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Abstract. In modal logics, graded (worlds) modalities have been deeply inves-
tigated as a useful framework for generalizing standard existential and universal
modalities, in such a way they can express statements about a given number of
immediately accessible worlds. These modalities have been recently investigated
with respect to the propositional µ-calculus, which provide formulas exponen-
tially more succinct, without affecting the computational complexity for the ex-
tended logic, i.e., the satisfiability problem remains solvable in EXPTIME.
A natural question that arises is how less powerful logics than µ-calculus or more
complex graded modalities affect the decidability of the logic. In this paper, we
investigate this question in the case of the branching-time temporal logic CTL by
introducing graded path modalities. These modalities naturally extend to (min-
imal) paths the generalization induced to successor worlds by classical graded
modalities, i.e., they allow to express properties such as “there exist at least n
minimal paths satisfying a given formula”.
As interesting results, we show that CTL extended with graded path modalities
is more expressive than CTL, it retains the tree and the finite model properties,
and its satisfiability problem remains decidable in EXPTIME. The latter result is
obtained by exploiting an automata-theoretic approach. In particular, we intro-
duce the class of partitioning alternating Büchi tree automata and show that the
emptiness problems for them is EXPTIME-COMPLETE.

1 Introduction

Temporal logics are a special kind of modal logics that provide a formal framework for
qualitatively describing and reasoning about how the truth values of a given assertion
changes over time. First pointed out by Pnueli in 1977 [Pnu77], these logics turn out to
be particularly suitable for reasoning about correctness of concurrent programs [Pnu81].

Depending on the view of the underlying nature of time, two types of temporal
logics are mainly considered [Lam80]. In linear-time temporal logics, such as LTL
[Pnu77], time is treated as if each moment in time has a unique possible future. Con-
versely, in branching-time temporal logics, such as CTL [CE81] and CT L∗ [EH86],
each moment in time may split into various possible futures and existential and univer-
sal quantifiers are used to express properties along one or all the possible futures. In
modal logics, such as ALC [SSS91, Sch91] and µ-calculus [Koz83], this kind of quan-
tifiers have been generalized by means of graded (worlds) modalities [Fin72, Tob01,
vdHdR95], which allow to express properties such as “there exist at least n accessible
worlds satisfying a certain formula” or “all but n accessible worlds satisfy a certain
formula”. For example, in a multiprocessor scheduling specification, we can express
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properties such as each time a computation is invoked, there are always at least two
processors immediately next available for it, without naming which processors they
exactly are. This generalization has been proved to be very powerful as it allows to ex-
press system specifications in a very succinct way. In some cases, the extension makes
the logic much more complex. An example is the guarded fragment of first order logic,
which becomes undecidable when extended with a very weak form of counting quan-
tifiers [Grä99]. In some other cases, one can extend a logic with very strong forms
of “counting quantifiers” without increasing the computational complexity of the ob-
tained logic. For example, this is the case for the µALCQ [GL94, GL97, BCM+03]
and the graded µ-calculus [KSV02, BLMV06], for which the decidability problem is
EXPTIME-COMPLETE.

A natural question that arises is how less powerful logics than µ-calculus or more
complex graded modalities affect the decidability of the logic. In this paper, we inves-
tigate this question in the case of the branching-time temporal logic CTL and by intro-
ducing graded path modalities. These modalities naturally extend to (minimal) paths
the generalization induced to successor worlds by classical graded modalities, i.e., they
allow to express properties such as “there are at least n minimal paths satisfying a for-
mula” or “all but less than n minimal paths satisfy a formula”, for a suitable and well-
found concept of minimality among paths. Although the extension of CTL with graded
path modalities (GCTL) seems a trivial task (since µ-calculus subsumes CTL), it is not
at all immediate. In fact, differently from modal logics, such as ALC and µ-calculus, the
underlying objects of temporal logics are both states and paths. Therefore, the concept
of graded can relapse on both of them, as we investigate here. Clearly, the graded path
quantifiers we consider subsume the graded idea used in ALC and µ-calculus.

As interesting results about GCTL, we show that it is more expressive than CTL (as
it becomes not invariant under bisimulation). Nevertheless, we show that this extension
retains the tree and the finite model properties, as well as its satisfiability problem is in
EXPTIME, thus not harder than the decidability problem for the classical CTL [EH85].
These properties make GCTL a very appealing formalism in system specification for
the following reasons. Firstly, it allows to express computational system properties not
expressible in CTL, in an elegant and succinct way, and still decidable in EXPTIME. For
example, coming back to the above multiprocessor scheduling, we can express proper-
ties such as each time a computation is required, then there are at least two distinct
(i.e., non completely equivalent) computational paths that can take care of it. Secondly,
our interpretation of graded path quantifiers has some similarity with the concept of
cyclomatic complexity defined by McCabe in a seminal work in software engineering
[McC76]. He studied a way to measure the complexity of a program, identifying it in the
number of independent instruction flows. With our concept of graded path quantifiers,
we can specify how many minimal computational paths satisfying a given property re-
side in an given program. From an intuitive point of view, with our concept of graded
path quantifiers, we can subsume the cyclomatic complexity introduced by McCabe,
where for independent we replace minimal. Thirdly, the concept of graded path quanti-
fiers can be extended to other logics such as dynamic logics [FL79] and hence we can
obtain corresponding EXPTIME upper bounds also for them for free.

The complexity result of the satisfiability problem for GCTL is obtained by exploit-
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ing an automata-theoretic approach [VW86, SE89, KVW00]. To develop a decision
procedure for a logic with the tree model property, one first develops an appropriate no-
tion of tree automata and studies their emptiness problem, then the satisfiability problem
for the logic is reduced to the emptiness problem of the automata. To this aim, we in-
troduce a new automata model: partitioning alternating tree automata (PATA). While
a nondeterministic automaton on visiting a node of the input tree sends exactly one
copy of itself to each successor of the node, an alternating automaton can send several
copies of itself to the same successor. In particular, in symmetric alternating automata
[JW95, Wil99] it is not necessary to specify the direction of the tree on which a copy
is sent. In [KSV02], graded alternating tree automata (GATA) are introduced as a gen-
eralization of symmetric alternating tree automata, in such a way that the automaton
can send copies of itself to a given number n of state successors, either in existential
or universal way, without specifying which successors these exactly are. PATA further
extend GATA in such a way that the automaton can send copies of itself to a given
number n of paths. As we show later, for each GCTL formula ϕ, it is always possible
to build in linear time a PATA along with a Büchi condition (PABT) Aϕ that accepts
all and only the tree models of ϕ. The major difficulty here is that whenever ϕ contains
graded modalities such as “there exist at least n minimal paths satisfying a path property
ψ”, Aϕ must accept trees in which there are at least n distinct paths satisfying ψ, where
some groups of those paths can arbitrarily share the same (proper) prefixes, and we have
to ensure this by opportunely constraining the transition relation of the automaton. We
present an EXPTIME decision procedure for the emptiness of PABT through an expo-
nential translation into non-deterministic Büchi tree automata (NBT). In more detail,
we use a technical variation of the Miyano and Hayashi technique [MH84] for tree au-
tomata [Mos84], which has been deeply used in the literature for translating alternating
Büchi automata to nondeterministic ones. Then, the result follows from the fact that the
emptiness problem for NBT is solvable in polynomial time [VW86].

In this paper we left to investigate more complex logics, such as CT L∗, along with
graded path quantifiers, i.e., GCT L∗. We believe that also for CT L∗ the extension should
gain expressiveness without paying any extra cost on deciding its satisfiability, i.e., we
conjecture that GCT L∗ has a 2EXPTIME-COMPLETE satisfiability problem, as we mo-
tivate at the end of the paper. However, we deserve this part for future works.

Due to space limitations, most of the proofs are omitted and reported in appendix.

2 Preliminaries

Given a set X of objects (numbers, words, sets, etc.), we denote by |X| the number of
its elements, called size of X, and by 2X the powerset of X itself. In addition, by Xn we
denote the set of all n-tuples of elements from X, by X∗=

S
ω
n=0 Xn the set of finite words

on the alphabet X, and by X+ the set X∗ \{ε}, where, as it is usual, ω is the numerable
infinity and ε is the empty word. With |x| we indicate the length of a word x ∈ X∗ and
with {xi}n

i we denote the ordered sequence (x1, . . . ,xn) ∈ X+ of objects varying on the
index i. As special sets, we also consider N and N+ = N\{0} as, respectively, the sets
of natural numbers and positive natural numbers. Furthermore, with N(n) and N(n)+ we
denote the subsets {k ∈N | k≤ n} of N and {k ∈N+ | k≤ n} of N+, where n∈N∪{ω}.
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A structure S is an ordered tuple 〈X,R〉, where (i) X = dom(S) is a non-empty set
of objects, called domain of S , and (ii) R⊆X×X is a binary relation between objects.
We denote the size |S | of S as the number |X| of objects of its domain. An infinite
structure is a structure of infinite size. When the relation R is clear from the contex, to
refer to a structure we only use its domain. A tree is a structure 〈X,R〉 in which the
domain X, in the following also referred as set of nodes, is a subset of N∗ such that (i)
if x ·a ∈ X, with x ∈ N∗ and a ∈ N, then also x ∈ X and (ii) (x,x′) ∈ R iff x′ = x ·a, for
some a ∈ N. The empty word ε is the root of the tree. A tree is full iff x · a ∈ X, with
a ∈ N, implies x ·b ∈ X, for all b ∈ N(a). A path is a tree 〈X,R〉 in which for all nodes
x ∈ X there is at most one a ∈ N such that x · a ∈ X, i.e., the transitive closure of the
relation R is a linear (total) order on X. A Σ-labeled structure S = 〈Σ,X,R,L〉 is a tuple
in which (i) Σ is a finite set of labels, (ii) 〈X,R〉 is a structure, and (iii) L : X 7→ Σ is a
labeling function that colors each object with a label. When both Σ and R are clear from
the context, we indicate a labeled structure 〈Σ,X,R,L〉 with the shorter tuple 〈X,L〉.

Let S = 〈X,R〉 and S ′ = 〈X′,R′〉 be two structures. We say that S ′ is a substructure
of S , in symbols S ′ 4 S , iff (i) X′ ⊆ X and (ii) R′ = R∩ (X′×X′) hold. Moreover, we
say that S and S ′ are comparable iff (i) S 4 S ′ or (ii) S ′ 4 S holds, otherwise they
are incomparable. For a set of structures S, we define the set of minimal substructures
minstructs(S) as the set containing all and only the structures S ∈S such that for all
S ′ ∈S, it holds that (i) S 4 S ′, or (ii) S ′ is not in relation with S . Note that all structures
in minstructs(S) are incomparable among them. A structure S is minimal w.r.t. a set S
(or simply minimal, when the context clarify the set S) iff S ∈minstructs(S). A set of
structures S is minimal iff S = minstructs(S).

