it is superiorly (resp., inferiorly)
coherent w.r.t. all bases b € Bgyp (resp., b € Binf).

The coherent structure satellites We now define the satellites we use to verify that the
tree encoding the model of the formula has a correct shape w.r.t. the whole transforma-
tion described in the previous paragraph. In particular, we first introduce a satellite that
checks if the “enriched degree tree” in input is the result of a “based degree delayed
generation” of the model of the formula. Then, we show how to create the additional
labeling of the tree that satisfies the coherence properties on the degrees required by
the semantics of the logic. The following automaton checks if the # and L labels of the
input tree are correct w.r.t. Definitions 7 and 8.

Definition 13 (Structure Satellite). The structure satellite is the binary satellite §* =
(£p,{0,1},{#, L, @},L,{@}), where C is as follows: if p = 6 = # then {(p,0) =
{(#,#)} else if either p=0= 1L or p= @ and 6 € L then {(p,0) = {(L, @), (#,#)},
otherwise {(p,c) = 0.

The satellite $* has constant size 3. Its transition function { is defined to directly repre-
sent the constraints on the # and L labels, so the next lemma easily follows.

Lemma 3. The satellite S* accepts all and only the Xp-labeled {0, 1}-trees ‘Ip that can
be obtained as delayed generation of X-labeled trees T .

The next satellite creates the additional labeling of the input tree of the main au-
tomaton in such a way that it is sup/inf coherent by using the properties (i) and (ii) of
Definition 11. Precisely, if the satellite accepts the input tree, the additional labeling is
given by its states.

Definition 14 (Sup/Inf Coherence Satellite). The b-base g-degree sup (resp., inf) co-
herence satellite is the binary satellite S,Eg = (XU{#},{0,1},H(g),C,H(g)), where {is
as follows: (i) if 6 = # then {(p, o) is set to {(p,p)} if p = (0,0,0) and to O otherwise;
(i) if 6 # # then {(p,S) contains all and only the pairs of states (poy, p1) € H(g){O!
with p; = (di,dé,d’i), such that d; < d' (resp., d; > d'), for all i € {0,1}, where p =
(d,do,dy).

Note that the satellite 5,3: < has size quadratic in its degree g.
Finally, we introduce the satellite that checks if the tree in input is coherent or not
by merging the behavior of the two previous described satellites.
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Definition 15 (Coherent Structure Satellite) The g-degree structure (Bsup, Binf)-cO-

herent satellite is the binary satellite S, Boup:Bint = (Xp,{0,1},H(g)Bsw Bin) x {#, | @},
¢, H(g)BsweBind x {@1}) obtained as the product of the structure satellite S* with all

the b-base g-degree sup (resp., inf) coherence satellites S, g{ }, with b € By (resp.,
b € Bing).

supv Binf .

Clearly, the size of S, is polynomial in g and exponential in |Bsyp U B, since its
number of states is equal to 3 ((g+ 1)(g +2))/Psww il Due to the product structure of
the automaton, next result dlrectly follows from Lemma 3, and Definitions 10 and 12.

Theorem 4. The main automaton 4 of an ATAS (4, SBS”p " having satellite state
space P=P x P, with P’ = H(g)? and P" = {#, | @} accepts only the B-based g-
degree delayed generation ‘Ip,, of X-labeled trees T that are coherent w.r.t. the pair
(Bsup,Binf), with B = Bgyp U Byt

The formula automaton In this paragraph we introduce a Biichi tree automaton 4, that
checks whether a full bounded-width tree 7 satisfies a given formula ¢ by evaluating
all B-based g-degree delayed generation trees TDB.g associated with 7, where g = ¢ is
the maximum degree of ¢ and B = ecl(¢) is the extended closure of ¢. The automaton
works on any B-based g-degree generation tree, even those that are not associated to
a full bounded-width tree. However, we make the assumptions that the trees in input
are really associated to this kind of trees and that they are coherent with respect to
(Bsup, Bint), where Bgy, = ecl(¢)” and By = ecl(¢)". By Theorem 4, we are able to
enforce such properties by using A, as a part of an ATAS having the g-degree structure