A Kripke structure K = 〈AP,W,R,L〉 is a 2AP-labeled structure, where AP is a set
of atomic propositions, W = dom(K ) is a set of worlds domain of the structure, R is a
relation on W, and L : W 7→ 2AP is the labeling function that maps each world to a set of
atomic propositions true in that world. Given a Kripke structure K = 〈AP,W,R,L〉 and
a world w ∈W, we define the unwinding of the structure K starting from w as the full
and possibly infinite 2AP-labeled (Kripke) tree UK

w = 〈AP,W′,R′,L′〉 such that there is
a function uf : W′ 7→W, called unwinding function, satisfying the following properties:
(i) uf(ε) = w and, for all w′,v′ ∈W′ and u ∈W, it holds that (ii) L′(w′) = L(uf(w′)),
(iii) if (w′,v′) ∈ R′, then (uf(w′),uf(v′)) ∈ R, and, (iv) if (uf(v′),u) ∈ R, then there is
one and only one u′ ∈W′ such that uf(u′) = u and (v′,u′) ∈ R′. Note that the unwinding
function, and so the unwinding structure, is unique up to isomorphisms. Given a Kripke
structure K and a world w∈W = dom(K ), we define paths(K ,w) as the set of paths of
K starting from w. Formally, a path π is in paths(K ,w) iff π4UK

w . In addition, we set
paths(K ) =

S
w∈W paths(K ,w). With π(·) we denote the function π : N(|π|−1) 7→W that

maps each number k ∈ N(|π|−1) with the world π(k) = uf(w′) of K , which corresponds
to the (k + 1)-st position on the path π, where uf is the unwinding function relative to
UK

w , w′ ∈ dom(π), and |w′|= k. Note that π(0) = uf(ε) = w.
Finally, let n∈N+, we define the following two sets: P(n), as the set of all solutions

{pi}n
i to the linear Diophantine equation 1 ∗ p1 + 2 ∗ p2 + . . .+ n ∗ pn = n and CP(n)

as the set of the cumulative solutions {cpi}n
i obtained by summing increasing sets of

elements from {pi}n
i . Formally, P(n) = {{pi}n

i ∈ Nn | ∑
n
i=1 i ∗ pi = n} and CP(n) =

{{cpi}n
i ∈ Nn | ∃{pi}n

i ∈ P(n)∀i ∈ N(n)+ : cpi = ∑
n
j=i p j}. Note that |CP(n)| = |P(n)|
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and, since for each solution {pi}n
i of the above Diophantine equation there is exactly one

partition of n, it holds that |CP(n)|= p(n), where p(n) is the number of partitions of n.
Now, by a classical estimation of p(n) due to Hardy and Ramanujan [Apo76, SP95], we
know that, for a constants α, p(n) = Θ( 1

n 2α
√

n), so it follows that |CP(n)|= Θ( 1
n 2α
√

n).

3 The Graded CTL temporal logic

In this section, we introduce an extension of the classical branching-time temporal log-
ics CTL with graded path quantifiers. We show that this extension allows to gain ex-
pressiveness without paying any extra cost on deciding its satisfiability. For technical
convenience, we introduce this logic through the state and path framework of CT L∗.

The graded computation tree logic (GCT L∗, for short) extends CT L∗ by using two
special path quantifiers, the universal A<g and the existential E≥g, where g ∈N denotes
the corresponding degree. As in CT L∗, these path quantifiers can prefix a linear time
formula composed by an arbitrary combination and nesting of the four linear temporal
operators X (“effective next”), X̃ (“hypothetical next”), U (“until”), and R (“release”).
The quantifiers A<g and E≥g can be respectively read as “all but less than g minimal
paths” and “there exist at least g minimal paths”. In accordance with this reading, a
syntactic phrase A<gψ is named allbut-formula and E≥gψ is named atleast-formula.
The syntax of GCT L∗ is formally defined as follows.

Definition 1. (Syntax) GCT L∗ state (ϕ) and path (ψ) formulas are built inductively
from AP using the following context-free grammar, where p ∈ AP and g ∈ N:
1. ϕ ::= p | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | A<gψ | E≥gψ,
2. ψ ::= ϕ | ¬ψ | ψ∧ψ | ψ∨ψ | Xψ | X̃ψ | ψUψ | ψRψ.

The class of GCT L∗ formulas is the set of state formulas generated by the above gram-
mar. In addition, the simpler class of GCTL formulas is obtained by forcing each tem-
poral operator, occurring into a formula, to be coupled with a path quantifier.

For a state formula ϕ, we define the degree deg(ϕ) of ϕ as the maximum natural num-
ber g occurring among the degrees of all its path quantifiers. We assume that all such
degrees are coded in unary. Accordingly, the length of a formula ϕ, denoted by |ϕ|, is
defined inductively on the structure of ϕ itself in a classical way, and by also considering
|A<gψ| and |E≥gψ| to be equal to g+1+ |ψ|. It is obvious that deg(ϕ) = O(|ϕ|).

We now define the semantics of GCT L∗ w.r.t. a Kripke structure K . For a world
w ∈ dom(K ), we write K ,w |= ϕ to indicate that a state formula ϕ holds at w, and, for
a path π ∈ paths(K ), we write K ,π,k |= ψ to indicate that a path formula ψ holds on π

at position k ∈ N(|π|−1). Note that, the relation K ,π,k |= ψ does not hold for any point
k ∈ N, with k ≥ |π|. For a better readability, in the semantics definition of GCT L∗ we
use the special set PA(K ,w,ψ) and its dual PE(K ,w,ψ), with the following meaning:
PA(K ,w,ψ) is the set of all paths π starting in w such that all its extensions π′ (including
π) satisfy the path formula ψ. The semantics of GCT L∗ is formally defined as follows.

Definition 2. (Semantics) Given a Kripke structure K = 〈AP,W,R,L〉 and w∈W, for
all GCT L∗ state formulas ϕ, the relation K ,w |= ϕ, is inductively defined as follows.
1. K ,w |= p, with p ∈ AP, iff p ∈ L(w).
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2. For all state formulas ϕ, ϕ1, and ϕ2, it holds:
(a) K ,w |= ¬ϕ iff not K ,w |= ϕ, that is K ,w 6|= ϕ;
(b) K ,w |= ϕ1∧ϕ2 iff K ,w |= ϕ1 and K ,w |= ϕ2;
(c) K ,w |= ϕ1∨ϕ2 iff K ,w |= ϕ1 or K ,w |= ϕ2.

3. For a path formula ψ and a natural number g, it holds:
(a) K ,w |= A<gψ iff |minstructs(paths(K ,w)\PE(K ,w,ψ))|< g;
(b) K ,w |= E≥gψ iff |minstructs(PA(K ,w,ψ))| ≥ g;
where it is set that PA(K ,w,ψ) = {π ∈ paths(K ,w) | ∀π′ ∈ paths(K ,w) : π 4
π′ implies K ,π′,0 |= ψ} and PE(K ,w,ψ) = {π ∈ paths(K ,w) | ∃π′ ∈ paths(K ,
w) : π4 π′ and K ,π′,0 |= ψ}.

For all GCT L∗ path formulas ψ, paths π ∈ paths(K ), and natural numbers k < |π|, the
relation K ,π,k |= ψ is inductively defined as follows.
4. K ,π,k |= ϕ, with ϕ state formula, iff K ,π(k) |= ϕ.
5. Where ψ, ψ1, and ψ2 are path formulas, we have:

(a) K ,π,k |= ¬ψ iff not K ,π,k |= ψ, that is K ,π,k 6|= ψ;
(b) K ,π,k |= ψ1∧ψ2 iff K ,π,k |= ψ1 and K ,π,k |= ψ2;
(c) K ,π,k |= ψ1∨ψ2 iff K ,π,k |= ψ1 or K ,π,k |= ψ2.

6. Where ψ, ψ1, and ψ2 path formulas, we have:
(a) K ,π,k |= Xψ iff k < |π|−1 and K ,π,(k +1) |= ψ;
(b) K ,π,k |= X̃ψ iff k = |π|−1 or K ,π,(k +1) |= ψ;
(c) K ,π,k |= ψ1Uψ2 iff there exists an index i, with k≤ i < |π|, such that K ,π, i |=

ψ2 and, for all indexes j with k ≤ j < i, it holds K ,π, j |= ψ1;
(d) K ,π,k |= ψ1Rψ2 iff for all indexes i, with k ≤ i < |π|, it holds K ,π, i |= ψ2 or

there exists an index j with k ≤ j < i, such that K ,π, j |= ψ1.

Remark 1. GCT L∗ (resp., GCTL) formulas with degrees 1 are CT L∗ (resp., CTL) for-
mulas.

Remark 2. The inner definition of PA(K ,w,ψ) and PE(K ,w,ψ), formally stated that
they are dual of each other, i.e., PA(K ,w,ψ) = paths(K ,w)\PE(K ,w,¬ψ).

For all state formulas ϕ1 and ϕ2 (resp., path formulas ψ1 and ψ2), we say that ϕ1 is
equivalent to ϕ2, formally ϕ1 ≡ ϕ2, (resp., ψ1 is equivalent to ψ2, formally ψ1 ≡ ψ2)
iff for all Kripke structures K and worlds w ∈ dom(K ) it holds that K ,w |= ϕ1 iff
K ,w |= ϕ2 (resp., minstructs(PA(K ,w,ψ1)) = minstructs(PA(K ,w,ψ2))).

In the rest of the paper, we only consider formulas in existential normal form or
in positive normal form, i.e., formulas in which only existential quantifiers occur or
negation is applied only to atomic propositions, respectively. In fact, it is to this aim
that we have considered in the syntax of GCT L∗ both the connectives ∧ and ∨, the
quantifiers A<g and E≥g, and the dual operators X̃ and R . Indeed, all formulas can be
converted in existential or positive normal form by using De Morgan’s laws and the
following equivalences, which directly follow from the semantics of the logic. Let ψ,
ψ1, and ψ2 be path formulas and g ∈ N, it holds that ¬A<gψ≡ E≥g¬ψ, ¬Xψ≡ X̃¬ψ,
and ¬(ψ1U ψ2) ≡ ¬ψ1R¬ψ2. In order to abbreviate writing formulas we also use the
boolean values t (“true”) and f (“false”) and the path quantifiers Eψ ≡ E≥1ψ (“there
is a minimal path”) and E>gψ≡ E≥g+1ψ (“there are more than one minimal path”).
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The following lemma shows some interesting equivalences among GCTL formulas
that will be useful to prove important properties of this introduced logic. In particular,
we show fixed point equivalences that extend to “graded” formulas the well known
analogous ones for “ungraded” formulas.

Lemma 1. For all state formulas ϕ1 and ϕ2 and degrees g > 1, it holds that:

i

{
E(ϕ1Uϕ2) ≡ ϕ2∨ϕ1∧ ex(ϕ1Uϕ2,1)
E≥g(ϕ1Uϕ2) ≡ ¬ϕ2∧ϕ1∧ ex(ϕ1Uϕ2,g)

ii

{
E(ϕ1Rϕ2) ≡ ϕ2∧ (ϕ1∨EX̃ f ∨ ex(ϕ1Rϕ2,1))
E≥g(ϕ1Rϕ2) ≡ ϕ2∧¬ϕ1∧EXE¬(ϕ1Rϕ2)∧ ex(ϕ1Rϕ2,g)

where ex(ψ,g) =
W
{hi}

g
i ∈CP(g)

Vg
i=1 E≥hiXE≥iψ.

Remark 3. The function ex(ψ,g) used in the above lemma allows to partition g paths
trough h1 successor worlds, for a given sequence {hi}g

i ∈ CP(g). Indeed, hi is the num-
ber of successor worlds from which at least i paths satisfying ψ start. Therefore, h1
is a right bound on the number of successor worlds we have to consider to ensure
the satisfiability of the formula. By a simple calculation, it follows also that |ex(ψ,

g)|= g∗ (|ψ|+ g+11
2 )∗ |CP(g)|−1 = Θ((|ψ|+ g

2 )∗2α
√

g), for a constant α.

Remark 4. For g = 1, Lemma 1 gives the two classical fixed point expansions for CT L:
E(ϕ1Uϕ2)≡ϕ2∨ϕ1∧EXE(ϕ1Uϕ2) and E(ϕ1Rϕ2)≡ϕ2∧(ϕ1∨EX̃ f∨EXE(ϕ1Rϕ2)).

Let K be a Kripke structure and ϕ a GCT L∗ formula. Then, K is a model for ϕ,
denoting this by K |= ϕ, iff there is w ∈ dom(K ) such that K ,w |= ϕ. In this case, we
also say that K is a model for ϕ on w. A GCT L∗ formula ϕ is said satisfiable iff there
exists a model for it, moreover it is invariant on the two Kripke structures K and K ′ iff
either K |= ϕ and K ′ |= ϕ or K 6|= ϕ and K ′ 6|= ϕ.

By showing an exponential reduction of GCTL to the graded µ-calculus1 and by
using the fact that for the latter the satisfiability problem is solvable in EXPTIME
[KSV02], we immediately get that the satisfiability problem for GCTL is decidable
and solvable in 2EXPTIME. This result is reported in Theorem 1. However, in the next
section we improve this result by showing that the satisfiability problem for GCTL is
solvable in EXPTIME, by exploiting an automata-theoretic approach that deeply makes
use of the idea behind the above function ex(ψ,g), without using it explicitly.

Theorem 1. The satisfiability problem for the GCTL logic is decidable and in particu-
lar solvable in 2EXPTIME.

We conclude this section by showing some intersting properties about GCTL. First
of all, by using a proof by induction we can show that this logic is invariant under the
unwinding of a model. Directly from this, we get that it also enjoys the tree model
property. Moreover, by extending a technique introduced in [EH85] along with Lemma
1, for each GCTL formula ϕ it is possible to build an Hintikka structure from which we
can get a finite model for ϕ. By means a counterexample, we can also show that GCTL

1 The µ-calculus is a well-known modal logic augmented with fixed point operators [Koz83].
The graded µ-calculus extends the µ-calculus with graded state quantifiers [KSV02, BLMV06].
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is not invariant under bisimulation among models, so directly from this, we obtain that
it is more expressive than CTL, since the latter is invariant under bisimulation. All these
properties are reported in the next theorem.

Theorem 2. For GCTL it holds that it (i) is invariant under unwinding; (ii) has the tree
model property; (iii) has the finite model property; (iv) is not invariant under bisimula-
tion; and (v) is more expressive than CTL.

4 Partitioning Büchi Tree Automata

Nondeterministic automata on infinite trees are an extension of nondeterministic au-
tomata on infinite words and finite trees (see [Tho90] for an introduction). Alternating
automata [MS87] are a generalization of nondeterministic automata that embody the
same concept of alternation of Turing machines [CKS81]. Intuitively, while a nondeter-
ministic automaton that visits a node of the input tree sends exactly one copy of itself
to each of the successors of the node, an alternating automaton can send several copies
of itself to the same successor. Symmetric automata [JW95, Wil99] are a variation of
classical (asymmetric) alternating automata in which it is not necessary to specify the
direction of the tree on which a copy is sent. In fact, through three generalized direc-
tions (ε-moves, existential moves, and universal moves), it is possible to send a copy of
the automaton on a node of the input tree to the same node, to some of its successors, or
to all its successors, so the automaton cannot distinguish between directions. As a gen-
eralization of symmetric automata graded alternating tree automata (GATA, for short)
have also been introduced [KSV02]. In this framework, the automaton can send copies
of itself to a given number n of successors, either in existential or universal way, without
specifying which successors these exactly are. Moreover, a GATA can also send a copy
of itself to the reading node by pursuing an ε-move.

Here, we consider partitioning alternating tree automata (PATA, for short) as a
generalization of GATA in such a way that the automaton can send copies of itself to
a given number n of paths starting from the current node. As we show later, for each
GCTL formula ϕ, it is possible to built a PATA that accepts all and only the tree models
of ϕ. The key idea is to extend GATA’s runs by also labeling their nodes with a natural
number, with the aim of collecting “graded path information”. We give an idea on how
a PATA A works w.r.t. the logic GCTL through an example.

First, consider that A uses as states all possible subformulas of the considered for-
mula2. Now, suppose that the automaton is in the node x of an input tree T and in state
E≥gψ, where ψ is also a GCTL path formula, then in a state corresponding to ψ, the au-
tomaton sends n≤ g copies of itself to n successors of x with degrees {g1, . . . ,gn} that
sum to g. One can note that this sequence of n degrees is a partition of the number g.
The degree gi associated to a successor xi of x denotes that at least gi paths starting from
xi have to satisfy ψ and the automaton take care of it through the transition function. In
more details, we individuate the set of n directions relative to successors of x w.r.t. the
degrees {g1, . . . ,gn} by means of a decreasing chain {M1, . . . ,Mn+1}, such that for each

2 More precisely, the automaton uses as states an extended definition of the Fischer-Ladner. See
proof of Theorem 3 for a formal definition.
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i, it holds that Mi \Mi+1 contains all directions of x that are associated with a degree i.
Clearly, there could be different possible chains satisfying such a property and each one
induces a different run of A on T. As a particular case, A sends g copies of itself to g
distinct successors of x on choosing |M1|= g and, for each i > 1, Mi = /0.

The formal definition of a PATA along with the Büchi acceptance condition follows.
In particular, we give a definition without any constraint on the use of its labeling de-
grees, which allows to introduce a more general class of automata, independently from
the logic we consider here. Note that by the definition we give, the automaton at its own
cannot constraint that multiple successors in which it is sent are all distinct. However,
we can force this by means of the transition function. First, we introduce some extra
notation. With B+(X) we denote the sets of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using ∧ and ∨) where we also allow the
formulas t (true) and f (false). For a set X′ ⊆ X and a formula φ ∈ B+(X), we say that
X′ satisfies φ, X′ |= φ, iff the assigning of true to elements in X′ and false to elements in
X\X′ makes φ true. With Db and Dε

b we denote the sets {♦,�}×N(b)+ and Db∪{ε},
respectively. Intuitively, these two sets represent the generalized directions that one can
use, through the transition function, to define the behavior of the automaton.

Definition 3. (PABT) A partitioning alternating Büchi tree automaton is a tuple A =
〈Q,Σ,b,δ,q0,g0,F〉, where Q is a finite set of states, Σ is a finite input alphabet, b ∈ N
is a counting branching bound, δ : Q×N(b)×Σ 7→ B+(Dε

b×Q) is a transition function,
q0 ∈ Q is an initial state, g0 ∈ N is an initial branching degree, and F ⊆ Q×N(b) is a
Büchi acceptance condition, which will be defined later.

The behavior of a PABT is described by means of a run. As for classical alternating
automata, given a PABT A = 〈Q,Σ,b,δ,q0,g0,F〉 and a Σ-labeled tree 〈T, inp〉 in input,
a run 〈Tr, run〉 of A on 〈T, inp〉 is induced by the sets of pairs S⊆Dε

b×Q satisfying its
transition function δ. Here, we first give an intuition of such a run through an example.
Suppose that A , while reading a node x of T labeled with σ is in a state q with degree g,
at the node y of the run, and δ(q,g,σ) = (ε,q1)∧((〈3〉,q2)∨([2],q3). Also, suppose that
x has three successors {x ·0,x ·1,x ·2}. Consider now S = {(ε,q1),(〈3〉,q2)} satisfying
δ(q,g,σ). Accordingly, the automaton can send a copy of itself to node x in the state
q1 (by performing an ε-move) and three copies of itself in the state q2 to three paths
through either one, two, or all successors of x. Now, suppose that we want to send two
copies of A through one successor and one through another. This can be characterized
by taking M1 = {0,1}, M2 = {1}, and M3 = M4 = /0. Consequently, the run must have
three successors {y · 0,y · 1,y · 2}, one labeled with (x,q1,0) (for the ε-move), another
labeled with (x ·0,q2,1), and the last one labeled with (x ·1,q2,2).

We now give the formal definition of a run. To this aim, we first formally define the
sets {Mi}g+1

i introduced above, through a function spart. Then, we introduce a function
exec that makes us able to construct all the possible execution steps. For brevity, we
often write 〈g〉 and [g] instead of (♦,g) and (�,g), respectively.

Definition 4. (Splitting partition function) A splitting partition function spart : (D,

d) ∈ 2N ×Db 7→ spart(D,d) ∈ 2(2N)+ maps a set D and a direction d into a set of
decreasing chains {Mi}i of subset of D (Mi ⊆ D and Mi ⊇Mi+1) such that:
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1. if d = 〈g〉, then for all {Mi}g+1
i ∈ spart(D,d) ⊆ (2D)g+1, it holds that Mg+1 = /0

and there is a sequence {hi}g
i ∈ CP(g) such that |M j|= h j, for all j ∈ N(g)+;

2. if d = [g], then for all {Mi}g+1
i ∈ spart(D,d)⊆ (2D)g+1, it holds that M1 = D and

for all sequences {hi}g
i ∈ CP(g) there is j ∈ N(g)+ such that |M j+1|< h j.

Differently form the GABT case, one can see that in general the sets spart(D,〈g〉)
and spart(D, [g]) are not the dual of each other. This is due to the fact that in PABT,
for a considered node x, we may want to check properties along paths starting in x,
instead of just looking at the successors of x, as it is done in GABT. This induces, in
the d = 〈g〉 case, to take care of just g paths (on which we check that a certain property
holds), while in the d = [g] case we have to take care of all paths (i.e., that in less than
g paths the property may or may not hold, while in all the remaining ones it must hold).

We now give the formal definition of the function exec. Nε denotes the set N∪{ε}.

Definition 5. (Execution function) An execution function exec : (S,D) ∈ 2Dε
b×Q× 2N

7→ exec(S,D) ∈ 22
Nε×Q×N(b) maps the two sets S and D into the set of all possible subset

of Nε ×Q×N(b), called configurations of the execution, such that, for all sets E ∈
2Nε×Q×N(b) we have E ∈ exec(S,D) iff for all pairs (d,q) ∈ S it holds that:

1. if d = ε then (ε,q,0) ∈ E;
2. if either d = 〈g〉 or d = [g] then there exists a sequence {Mi}g+1

i ∈ spart(D,d) such
that for all indexes i ∈ N(g)+ and direction x ∈Mi \Mi+1, it holds that (x,q, i) ∈ E.

The above function exec allows us to give the following definition of PABT’s run in
a very concise and elegant way. First, we introduce the following extra notation. Let
X′ ⊆ X∗ be a set of words on X and x ∈ X∗. Then, we denote by succX′(x) the set of
successor words of x in X′, i.e., succX′(x) = {x ·a ∈ X′ | a ∈ N} and by dirX′(x) the set
of direction of x in X′, i.e., dirX′(x) = {a ∈ N | x · a ∈ X′}. Now, let f : X′ 7→ X′′. We
use inf( f ) to refer to the set {x′ ∈X′ | | f−1(x′)|= ω}, i.e., the set of elements of X′ that
f uses infinitely often as labels for elements in X, and f|X′′′ to indicate the restriction
of f to X′′′, i.e., f|X′′′ : X′′′ 7→ X′′, where X′′′ ⊆ X′. In the following we also write
S |= δ(q,g,σ) to denote that S is a set of tuples (d,q) ∈ Dε

b×Q that satisfies δ(q,g,σ).

Definition 6. (Run of a PABT) A run of a PABT A = 〈Q,Σ,b,δ,q0,g0,F〉 on a Σ-
labeled tree 〈T, inp〉 is a (T×Q×N(b))-labeled full tree 〈Tr, run〉 satisfying the follow-
ing conditions:

1. run(ε) = (ε,q0,g0);
2. for all y ∈ Tr with run(y) = (x,q,g), there exist a set S ⊆ Dε

b ×Q, where S |=
δ(q,g, inp(x)), and a set E ∈ exec(S,dirT(x)) such that for all configurations (d,q′,
g′) ∈ E there is a node y′ ∈ succTr(y) such that run(y′) = (x ·d,q′,g′).

The run 〈Tr, run〉 is accepting iff all its infinite paths satisfy the acceptance condition,
i.e., for all paths π 4 Tr, with |π| = ω, it holds that inf(run|π)∩T×F 6= /0. A tree 〈T,
inp〉 is accepted by A iff there is an accepting run of A on it. With L(A) we denote the
language accepted by the automaton A , i.e., the set of all input trees that A accepts.

By extending a construction given in [KVW00], we obtain the following result.
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Theorem 3. Given a GCTL formulas ϕ with degree b, we can construct in time O(|ϕ|)
a PABT Aϕ, with O(|ϕ|) states and counting branching bound b, such that L(Aϕ) is
exactly the set of all of tree models of ϕ.