(Bsup, Bint)-coherent satellite SBS”" Bint

In order to understand how the formula automaton works, it is useful to gain more
insights on the meaning of the tree Ip, , associated with 7. First of all, the widening
operation has the purpose to make the tree complete by adding fake nodes labeled with
#. Through this, we obtain the tree 7y . Then, the delaying operation transforms Zyy into
a binary tree 7p, such that at every level a node x associated to a node y in 7" generates
only one of the successor of y in the direction 1, meanwhile it sends a duplicate of
itself on the direction O labeled with L. The following duplicates have to generate the
remaining successors in a recursive way. However, when there are no more successors
to generate, the node x does not send in the direction O a duplicate of itself anymore,
but just a fake node labeled with #. At this point, to obtain the tree ’ZbB‘g , we enrich the
labeling of the delayed generation tree, by adding a degree function h : B+ H(g). In
the hypothesis that T satisfies ¢, for every formula ¢/ € B and node x € {0,1}* with
VD, (x) = (0,h), we have that h(¢') = (d,do,d) describes the degree with which the
formula @ is supposed to be satisfied on x. In particular d is the degree in the current
node, and dy + d; explains how this degree is partitioned in the following nodes. More
precisely d represents the degree sent to the direction 1, which usually corresponds to a
concrete node in 7, hence it is the degree sent to that node. Meanwhile, dy represents the
degree sent to the direction 0, which usually corresponds to a duplicate of the previous
node. Hence dj represents the degree that had yet to be partitioned among the remaining
successors of the node y associated to x. To this aim, the coherence requirement asks:
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(i) for an existential formula, the degree found in a successor node is not lower than
the degree the father sent to that node (it may be higher as the node may satisfy the
existence by finding more paths with a certain property, so it surely satisfies what the
formula requires); (ii) for a universal formula, the degree found in a successor node is
not greater than the degree the father sent to that node (it may be smaller as the node
may satisfy the universality by finding less paths with a certain negated property, so it
surely satisfies what the formula requires).

In the hypothesis of coherence, the formula automaton needs only to check that (i)
the degree of every existential and universal formula is initiated correctly on the node in
which the formula first appears in (e.g., for an existential formula it needs to check that
the degree in the label of the node is not lower than the degree required by the formula),
and (ii) that every node of the tree satisfies the existential or universal formula with
the degree specified in the node labeling. To do this, the automaton has as state space
cl(@) Uecl(¢) Urcl(®): on one hand, the formulas in ecl(¢) ask the automaton to verify
them completely relying on the degree of the label, on the other hand, the existential
and universal formulas in cl(@) ask the automaton even to check that the degree of them
agrees with that contained in the label. Finally, states in rcl(¢) are used for the Biichi
acceptance condition.

Definition 16 (Formula Automaton). The formula automaton for @ is the binary ABT
Ay = (¢ X P, {0,1},Qq,8,9,Fy), where Lo =2PU{#, L}, P, =H($)*®), Q, =
cl(9) Uecl(e) Urcl(9), Fp=rcl(@), and & : Qpx (E¢ xPy) — BT ({0,1} x Qo) is de-
scribed in the body of the article.

We now describe the structure of the transition transition 8(g, (c,h)) through a case
analysis on the state space.

As first thing, when 6 = #, the automaton is on a fake node x = x’ - i of the the input
tree %B‘ o> SO every formula should be false on it. However, in the instant the automaton
reaches such a node, by passing through its antecedent x/, it is not asking to verify the
formula represented by the state g. Indeed, we have that it is sent by another state ¢’
on x’ which corresponds to a universal formula. In that case, we are checking that the
“core” of it is satisfied on all the successors (but a given number of them). Hence, since
x does not exist in the original tree 7, we do not have to verify the property of ¢ on it.
Moreover, we are sure that ¢’ does not represent any existential property. This is due to
the fact that (i) the degree d; related to the state ¢’ in the labeling of x’ needs to be 0 by
the coherence requirements of Definition 11 and (ii) that, as we show later, the transition
on existential formulas do not send any new state to a direction j having d; = 0. For
this reason, we set (g, (6,h)) = t. In the rest of this paragraph, we suppose G # #.