Proof. (Sketch.) The automaton Aϕ accepts trees at whose root ϕ holds. As set of
states for Aϕ we use an extended Fisher-Ladner closure ecl(ϕ) of ϕ defined as fol-
lows. First, we recall the classical definition of Fischer-Ladner closure cl(ϕ) of ϕ

[FL79], i.e., the set of all state formulas contained in ϕ (including ϕ). Let g ∈ N+,
Qnt ∈{E≥g,A<g}, Op ∈{∧,∨}, Op ′ ∈{X , X̃} and Op ′′ ∈{U ,R}we have: (i) ϕ∈ cl(ϕ),
(ii) if ϕ1Opϕ2 ∈ cl(ϕ) then ϕ1,ϕ2 ∈ cl(ϕ), (iii) if QntOp ′ϕ′ ∈ cl(ϕ) then ϕ′ ∈ cl(ϕ), and
(iv) if Qnt (ϕ1Op ′′ϕ2) ∈ cl(ϕ) then ϕ1,ϕ2 ∈ cl(ϕ). Let \ϕ′ denote the GCTL formula
in positive normal form equivalent to ¬ϕ′. The extended closure ecl(ϕ) satisfies all the
above properties of cl(ϕ) and additionally it satisfies the following: for all g ∈ N+,
Op ∈ {X , X̃}, and ψ until or release GCTL path formula, it holds that (i) if E≥gOpϕ′ ∈
ecl(ϕ) then 〈ϕ′〉,〈\ϕ′〉 ∈ ecl(ϕ), (ii) if A<gOpϕ′ ∈ ecl(ϕ) then [ϕ′], [\ϕ′] ∈ ecl(ϕ), (iii) if
E≥gψ∈ ecl(ϕ) then 〈ψ〉,〈\ψ〉 ∈ ecl(ϕ), (iv) if A<gψ∈ ecl(ϕ) then [ψ], [\ψ]∈ ecl(ϕ), (v)
if 〈ϕ1Uϕ2〉 or [ϕ1Rϕ2] are in ecl(ϕ) then \ϕ2 ∈ ecl(ϕ), and (iv) if 〈ϕ1Rϕ2〉 or [ϕ1Uϕ2]
are in ecl(ϕ) then \ϕ1 ∈ ecl(ϕ). It is obvious that |ecl(ϕ)|= O(|ϕ|).

We define Aϕ as 〈ecl(ϕ),2AP,deg(ϕ),δ,ϕ,0,F〉, where the acceptance condition F
is the set of all pairs (〈ϕ1R ϕ2〉,1) and ([ϕ1R ϕ2],1) in ecl(ϕ)×N(b). It remains to de-
fine the transition function δ. Mainly, it extends the transition function introduced in
[KVW00] for CT L along with the extra graded path modalities. Before giving the for-
mal definition, we show an intuition of the δ through a couple of examples.

First, recall that δ is a function from ecl(ϕ)×N(b)×2AP into B+(Dε

b×ecl(ϕ)). Con-
sider the state formula ϕ = E≥gX ϕ′. This formula is true on a tree model rooted at a
node x having at least g distinct successors of x satisfying ϕ′. This is ensured through
the δ in two successive steps. First, starting form the state E≥gX ϕ′, the δ gives the
formula (〈g〉,〈ϕ′〉), which intends to send to g successors (not necessarily distinct) the
check of the satisfiability of ϕ′. Then from state 〈ϕ′〉we have to ensure that each of such
successor nodes, say it y, contributes to the satisfiability of exactly one ϕ′ (intuitively
one degree of ϕ). Therefore, on reading y, if the degree associated with the state 〈ϕ′〉
is greater then 1, the δ returns false, otherwise, with an ε-move, we move to state ϕ′.
Accordingly, in the δ we use as counting branching positive numbers to indicate formu-
las’ degrees which have to be accomplished along paths and use as a convention 0 if we
have none to accomplish. In particular, ε-moves always give 0 as counting branching.

As another example, consider the state formula ϕ = E≥g(ϕ1U ϕ2). This formula is
true on a tree model rooted at a node x having at least g distinct minimal paths sat-
isfying ϕ1U ϕ2. As in classical temporal logics, the until path formula ϕ1U ϕ2 is true
on a path if ϕ2 is immediately true, or ϕ1 is immediately true and the until is satisfied
on the successor node. Moreover, in the considered graded path case of ϕ we have to
ensure that all the minimal paths that satisfy ϕ are at least g. Therefore, if g = 1 the δ

proceeds as in CT L. Conversely, if g > 1 we have to force that ϕ2 is not immediately
true (otherwise we have less than g paths satisfying the formula). Therefore, we use the
δ to ensure that ϕ1 is immediately true and that g successive paths (but not necessarily
all distinct) satisfy ϕ1U ϕ2. Iteratively, the δ keeps using the above idea up to all states
corresponding to the until formula are sent to next nodes with counting branching 1.
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This ensures that the considered tree model has at least g minimal paths satisfying the
until formula ϕ1Uϕ2. Note that if less then g of such paths exist in the tree model, then
the automaton keeps regenerating infinitely often the state corresponding to the until
formula. Such a tree is then not accepting as this state is not in F . It is worth noticing
that, the above iteration upon the until states inherits the fixed point idea of the function
ex(ψ,g) introduced in Lemma 1. In particular we formally inglobe it into the δ through
the formula (〈1〉,〈ϕ1Uϕ2〉) (see below for more details). This is a key step in our con-
struction, since it allows to treat the exponential blow-up induced by the mentioned
function by only using a constant rule into the δ. The formal definition of the δ follows.
For all σ ∈ 2AP and g,h ∈ N(b)+, with h 6= 1, we set:
• δ(t,g,σ) = t • δ(f,g,σ) = f

• δ(p,0,σ) = (p ∈ σ) • δ(¬p,0,σ) = (p 6∈ σ)
• δ(ϕ1∧ϕ2,0,σ) = (ε,ϕ1)∧ (ε,ϕ2) • δ(ϕ1∨ϕ2,0,σ) = (ε,ϕ1)∨ (ε,ϕ2)
• δ(E≥gXϕ,0,σ) = (〈g〉,〈ϕ〉) • δ(A<gX̃ϕ,0,σ) = ([g], [ϕ])
• δ(EX̃ϕ,0,σ) = ([1], f)∨ (〈1〉,〈ϕ〉) • δ(AXϕ,0,σ) = (〈1〉, t)∧ ([1], [ϕ])
• δ(E≥hX̃ϕ,0,σ) = (〈1〉,〈\ϕ〉)∧(〈h〉,〈ϕ〉) • δ(A<hXϕ,0,σ) = ([1], [\ϕ])∨([h], [ϕ])
• δ(〈ϕ〉,1,σ) = (ε,ϕ) • δ([ϕ],1,σ) = (ε,ϕ)
• δ(〈ϕ〉,h,σ) = f • δ([ϕ],h,σ) = t

• δ(E≥g(ϕ1Uϕ2),0,σ) = δ(〈ϕ1Uϕ2〉,g,σ) • δ(A<g(ϕ1Uϕ2),0,σ) = δ([ϕ1Uϕ2],g,σ)
• δ(E≥g(ϕ1Rϕ2),0,σ) = δ(〈ϕ1Rϕ2〉,g,σ) • δ(A<g(ϕ1Rϕ2),0,σ) = δ([ϕ1Rϕ2],g,σ)
• δ(〈ϕ1Uϕ2〉,1,σ) = (ε,ϕ2)∨ (ε,ϕ1)∧ (〈1〉,〈ϕ1Uϕ2〉)
• δ(〈ϕ1Uϕ2〉,h,σ) = (ε, \ϕ2)∧ (ε,ϕ1)∧ (〈h〉,〈ϕ1Uϕ2〉)
• δ([ϕ1Uϕ2],1,σ) = (ε,ϕ2)∨ (ε,ϕ1)∧ (〈1〉, t)∧ ([1], [ϕ1Uϕ2])
• δ([ϕ1Uϕ2],h,σ) = (ε,ϕ2)∨ (ε, \ϕ1)∨ ([1], [\(ϕ1Uϕ2)])∨ ([h], [ϕ1Uϕ2])
• δ(〈ϕ1Rϕ2〉,1,σ) = (ε,ϕ2)∧ ((ε,ϕ1)∨ ([1], f)∨ (〈1〉,〈ϕ1Rϕ2〉))
• δ(〈ϕ1Rϕ2〉,h,σ) = (ε,ϕ2)∧ (ε, \ϕ1)∧ (〈1〉,〈\(ϕ1Rϕ2)〉)∧ (〈h〉,〈ϕ1Rϕ2〉)
• δ([ϕ1Rϕ2],1,σ) = (ε,ϕ2)∧ ((ε,ϕ1)∨ ([1], [ϕ1Rϕ2]))
• δ([ϕ1Rϕ2],h,σ) = (ε, \ϕ2)∨ (ε,ϕ1)∨ ([h], [ϕ1Rϕ2])

To prove soundness and completeness of the above construction we use a proof
by induction on the structure of the formula ϕ. Due to its complexity and length, the
interested reader can find it in Appendix D.

In the remaining part of this section, we show that the emptiness problem for PABT
is solvable in EXPTIME. To gain this result, we use a technical variation of the Miyano
and Hayashi technique [MH84] for tree automata [Mos84], which has been deeply used
in the literature for translating asymmetric alternating Büchi automata to nondetermin-
istic ones. Here, we use this technique to translate in exponential-time PABT into non-
deterministic Büchi tree automata (NBT, for short). The fact that PABT are symmetric
requires further non-trivial work. Indeed, while for symmetric automata there is bijec-
tive correspondence between direction of both the input and output automaton, in our
case we have to build this correspondence by looking at the δ of the input automaton.
We solve this by extending the core of the classical Miyano-Hayashi technique through
a “pair develop” function showed below. To formally define this function, we make use
of two intermediate functions given in the next two definitions.
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Definition 7. (Satisfiability function) A satisfiability function sat : (H,σ) ∈ 2Q×N(b)×
Σ 7→ sat(H,σ) ∈ 22Dε

b×Q
maps a set H and a label σ into a set of subset of Dε

b×Q such
that for all S⊆ Dε

b×Q it holds that S ∈ sat(H,σ) iff S |=
V

(q,g)∈H δ(q,g,σ).

Definition 8. (Develop function) A develop function dev : (H,σ,d) ∈ 2Q×N(b) ×Σ×
N 7→ dev(H,σ,d) ∈ 22

Nε×Q×N(b) maps a set H, a label σ, and a number d into a set of
subset of Nε×Q×N(b) such that for all E ⊆ Nε×Q×N(b) it holds that E ∈ dev(H,σ,
d) iff there exists S ∈ sat(H,σ) such that E ∈ exec(S,N(d)).

Definition 9. (Pair develop function) A pair develop function pairdev : (H,H ′,σ,d)∈
(2Q×N(b))2×Σ×N 7→ pairdev(H,H ′,σ,d) ∈ 2(2

Nε×Q×N(b) )2
maps the two sets H and H ′,

a label σ, and a number d into a pair of sets of subset of Nε×Q×N(b) such that for all
E,E ′ ⊆Nε×Q×N(b) it holds that (E,E ′)∈ pairdev(H,H ′,σ,d) iff E ′ ⊆ E, E ∈ dev(H,
σ,d), and if H ′ = /0 then E ′ = E otherwise E ′ ∈ dev(H ′,σ,d).

We now show the translation from PABT to NBT.

Theorem 4. Let A be a PABT with n states and counting branching bound b. Then,
there exists a NBT A ′ with 22n∗(b+1) states and direction degree n∗b(b+1)/2 such that
A accepts a tree iff A ′ accepts a tree as well.

Proof. (Sketch.) The nondeterministic automaton A ′ guesses a subset construction ap-
plied to a run of A . At a given node x of a run of A ′, it keeps in its memory the set of
states in which the various copies of A visit the node x in the guessed run. In order to
make sure that every infinite path visits states in F infinitely often, A ′ keeps track of
states that “owe” a visit to F .

Let A = 〈Q,Σ,b,δ,q0,g0,F〉 be a PABT and A ′ = 〈Q′,Σ,d′,δ′,q′0,F
′〉 be an NBT,

where Q′ = (2Q×N(b))2, d′ = n ∗ b(b + 1)/2, q′0 = ({(q0,g0)}, /0), F ′ = 2Q×N(b) ×{ /0},
and δ′ : Q′×Σ 7→ 2Q′(d

′+1)
is such that for all H ⊆Q×N(b), H ′ ⊆H and σ ∈ Σ, we have

δ
′((H,H ′),σ) =

[
(E,E′)∈

pairdev(H,H′ ,σ,d′−1)

{(
d′−1

∏
d=0

(Ed ,E ′d \F))× (Eε,E ′ε \F)}

with Ed = {(q,g) ∈ Q×N(b) | (d,q,g) ∈ E}. By using a non trivial proof, it is possible
to show that L(A) 6= /0 iff L(A ′) 6= /0. Here, we only give some intuition of soundness
and completeness for the construction of the automaton A ′.

First note that, differently from the classical approach, we have to convert the sym-
metric automaton A into a nondeterministic one. This induces to deal with two extra
problems: (i) A can perform a ε-moves and (ii) A does not have an upper bound on the
number of directions it uses. The first problem is solved by allocating in A ′ an appo-
site direction (namely d′) that collects all the states of the automaton A sent through
ε-moves during a given execution. We face the second problem thanks to the following
property due to the splitting partition function we use: if A accepts a tree T, it must
accepts also a tree T′ with branching degree at most equal to d′ = n∗b(b + 1)/2. This
holds since, in each state q and degree g at a node x of the input tree, a set S that satis-
fies the δ(q,g, inp(x)) can contain at most |Q×N(b)+| pairs of the kind (〈g′〉,q′), so the
spart function can split each of such a pair in at most g′ nodes of degree 1 and then for
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each state q′ we can have at most b(b + 1)/2 different successors of x. Therefore, it is
possible to construct a relative run of A ′ by restricting our attention only to trees with
degree at most d′.

We now give some explanation about the δ′ through an example. Suppose A =
〈{q0,q1},{a},2,δ,q0,0,F〉, where the δ contains δ(q0,0,a) = (ε,q0)∧(〈2〉,q1). Hence,
d′ = 6. Also, suppose that H = {(q0,0)} and H ′ = /0. Accordingly to the satisfiability
function, we have sat(H,{a}) = {{(ε,q0),(〈2〉,q1)}} and accordingly to the develop
function, the set E represents one of the following possibilities: either A ′ sends a copy
of itself to one child with degree 2 or to two children with degree 1. In both cases A ′
also sends a witness of the ε-move to direction d′ More formally, we have that E is
equal to either {(ε,q0,0),(i,q1,2)}, for 0≤ i < d′ or {(ε,q0,0),(i,q1,1),( j,q1,1)}, for
0 ≤ i, j < d′ and i 6= j. Since H ′ = /0 we also have E ′ = E. Finally, by using the pair
develop function, we get twenty one corresponding transition rules in δ′.

Recall that for the NBT A ′ the emptiness problem is solvable in PTIME [VW86],
in particular in O(|Q′|2d′) (we directly consider the one-letter automaton associated to
A ′). Then, by Theorem 4, the following result follows.

Corollary 1. The emptiness problem for a PABT A with n states and counting branch-
ing bound b can be decided in time 2O(n2∗b3).

By Theorem 3 and Corollary 1, since n = |ecl(ϕ)| = O(|ϕ|) and b = deg(ϕ) =
O(|ϕ|), we get that the satisfiability problem for GCTL is solvable in time 2O(|ϕ|5), i.e.,
in EXPTIME, thus not harder than CTL. Moreover, by Remark 1, CTL is subsumed by
GCTL, so the following holds.

Corollary 2. The satisfiability problem for the GCTL logic is EXPTIME-COMPLETE.

5 Discussion

In this paper, we have investigate the logic GCTL as the extension of the branching-time
temporal logics CTL with graded path modalities. We have shown that GCTL allows to
gain expressiveness, as it becomes invariant under bisimulation, while it retains the tree
and finite model properties. Moreover, we have shown that its satisfiability problem is
EXPTIME-COMPLETE, thus not harder than that for the classical CTL.

As natural future work, it could be interesting to investigate graded path modalities
along with more complex logics, such as CT L∗, i.e., to investigate GCT L∗. We believe
that is not hard to extend to this logic the properties showed for GCTL in Theorem
2. On the contrary, to evaluate the complexity of the satisfiability problem for GCT L∗

is rather than immediate as the automata model we have considered in this paper for
GCTL is not appropriate for dealing with GCT L∗. Indeed, by using a theoretic-automata
approach similar to the one used for GCTL, we can reduce the satisfiability problem for
GCT L∗ to the emptiness problem of PATA, but with an acceptance condition stronger
than Büchi, such as the parity one [Mos84, SE89, Tho97]. Unfortunately, the technique
we have shown to translate PABT into NBT is not appropriate for parity automata.
However, by using a technique based on promises and strategies, as it was done in
[KSV02], we conjecture that also PATA along with a parity condition can be translated
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in exponential-time into a nondeterministic parity tree automata. Then, by using the fact
that for the latter the emptiness problem is solvable in exponential-time, we get that the
satisfiability problem for GCT L∗ is 2EXPTIME-COMPLETE, thus not harder than that
for the classical CT L∗.
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A Proof of Lemma 1

For all state formulas ϕ1 and ϕ2 (resp., path formulas ψ1 and ψ2), we say that ϕ1 im-
plies ϕ2, formally ϕ1⇒ ϕ2, (resp., ψ1 implies ψ2, formally ψ1⇒ ψ2) iff for all Kripke
structures K and worlds w ∈ dom(K ) it holds that if K ,w |= ϕ1 then K ,w |= ϕ2 (resp.,
minstructs(PA(K ,w,ψ1))⊆minstructs(PA(K ,w,ψ2))). It is obvious that, ϕ1 is equiv-
alent to ϕ2, (resp., ψ1 is equivalent to ψ2) iff ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1 (resp., ψ1 ⇒ ψ2
and ψ2⇒ ψ1).

The following two propositions are immediately derived from the semantics of
GCT L∗.

Proposition 1. For all state formulas ϕ, path formulas ψ, finite sequences of path for-
mulas {ψi}n

i , and degree g ∈ N+ it holds that: (i) E≥0ψ ≡ t, (ii) E>gψ⇒ E≥gψ, (iii)
Eϕ ≡ ϕ, (iv) E>gϕ ≡ f, (v) E≥g(ϕ∧ψ) ≡ ϕ∧ E≥gψ, (vi) E(ϕ∨ψ) ≡ ϕ∨ Eψ, (vii)
E>g(ϕ∨ψ)≡¬ϕ∧E>gψ, (viii) E

V
i ψi⇒

V
i Eψi, (ix) E

W
i ψi≡

W
i Eψi, (x) E>g W

i ψi⇒W
i E

<gψi, (xi) EX̃ψ≡ EX̃ f ∨EXψ, and (xii) E>gX̃ψ≡ E>gXψ∧EX¬ψ.

Proposition 2. For all path formulas ψ, ψ1, and ψ2, it holds that: (i) X̃ψ≡ X̃ f∨X ψ,
(ii) ψ1Uψ2 ≡ ψ2∨ψ1∧X (ψ1Uψ2), and (iii) ψ1Rψ2 ≡ ψ2∧ (ψ1∨ X̃ (ψ1Rψ2)).

Let X be a set of objects and R⊆ X×X be an equivalence relations on X, i.e., R is
reflexive, symmetric, and transitive. Then, it is possible to split the set X into a partition
of equivalence classes induced by the relation R. With ER(X) we denote the set of all
these equivalence classes, i.e., for all C1,C2 ∈ ER(X), with C1 6= C2, it holds that (i)
/0 6= C1 ⊆ X and (ii) for all elements x,y ∈ C1 and z ∈ C2 it holds that (x,y) ∈ R and
(x,z) 6∈ R. It is important to remind that for a partition of a set X the following two
properties hold: (i)

S
C∈ER(X)C = X and (ii) for all C1,C2 ∈ ER(X), with C1 6= C2, it

holds that C1∩C2 = /0.

Definition 10. (i-step congruence relation) Let K be a Kripke structure and P ⊆
paths(K ) be a set of paths such that there is i ∈ N for which π ∈ P implies |π| > i.
Then, for all paths π,π′ ∈P we say that π is i-step congruent to π′, denoting this with
π�i π′, iff for all j ∈ N(i) it holds that π( j) = π′( j), i.e., the two paths are identical up
to the i-th position.

Definition 11. (n-size 1-step classes set) Let E�1(P) be the set of 1-step congruence
classes on P. Then, with In(P) we denote the set of all paths in P that are in a congru-
ence class of P itself with cardinality n, i.e., In(P) = {π ∈P | ∃C ∈ E�1(P), |C|= n :
π ∈C}.

Lemma 2. For all finite sets P it holds that { |In(P)|
n }|P|n ∈ P(|P|).

Proof. Since P is finite, it holds that E�1(P) is finite as well. Consequently, the sets of
equivalence classes given by Qn = {C ∈ E�1(P) | |C|= n} satisfy |Qn|< ω, i.e., there
exists a number kn ∈ N such that |Qn|= kn. Then, since In(P) =

S
C∈Qn C, it is obvious

that |In(P)|= kn ∗n. By Definition 11, it follows that {In(P)}|P|n is a partition of P, so
we have that ∑

|P|
n=1 |In(P)|= |P|, and then ∑

|P|
n=1 n∗ |In(P)|

n = |P|. Now, by the previous
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observation, we have that for all numbers n∈N it holds |In(P)|
n = kn ∈N, so the sequence

{ |In(P)|
n }|P|n is a solution of the Diophantine equation 1∗ p1 +2∗ p2 + . . .+ |P| ∗ p|P| =

|P| and then { |In(P)|
n }|P|n ∈ P(|P|).

Let π ∈ paths(K ) and n ∈ N(|π|−1). With π≥n we denote the suffix of π starting at
position n. Formally, (i) |π≥n| = |π|− n and (ii) for all indexes i ∈ N(|π|−n−1), it holds
that π(n+ i) = π≥n(i).

Lemma 3. Let K = 〈AP,W,R,L〉 be a Kripke structure, w,w′ ∈W be two worlds such
that (w,w′) ∈ R, and ψ be a GCT L∗ path formula. Then, it holds that PA(K ,w′,ψ) =
{π≥1 ∈ paths(K ,w′) | π ∈PA(K ,w,Xψ)}.

Proof. By definition, we have that π ∈PA(K ,w′,ψ) iff for all paths π′ ∈ paths(K ,w′)
such that π4 π′ it holds that K ,π′,0 |= ψ. Since (w,w′) ∈ R, for all π,π′ ∈ paths(K ,
w′) there exist π′′,π′′′ ∈ paths(K ,w) such that π = π′′≥1 and π′ = π′′′≥1, so we have that
π ∈PA(K ,w′,ψ) iff for all paths π′′′ ∈ paths(K ,w) such that π′′≥1 4 π′′′≥1 it holds that
K ,π′′′≥1,0 |= ψ, thus K ,π′′′,1 |= ψ and then K ,π′′′,0 |= X ψ. Now, we can observe
that, since π′′,π′′′ ∈ paths(K ,w), it holds that π′′ 4 π′′′ iff π′′≥1 4 π′′′≥1, thus we obtain
that π ∈ PA(K ,w′,ψ) iff for all paths π′′′ ∈ paths(K ,w) such that π′′ 4 π′′′ it holds
that K ,π′′′,0 |= X ψ, i.e., π′′ ∈ PA(K ,w,X ψ), where π = π′′≥1. Finally, π ∈ PA(K ,
w′,ψ) iff π′′≥1 = π ∈ paths(K ,w′), with π′′ ∈PA(K ,w,Xψ), i.e., π ∈ {π′′≥1 ∈ paths(K ,
w′) | π′′ ∈PA(K ,w,Xψ)}.

Lemma 4. For all GCT L∗path formulas ψ it holds that:

i) E≥gXψ≡
W
{hi}

g
i ∈CP(g)

Vg
i=1 E≥hiXE≥iψ;

ii) E≥gX̃ψ≡

{
EX̃ f ∨EXEψ, if g = 1;
EXE¬ψ∧

W
{hi}

g
i ∈CP(g)

Vg
i=1 E≥hiXE≥iψ, otherwise.