As we show later, the structure of the transition function does not allow to reach, at
the same time, a state g belonging to the set cl(¢@) Urcl(¢) and a labeling 6 = L. For
this reason, w.l.o.g., we can set 8(q, (c,h)) =f.

Due to the lack of space, here we partially describe the transition function of A,
(i.e., the cases EX and EU), and send the reader to the full version for the complete
definition.

Let h(EX @) = (d,dp,d;). For a state of the form EX ¢, we verify that this formula
holds with degree d. Recall that in the input tree the degrees (do,d;) describe the distri-
bution of the nodes, which need to satisfy @, among the successors of the current node.
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Since the nodes on direction 1 are real successors of the node in the original input tree
T, we need that the state formula @ holds on them iff d; = 1. However, we cannot ask
that a state formula holds more than one time, so, if d; > 1, the input tree cannot be
accepted. Finally, on direction 0, we send the same state EX @ if dy > 0, in order to ask
that the residual degree d is distributed on the remaining successors. For a state of the
form E=X @ we have only to further verify that the degree i agrees with the value d,
i.e., d > i. Hence, 8(EZ'X @, (c,h)) is set to f, if d < i, and to 3(EX @, (6, h)), otherwise.

Let now h(Ee;U @) = (d,do,d,). For a state of the form E@,U ¢, we check that
this formula holds with degree d. If the node is not a duplicate of a previous node,
i.e., 0 # 1, we check the formula that should hold in the current node by applying
the one-step unfolding property derived by the semantics (see Lemma 1). If d = 1, then
E@; U ¢, may be satisfied on the current node. Indeed, if @ is true on it, we already have
one and only one minimal path satisfying @;U ¢,. Otherwise, we need @; to holds. If
d > 1, we have to force @;U @, to be not yet satisfied. So, we require —¢, to holds in
the current node. These two cases, may also require E@;U @, to hold on some of the
successors, so we may need to propagate the formula itself, by using the requirement
v=(0,E@;U @) A (1,E@;U @,). In the case d = 0, we do not require anything, so we
set the transition function to be t. On the other hand, if 6 = 1, we do not have to verify
again what is check on a previous node, but only to propagate the formula on both the
directions 0 and 1, by using the y requirement. As for the EX case, for a state of the form
E=/@;U @, we have to do the same consideration on the relation between the degrees i
and d. Moreover, we do not have to deal with the L labeling, since the current state is
never sent through the 0 direction. Hence, we do not consider it as a separate case.

We now briefly discuss the acceptance condition for the illustrated cases. In the full
version we show that F equals to rcl(¢). Here, we only show that the states EX and
EU discussed above are not contained in Fy. First note that states EX may generate
themselves only along direction 0 but, in the hypothesis that 7 has bounded-width, this
cannot occur infinitely often. Indeed, ‘leVg can only have as many duplicates of a node
x in the direction O labeled with L as the number of successors of the related node in
T . Thus, along a direction 0, the automaton eventually meets a node labeled with # that
does not allow the states to further propagate. For the same reason, also the states EU
cannot progress infinitely often along direction 0. As concern direction 1, a state EU
needs to follow the branches on TDB,g that satisfy the until. Since, on those branches, it
needs to be satisfied within a finite path, we cannot allow it to progress infinitely often.
Consequently, we do not add EU in the acceptance set Fy,.

Theorem 5. Let ¢ be a GCTL formula, with g = ¢, Bsyp = ecl(9)7, and Bint = ecl(¢)".
Then, ¢ is satisfiable ijﬁ‘L((ﬂ(P,SgBS"p’Billf>) £ 0.

By a matter of calculation, it holds that |4,| = O(|¢|) and 5o Bt — gollel) By

Theorem 3, we obtain that the emptiness problem for (JZl(p,Sf S“‘”Bi"f> can be solved in

time 200 102(®)) < 20(l*) Moreover, by recalling that GCTL subsumes CTL, the
following result follows.

Theorem 6. The satisfiability problem for GCTL with binary codings is EXPTIME-
COMPLETE.
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