Proof. Item (i), (⇒). First, assume that K = 〈AP,W,R,L〉 is a model for E≥gX ψ in
w ∈ W. Then, by definition of the semantic for existential quantifiers, there exists a
subset P of minstructs(PA(K ,w,X ψ)), with |P| = g. We want to show that, let hi =
∑

g
n=i
|In(P)|

n , it holds that K ,w |=
Vg

i=1 E≥hiXE≥iψ. For each number n ∈ N(g)+, con-

sider the partition Qn = E�1(In(P)) = {C ∈ E�1(P) | |C|= n} of In(P) in kn = |In(P)|
n

sets. For a fixed n ∈N+, we indicate all these classes with the sequence {Cn,k}kn
k . Since

Cn,k ⊆P⊆minstructs(PA(K ,w,Xψ)), it is obvious that all its elements are incompa-
rable minimal paths. Moreover, it is possible to associate a world wn,k to each class Cn,k
such that for all π ∈Cn,k it holds that π(1) = wn,k. By Lemma 3, since (w,wn,k) ∈ R,
we have that PA(K ,wn,k,ψ) = {π′≥1 ∈ paths(K ,wn,k) | π′ ∈PA(K ,w,Xψ)}, so, for all
π ∈ Cn,k, it holds that π≥1 ∈ minstructs(PA(K ,wn,k,ψ)). Indeed, π ∈ P ⊆ PA(K ,w,
X ψ) and π≥1 ∈ paths(K ,wn,k), thus π≥1 ∈PA(K ,wn,k,ψ). Moreover, since π is min-
imal in PA(K ,w,X ψ), also π≥1 is minimal in PA(K ,wn,k,ψ), because otherwise if
there is π′ ∈ paths(K ,w), π′ 6= π, such that π′≥1 4 π≥1 we have π′ 4 π , which con-
tradicts the fact that π is minimal. Now, |Cn,k| = n and {π≥1 ∈ paths(K ,wn,k) | π ∈
Cn,k} ⊆minstructs(PA(K ,wn,k,ψ)), thus |minstructs(PA(K ,wn,k,ψ))| ≥ n. Then, for
each i,n ∈ N(g)+, with i ≤ n, and for all k ∈ N(kn)+, it holds that K ,wn,k |= E≥iψ, so
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for all π ∈ Q′n = {π′ ∈ paths(K ,w) | |π′| = 2, ∃k ∈ N(kn)+ : π(1) = wn,k} we have
K ,π(1) |= E≥iψ that is K ,π,1 |= E≥iψ and then K ,π,0 |= X E≥iψ. This means that
for all π ∈

Sg
n=i Q′n we have K ,π,0 |= XE≥iψ. Observe now that, since each world

wn,k is the characteristic world for the equivalence class Cn,k ∈ E�1(P), there is a dif-
ferent world wn,k for each class Cn,k, so we have that all the sets in {Q′n}

g
n are dis-

joint and |Q′n|= kn. It is obvious then that
Sg

n=i Q′n ⊆minstructs(PA(K ,w,XE≥iψ)) so
|minstructs(PA(K ,w,XE≥iψ))| ≥ |

Sg
n=i Q′n|= ∑

g
n=i |Q′n|= ∑

g
n=i kn = ∑

g
n=i
|In(P)|

n = hi.
Trivially, it follows that K ,w |= E≥hiXE≥iψ and then K ,w |=

Vg
i=1 E≥hiXE≥iψ. Now,

by Lemma 2, we have { |In(P)|
n }g

n ∈ P(g), and then, by the definition of the set CP(g), it
holds {hi}g

i ∈ CP(g). Hence, we get the thesis for this direction.
Item (i), (⇐). Assume now that K is a model for

W
{hi}

g
i ∈CP(g)

Vg
i=1 E≥hiXE≥iψ in

w ∈W. Then, there is a sequence {hi}g
i ∈ CP(g) such that K ,w |=

Vg
i=1 E≥hiX E≥iψ.

Thus, for all indexes i∈N(g)+, it holds that |minstructs(PA(K ,w,XE≥iψ))| ≥ hi, since
K ,w |= E≥hiXE≥iψ. Let ki = hi− hi+1, for i ∈ N(g−1)+, and kg = hg. Since {hi}g

i ∈
CP(g), it is obvious that {ki}g

i ∈ P(g). Now, since |minstructs(PA(K ,w,XE≥gψ)))| ≥
hg = kg, we can construct a set Pg ⊆ minstructs(PA(K ,w,XE≥gψ)), with |Pg| = kg.
Moreover, for all i∈N(g−1)+, let Pi⊆minstructs(PA(K ,w,XE≥iψ))\

Sg
j=i+1 P j, with

|Pi| = hi−|
Sg

j=i+1 P j| ≤ |(minstructs(PK wXE≥iψ)\
Sg

j=i+1 P j)|. It is evident that
all the sets Pi are disjoint. Furthermore, each of them has just ki elements. Indeed, by
construction we have that |Pg|= kg, and, if all sets P j, with j > i, have cardinality ki, it
holds that |Pi|= hi−|

Sg
j=i+1 P j|= hi−∑

g
j=i+1 |P j|= hi−∑

g
j=i+1 k j = hi−hi+1 = ki.

Since for all i ∈ N it holds that minstructs(PA(K ,w,X E≥iψ)) ⊇ minstructs(PA(K ,
w,X E≥i+1ψ)), we have P′ =

Sg
i=1 Pi ⊆ minstructs(PA(K ,w,X E≥1ψ)), so all paths

in P′ are incomparable, i.e. P′ = minstructs(P′). For simplicity, for all i ∈ N(g)+, we
denote with the sequence {πi, j}ki

j all the paths into the set Pi. Note that all paths πi, j

have length 2. Indeed by definition, PA(K ,w,XE≥1ψ) is equal to {π ∈ paths(K ,w) |
∀π′ ∈ paths(K ,w) : π4 π′ impliesK ,π′,0 |= XE≥1ψ}, so, since K ,π′,0 |= XE≥1ψ im-
plies K ,π′(1) |= E≥1ψ and π(1) = π′(1), we have PA(K ,w,XE≥1ψ) = {π ∈ paths(K ,
w) | K ,π(1) |= E≥1ψ}. Then, applying the minimal structures function to the above
sets, we obtain that P′ ⊆minstructs(PA(K ,w,XE≥1ψ)) = minstructs({π ∈ paths(K ,
w) | K ,π(1) |= E≥1ψ}) = {π ∈ paths(K ,w) | |π| = 2, K ,π(1) |= E≥1ψ}. Now, for
all indexes i ∈ N(g)+, j ∈ N(ki)+, set wi, j = πi, j(1). Since all the paths πi, j are incom-
parable paths of length 2 and πi, j(0) = w, we derive that all the worlds wi, j are dif-
ferent. Moreover, since K ,πi, j(1) |= E≥iψ it holds also that K ,wi, j |= E≥iψ and then
|minstructs(PA(K ,wi, j,ψ))| ≥ i. Thus, since (w,wi, j) ∈ R, by Lemma 3 we obtain that
|minstructs({π≥1 ∈ paths(K ,wi, j) | π ∈ PA(K ,w,X ψ)})| ≥ i. At this point, π′≥1 ∈
minstructs({π≥1 ∈ paths(K ,wi, j) | π∈PA(K ,w,Xψ)}) implies that π′ is minimal, i.e.,
π′ ∈minstructs(PA(K ,w,Xψ)). Indeed, if this is not the case, there is π′′ ∈ paths(K ,
w), π′′ 6= π′, such that π′′ 4 π′, and then π′′≥1 4 π′≥1 that contradicts the fact that π′≥1
is minimal. Then, let Pi, j = {π′ ∈ paths(K ,w) | π′≥1 ∈ minstructs({π≥1 ∈ paths(K ,
wi, j) | π ∈PA(K ,w,Xψ)})}, we have Pi, j ⊆minstructs(PA(K ,w,Xψ)). Furtermore,
|Pi, j| = i. Let now P =

Sg
i=1

Ski
j=1 Pi, j. It is evident that P ⊆ minstructs(PA(K ,w,

Xψ)) and then |minstructs(PA(K ,w,Xψ))| ≥ |P|. Moreover, |P|= ∑
g
i=1 ∑

ki
j=1 |Pi, j|=
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∑
g
i=1 ∑

ki
j=1 i = ∑

g
i=1 i∗ki. Since, as we have previously noted, {ki}g

i ∈ P(g), it holds that
|P|= g, so |minstructs(PA(K ,w,Xψ))| ≥ g. The thesis for the other direction follows
immediately.

Item (ii). At the formula E≥gX̃ψ we can apply in sequence either the equivalence
(xi) of Proposition 1, if g = 1, or the equivalence (xii) of the same proposition and then
the item (i) of this lemma, obtaining the thesis.

Now, we are able to prove Lemma 1.

Proof. To show the equivalence (i), it is possible to apply, at the formula E≥g(ϕ1Uϕ2),
the following sequence of equivalences: item (ii) of Proposition 2, either item (vi), if
g = 1, or item (vii) of Proposition 1 otherwise, item (v) of Proposition 1, and, finally,
item (i) of Lemma 4.

At the same way, to show the equivalence (ii), it is possible to apply, at the formula
E≥g(ϕ1R ϕ2), the following sequence of equivalences: item (iii) of Proposition 2, item
(v) of Proposition 1, either item (vi), if g = 1, or item (vii) of Proposition 1 otherwise,
and, finally, item (ii) of Lemma 4.

B Theorem 1

Proof. Given a GCTL formula ϕ, we proceed as follows. First we show a fixed point
form of the formula derived by the previous equivalences and then we propose a trans-
lation which allow us to obtain an equivalent graded µ-calculus formula.

By Lemma 1, we notice that E≥g(ϕ1U ϕ2) and E≥g(ϕ1R ϕ2) formulas are defin-
able in a fixed point form. This can be obtained by putting the equivalences written in
lemma in terms of functions, that is in a more formal way, we can write E≥g(ϕ1Uϕ2)≡
eu(E≥g(ϕ1Uϕ2),ϕ1,ϕ2,g) and E≥g(ϕ1Rϕ2)≡ er(E≥g(ϕ1Rϕ2),ϕ1,ϕ2,g), for two suit-
able fixed point functions eu(·, ·, ·, ·) and er(·, ·, ·, ·) such that until formulas with degree
g do not occur into eu(·, ·, ·,g) nor the release ones with degree g into er(·, ·, ·,g). For
example, when g > 1, we have that eu(X ,ϕ1,ϕ2,g) = ¬ϕ2∧ϕ1∧ex′(ϕ1Uϕ2,g)∧EXX
and er(X ,ϕ1,ϕ2,g) = ϕ2∧¬ϕ1∧EXE¬(ϕ1Rϕ2)∧ex′(ϕ1Rϕ2,g)∧EXX , where ex′(ψ,

g) =
W
{hi}

g
i ∈CP′(g)

Vg−1
i=1 E≥hiXE≥iψ, with CP′(g) = CP(g)\{{hi}g

i | hg = 1}. Note that

|ex′(ψ,g)| = Θ((|ψ|+ g
2 ) ∗ 2α

√
g), so we have |eu(X ,ϕ1,ϕ2,g)| = |er(X ,ϕ1,ϕ2,g)| =

Θ(|ϕ1|+ |ϕ2|+g∗2α
√

g).
Now, W.l.o.g we assume that ϕ is in existential normal form (we recall that any

GCTL formula can be linearly translated in this form). Thanks to the above fixed
point functions, we can now conclude the proof by showing a translation function
“trn(·) : GCTL 7→ graded µ-calculus” which allow to get the desired graded µ-calculus
formula ϕ′ = trn(ϕ) equivalent to ϕ. The function trn(·) is inductively defined as fol-
lows: (i) trn(p) = p with p ∈ AP; (ii) trn(¬ϕ) = ¬ trn(ϕ); (iii) trn(E≥0ψ) = t; (iv)
trn(E≥gX ϕ) = ¬end ∧〈g−1〉 trn(ϕ); (v) trn(E≥1X̃ϕ) = end ∨¬end ∧〈0〉 trn(ϕ); (vi)
trn(E>gX̃ϕ) =¬end∧〈0〉trn(¬ϕ)∧〈g〉trn(ϕ); (vii) trn(E≥g(ϕ1Uϕ2)) = µX .trn(eu(X ,
ϕ1,ϕ2,g)); (viii) trn(E≥g(ϕ1Rϕ2)) = νX .trn(er(X ,ϕ1,ϕ2,g)), where g ∈ N+.

By induction on the structure of the formula, it is not hard to see that, for each model
K = 〈AP,W,R,L〉 of ϕ the structure K ′ = 〈AP∪ {end},W,R,L′〉 is a model of ϕ′,
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where, let W′= {w∈W | @w′ ∈W : (w,w′)∈R}, for all w∈W\W′ and w′ ∈W′ it holds
that L′(w) = L(w) and L′(w′) = L(w′)∪{end}. Moreover, from a model K = 〈AP,W,
R,L〉 of ϕ′ it is possible to extract one of ϕ simply substituting the relation R with a new
relation R′ defined as follows: for all w,w′ ∈W, it holds that (w,w′) ∈ R′ iff (w,w′) ∈ R
and end 6∈ L(w).

C Theorem 2

Consider two Kripke structures K = 〈AP,W,R,L〉 and K ′ = 〈AP′,W′,R′,L′〉. We say
that K is bisimilar to K ′, denoting this by K ∼K ′ iff there exists a non-empty relation
B⊆W×W′, called relation of bisimulation, such that for all pairs of worlds (w,w′)∈B
it holds that: (i) L(w) = L′(w′); (ii) (w,v) ∈ R implies that there exists a world v′ ∈W′

such that (v,v′) ∈ B and (w′,v′) ∈ R′; (iii) (w′,v′) ∈ R′ implies that there exists a world
v∈W such that (v,v′)∈B and (w,v)∈R. Note that also B−1 = {(w′,w)∈W′×W | (w,
w′) ∈ B} is a relation of bisimulation.

It is easy to see that an unwinding function is a particular relation of bisimulation.

Proof. Item (i) Let K = 〈AP,W,R,L〉 be a Kripke structure. We show that for each
GCTL formula ϕ and world w ∈W, it holds that K ,w |= ϕ if and only if UK

w ,ε |= ϕ.
The proof procedes by mutual induction on the structure of the formula ϕ (external in-
duction) and on the structure of all path formulas it contains (internal induction). Let us
start with the external induction. The base step for atomic propositions and the boolean
combination cases are easy and left to the reader. Therefore, let us consider the case
where ϕ is of the form E≥gψ, for g ∈ N. The proof proceeds by internal induction on
the path formula ψ. As base case, ψ does not contain any quantifier (i.e., ψ is a tem-
poral operators defined on combinations of atomic propositions). First, note that UK

w
is also an unwinding of itself, so for the construction of paths(K ,w) and paths(UK

w ,
ε) we can choose the same unwinding, obtaining that for all worlds w ∈W, it holds
paths(K ,w) = paths(UK

w ,ε). Now we show that for all paths π ∈ paths(K ,w) it holds
that K ,π,0 |= ψ if and only if UK

w ,π,0 |= ψ. Indeed, if ψ is a state formula, by the
external inductive hypothesis, we obtain the above statement. Then, by induction on the
structure of ψ, it is easy to show that the above statement holds for all path formulas.
By definition of the satisfiability path set, it follows that PA(K ,w,ψ) = PA(UK

w ,ε,ψ).
Therefore, by the semantics of the existential quantifiers, we have that K ,w |= E≥gψ

if and only if UK
w ,ε |= E≥gψ. Now, let us consider the case where ψ contains n > 0

nested quantifiers. For the internal inductive step, we have K ,w |= E≥gψ′ if and only
if UK

w ,ε |= E≥gψ′, where ψ′ contains n− 1 nested quantifiers. For reasoning analo-
gous to the internal base case, we obtain that PA(K ,w,ψ) = PA(UK

w ,ε,ψ), where
we recall that ψ contains n nested quantifiers, and then K ,w |= E≥gψ if and only if
UK

w ,ε |= E≥gψ. So we have done with the proof.
Item (ii) Consider a GCTL formula ϕ and suppose that it is satisfiable. Then, there

is a model K for ϕ in a world w ∈ dom(K ). By item (i), ϕ is satisfied at the root of the
unwinding UK

w . Thus, since UK
w is a tree, immediately follows that ϕ is satisfied on a

tree model.
Item (iii) Extending, by Lemma 1, the Definition 3.1 of Hintikka structure in

[EH85] it is derivable an assertion equivalent to that of Theorem 4.1 in [EH85] itself.
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Thus we have that, if ϕ is satisfiable, it has a “small model”, i.e., a model of finite size
function of the length of ϕ.

Item (iv) We show that GCTL distinguishes between bisimilar models. Consider
the two trees T and T ′ such as T contains only the root node and one successor, while
T ′ contains also another successor. Formally, T = 〈AP,W,R,L〉, with AP = /0, W =
{ε,0}, and R = {(ε,0)}, and T ′= 〈AP,W′,R′,L〉, with W′= W∪{1}, and R′= R∪{(ε,
1)}. From the definition of bisimulation, it immediately follows that K ∼ K ′. Now,
consider the GCT L formula ϕ = E>1X t. Then, we have that PA(T ,ε,X t) = {π}, with
π(1) = 0, and PA(T ′,ε,X t) = {π,π′}, with π′(1) = 1. Since π and π′ are incomparable,
it holds that {π} = minstructs(PA(T ,ε,X t)) 6= minstructs(PA(T ′,ε,X t)) = {π,π′},
so T ,ε 6|= ϕ, but T ′,ε |= ϕ, and then T 6|= ϕ but T ′ |= ϕ, i.e., ϕ is not an invariant on K
and K ′.

Item (v) Consider the above two bisimilar tree models T and T ′. Since CTL is
invariant under bisimulation, it cannot distinguish between them. Moreover, CTL is a
sublogic of GCTL, as observer in Remark 1, so we have that the latter can characterize
more models than those characterizable by the former logic. Then, it follows that GCTL
is more expressive than CTL.

D Theorem 3 (Soundness and completeness)

Lemma 5. For all sequences {hi}g
i ∈ CP(g) and {h′i}

g−1
i ∈ CP(g− 1), with hg = 0,

there exists an index j ∈ N(g−1)+ such that h′j < h j.

Proof. If for contradiction for all j ∈ N(g−1)+ we have h′j ≥ h j then, since hg = 0, we

would find out that g−1 = ∑
g−1
j=1 h′j ≥ ∑

g−1
j=1 h j = ∑

g
j=1 h j = g, that is impossible.

Lemma 6. For all sequences {Mi}g+1
i ∈ spart(D, [g]) it holds that |Mg| ≤ 1.

Proof. If g = 2, there are only two sequences {hi}2
i ∈ CP(2) and those are h1 = 1 and

h2 = 1 or h1 = 2 and h2 = 0. Since in both the cases we have |M2| < h1 it holds that
|M2|< 2. Consider now g > 2. Then, in CP(g) there exists the sequence {hi}2

i such that
h1 = 2, h2 = . . . = hg−1 = 1, and hg = 0. By Definition 4, there exists a j such that
|M j+1| < h j. It cannot be j = g since |Mg+1| < hg = 0 is false. If j = g− 1 it holds
|Mg| < hg−1 = 1 and then we have done with the proof. Finally, for j < g−1, it holds
|M j+1|< h j ≤ 2. It is known that Mg ⊆ . . .⊆M j+1 so we have |Mg| ≤ |M j+1|< 2.

Lemma 7. Let K = 〈AP,W,R,L〉 be a Kripke structure and w ∈W be a world. Then,
K ,w |= E≥1X̃ f (resp., K ,w |= A<1X t) iff succUK

w
(ε) = /0, (resp., succUK

w
(ε) 6= /0).

Proof. Then, K ,w |= E≥1X̃ f iff minstructs(PA(K ,w, X̃ f)) 6= /0, that is {π ∈ paths(K ,
w) | ∀π′ ∈ paths(K ,w) : π 4 π′ implies K ,π′,0 |= X̃ f} 6= /0. Now, since for all π ∈
paths(K ,w) we have K ,π,0 |= X̃ f iff |π| = 1, it holds that K ,w |= E≥1X̃ f iff {π ∈
paths(K ,w) | ∀π′ ∈ paths(K ,w) : π4 π′ implies |π|= 1} 6= /0, that is K ,w |= E≥1X̃ f iff
for all π ∈ paths(K ,w) it holds |π|= 1, and then there is no world w′ ∈ dom(K ) such
that (w,w′) ∈ R, hence K ,w |= E≥1X̃ f iff succUK

w
(ε) = /0. Now, since K ,w |= A<1X t

iff K ,w |= ¬E≥1X̃ f, we have that K ,w |= A<1X t iff succUK
w

(ε) 6= /0.
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Lemma 8. Let K = 〈AP,W,R,L〉 be a Kripke structure, w ∈W be a world, and ϕ be a
GCT L state formula. Then, it holds that (i) |minstructs(PA(K ,w,X ϕ))| = |{w′ ∈W |
(w,w′) ∈ R, K ,w′ |= ϕ}| and (ii) |minstructs(paths(K ,w)\PE(K ,w, X̃ϕ))|= |{w′ ∈
W | (w,w′) ∈ R, K ,w′ |= ¬ϕ}|.

Proof. Now, we prove the equality (i). The equality (ii) easily follows by the duality
equality PA(K ,w,¬ϕ) = paths(K ,w)\PE(K ,w,ϕ).

By definition, it holds that PA(K ,w,X ϕ) is equal to {π ∈ paths(K ,w) | ∀π′ ∈
paths(K ,w) : π4 π′ implies K ,π′,0 |= Xϕ}, so it is equal to {π ∈ paths(K ,w) | ∀π′ ∈
paths(K ,w) : π 4 π′ implies K ,π′,1 |= ϕ}. It is evident then that for each path π ∈
PA(K ,w,X ϕ) it holds that K ,π,1 |= ϕ, so, since ϕ is a state formula, we have that
K ,π(1) |= ϕ and then PA(K ,w,X ϕ) = {π ∈ paths(K ,w) | |π| > 1, K ,π(1) |= ϕ}.
Now, it is obvious that minimal paths in the set PA(K ,w,X ϕ) are all the paths of
length 2, starting in w, and which satisfy ϕ on the second world, so we obtain that the
set minstructs(PA(K ,w,X ϕ)) is equal to {π ∈ paths(K ,w) | |π| = 2, K ,π(1) |= ϕ}.
Since the paths of length two, which have w as their first world, are as many as the suc-
cessors of w itself, because such paths are made by w and by one of its successors that is
(π(0),π(1)) = (w,π(1)) ∈ R, we have that |{π ∈ paths(K ,w) | |π|= 2, K ,π(1) |= ϕ}|
is equal to |{w′ ∈W | (w,w′) ∈ R, K ,w′ |= ϕ}|, thus the thesis follows.

Definition 12. (Partial run of a PABT) A partial run of a PABT A = 〈Q,Σ,b,δ,q0,g0,
F〉 on a Σ-labeled tree 〈T, inp〉 is a (T×Q×N(b)×N(1))-labeled full tree 〈Tpr,prun〉
satisfying the following conditions:

1. prun(ε) = (ε,q0,g0, l0), for some l0 ∈ N(1);
2. for all y ∈ Tpr with prun(y) = (x,q,g,0), it holds that succTpr(y) = /0, i.e., y have

no successors;
3. for all y ∈ Tpr with prun(y) = (x,q,g,1), there exists a set S ⊆ Dε

b ×Q, where
S |= δ(q,g, inp(x)), and a set E ∈ exec(S,dirT(x)) such that for all configurations
(d,q′,g′)∈ E there is a node y′ ∈ succTpr(y) such that prun(y′) = (x ·d,q′,g′, l), for
some l ∈ N(1).

A 0-labeled (resp., 1-labeled) node is a node with label that ends with 0 (resp., 1). The
partial run with all 1-labeled nodes is called a 1-labeled partial run. Finally, the partial
run 〈Tpr,prun〉 is accepting iff all its infinite paths satisfy the acceptance condition, i.e.,
for all paths π4 Tpr, with |π|= ω, it holds that inf(prun|π)∩T×F×N(1) 6= /0.

It’s evident that, the projection of a 1-labeled partial run on T×Q×N(b) is a run,
moreover, if such a partial run is accepting the corresponding run is accepting too. In
addition, if there exists a run, we can build a corresponding partial run by adding to all
labels a 1 at the end of the labels.

Let a ∈N∗ and X⊆N∗. Then, with a/X and a.X we denote, respectively, the two
sets {x ∈N∗ | a ·x ∈X} and {a ·x ∈N∗ | x ∈X}. Moreover, let 〈X,L〉 be a labeled tree.
Then, with a/ 〈X,L〉 we denote the labeled tree 〈X′,L′〉, where it is set X′ = a/X and,
for all x ∈ X′, L′(x) = L(a · x).

Definition 13. (Extention of a partial run) Let us consider a partial run 〈Tpr,prun〉
of a PABT A = 〈Q,Σ,b,δ,q0,g0,F〉 on an input 〈T, inp〉, with a sequence of nodes
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{yi}n
i ⊆ Tpr such that prun(yi) = (xi,qi,gi,0), for all indexes i ∈ N(n)+. Consider also

a sequence of partial runs {〈Tpri,pruni〉}n
i of a sequence of PABTs {Ai}n

i , Ai = 〈Q,Σ,
b,δ,qi,gi,F〉, on the inputs {xi / 〈T, inp〉}n

i . Then, we call an extension of 〈Tpr,prun〉
with respect to {〈Tpri,pruni〉}n

i on the nodes {yi}n
i , a (T×Q×N(b)×N(1))-labeled

tree 〈Tpr
′,prun′〉 obtained by substituting each node yi with the tree 〈Tpri,pruni〉. More

formally, we construct 〈Tpr
′,prun′〉 as follows: (i) Tpr

′ = Tpr ∪
Sn

i=1(yi .Tpri); (ii) for
all z∈Tpr \

Sn
i=1{yi} it holds that prun′(z) = prun(z); (iii) for all i∈N(n)+ and z∈Tpr

′,
with z = yi · y′ and pruni(y′) = (x′,q′,g′, l′), it holds that prun′(z) = (xi · x′,q′,g′, l′).

Lemma 9. Let 〈Tpr,prun〉 be a partial run of a PABT A = 〈Q,Σ,b,δ,q0,g0,F〉 on an
input 〈T, inp〉, with a sequence of nodes {yi}n

i ⊆ Tpr such that prun(yi) = (xi,qi,gi,
0) for all indexes i ∈ N(n)+, and {〈Tpri,pruni〉}n

i be a a sequence of partial run of a
sequence of PABTs {Ai}n

i , Ai = 〈Q,Σ,b,δ,qi,gi,F〉, on the inputs {〈Ti, inpi〉}n
i , where

〈Ti, inpi〉= xi / 〈T, inp〉. Then, we have that:

1. the extension 〈Tpr
′,prun′〉 of 〈Tpr,prun〉 with respect to {〈Tpri,pruni〉}n

i on the
nodes {yi}n

i is a partial run of A on 〈T, inp〉;
2. if the partial runs 〈Tpr,prun〉 and {〈Tpri,pruni〉}n

i are accepting then 〈Tpr
′,prun′〉

is accepting as well;
3. if {〈Tpri,pruni〉}n

i are 1-labeled and 〈Tpr,prun〉 has only {yi}n
i as 0-labeled nodes

then 〈Tpr
′,prun′〉 is 1-labeled as well.

Proof. Item (i) We show that the three properties in Definition 12 of partial run holds.

1. Property of the root.
(a) If it is labeled by (ε,q,h,1) then its label in 〈Tpr

′,prun′〉 remains the same.
(b) If it is labeled by (ε,q,h,0) it has no successor, so there exists a unique node

y1 ∈ Tpr such that prun(y1) = (x1,q1,g1,0). The corresponding partial run
〈Tpr1,prun1〉 has a root labeled by (ε,q,h, l), with l ∈∈ N(1), thus, by sub-
stitution, the root has the same label in 〈Tpr

′,prun′〉.
2. Property of 0-labeled nodes.

(a) For all z ∈ Tpr
′, such that for all i ∈ N(n)+ it holds that yi is not a prefix of z,

we have that prun′(z) = prun(z) = (x,q,g,0). Moreover, since 〈Tpr,prun〉 is a
partial run, z has no successor in it, so it holds that succTpr

′(z) = /0.
(b) For all z ∈ Tpr

′, such that there exists i ∈N(n)+ for which it holds that z = yi ·y,
we have that prun′(z) = (xi · x,q,g,0), since pruni(y) = (x,q,g,0). Moreover,
since 〈Tpri,pruni〉 is a partial run, y has no successor in it, so it holds that
succTpr

′(z) = /0.
3. Property of 1-labeled nodes.

(a) For all z ∈ Tpr
′, such that for all i ∈ N(n)+ it holds that yi is not a prefix of

z, we have that prun′(z) = prun(z) = (x,q,g,1). Moreover, for all successors
z′ ∈ succTpr

′(z) with prun(z′) = (x′,q′,h′, l′), it holds that prun′(z′) = (x′,q′,
h′, l′′), where l′ may be not equal to l′′ only if z′ = y. Now, since the property
expressed in item 3 only depends on the first three components of the labels and
〈Tpr,prun〉 is a partial run, it necessarily holds that item 3 also holds between
z and its successors in 〈Tpr

′,prun′〉.
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(b) For all z ∈ Tpr
′, such that there exists i ∈ N(n)+ for which it holds that z =

yi · y with prun′(z) = (xi · x,q,g,1) and pruni(y) = (x,q,g,1), we have that,
since 〈Tpri,pruni〉 is a partial run, there exists a set S ⊆ Dε

b×Q, where S |=
δ(q,g, inpi(x)), and a set E ∈ exec(S,dirTi(x)) such that for all configurations
(d,q′,g′) ∈ E there is a node y′ ∈ succTpr i

(y) such that pruni(y′) = (x ·d,q′,g′,
l). Now, since inp′(xi ·x) = inpi(x) and dirT′(xi ·x) = dirTi(x) we have that there
exists a set S ⊆ Dε

b×Q, where S |= δ(q,g, inp′(xi · x)), and a set E ∈ exec(S,
dirT′(xi · x)) such that for all configurations (d,q′,g′) ∈ E there is a node z′ =
yi · y′ ∈ succTpr

′(z) such that prun′(z′) = (xi · x ·d,q′,g′, l).

Item (ii) Let us consider an infinite path π4 Tpr
′. Then, two situations can arise.

1. If π4 Tpr, we have that inf(prun′|π)∩T×F 6= /0, since 〈Tpr,prun〉 is accepting and
prun′|π = prun|π.

2. If π 64Tpr then there exists an index i∈N(n)+ and a path π′ 4Tpri such that π≥|yi| =
π′. Since 〈Tpri,pruni〉 is accepting and inf(prun′|π) = inf(pruni|π′), we have that
inf(prun′|π)∩T×F 6= /0.

Item (iii) Finally, let us consider a node z ∈ Tpr
′. Then, two situations can arise.

1. If z ∈ Tpr and z 6= yi, for all indexes i ∈N(n)+, it holds that prun′(z) = prun(z), so z
is 1-labeled.

2. If there is an index i ∈ N(n)+ such that z = yi · y, it holds that prun′(z) = (xi · x,q,g,
1), since pruni(y) = (x,q,g,1), so z is also 1-labeled.

Definition 14. (Extraction of a partial run) Let us consider a partial run 〈Tpr,prun〉
of a PABT A = 〈Q,Σ,b,δ,q0,g0,F〉 on an input 〈T, inp〉, with a sequence of nodes
{yi}n

i ⊆ Tpr such that prun(yi) = (xi,qi,gi, li) for all indexes i ∈ N(n)+. Then, we call
an extraction of 〈Tpr,prun〉 on the nodes {yi}n

i a sequence of (T×Q×N(b)×N(1))-
labeled trees {〈Tpri,pruni〉}n

i , where 〈Tpri,pruni〉 is given by the subtree rooted at node
yi for all indexes i ∈ N(n)+. More formally, we construct a 〈Tpri,pruni〉 as follows: (i)
Tpri = yi / Tpr; (ii) for all z ∈ Tpri, with prun(yi · z) = (xi · x′,q′,g′, l′), it holds that
pruni(z) = (x′,q′,g′, l′).

Lemma 10. Let 〈Tpr,prun〉 be a partial run of a PABT A = 〈Q,Σ,b,δ,q0,g0,F〉 on an
input 〈T, inp〉, with a sequence of nodes {yi}n

i ⊆ Tpr such that prun(yi) = (xi,qi,gi, li)
for all indexes i ∈ N(n)+. Then we have:

1. the extraction {〈Tpri,pruni〉}n
i of 〈Tpr,prun〉 on the nodes {yi}n

i is a sequence of
partial runs of the sequence of PABTs {Ai}n

i , Ai = 〈Q,Σ,b,δ,qi,gi,F〉, on the inputs
{〈Ti, inpi〉}n

i , where 〈Ti, inpi〉= xi / 〈T, inp〉;
2. if the partial run 〈Tpr,prun〉 is accepting then all the partial runs {〈Tpri,pruni〉}n

i
are accepting as well;

3. if 〈Tpr,prun〉 is 1-labeled then all the partial runs {〈Tpri,pruni〉}n
i are 1-labeled as

well.

Proof. Item (i) We show that the three properties in Definition 12 of partial run holds.
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1. Property of the root.
The root of 〈Tpri,pruni〉 is labeled by pruni(ε) = (ε,qi,hi, li), since prun(yi) = (xi,
qi,hi, li).

2. Property of 0-labeled nodes.
For all y∈Tpri, there exists z∈Tpr such that z = yi ·y, so we have that pruni(y) = (x,
q,g,0), since prun(z) = (xi · x,q,g,0). Moreover, since 〈Tpr,prun〉 is a partial run,
z has no successor in it, so it holds that succTpr i

(y) = /0.
3. Property of 1-labeled nodes.

For all y∈Tpri, there exists z∈Tpr such that z = yi ·y, so we have that pruni(y) = (x,
q,g,1), since prun′(z) = (xi · x,q,g,1). Moreover, 〈Tpr,prun〉 is a partial run, so
there exists a set S ⊆ Dε

b×Q, where S |= δ(q,g, inp(xi · x)), and a set E ∈ exec(S,
dirT(xi ·x)) such that for all configurations (d,q′,g′)∈ E there is a node z′ = yi ·y′ ∈
succTpr(z) such that prun(z′) = (xi · x ·d,q′,g′, l).
Now, since inpi(x) = inp(xi · x) and dirTi(x) = dirT(xi · x) we have that there exists
a set S ⊆ Dε

b×Q, where S |= δ(q,g, inpi(x)), and a set E ∈ exec(S,dirTi(x)) such
that for all configurations (d,q′,g′) ∈ E there is a node y′ ∈ succTpr i

(y) such that
pruni(y′) = (x ·d,q′,g′, l).

Item (ii) Let us consider an infinite path π4Tpri. Then there exists a path π′ 4Tpr

such that π = π′≥|yi|. Since 〈Tpr,prun〉 is accepting and inf(pruni|π) = inf(prun|π′), we
have that inf(pruni|π)∩T×F 6= /0.

Item (iii) Finally, let us consider a node y ∈ Tpri. Then there is a node z ∈ Tpr such
that z = yi · y, so it holds that prun′(y) = (x,q,g,1), since pruni(z) = (xi · x,q,g,1), i.e.,
y is also 1-labeled.

Lemma 11. Let ϕ be a GCT L state formula and K = 〈AP,W,R,L〉 be a Kripke struc-
ture. Then, for all worlds w ∈W and subformula ϕ′ ∈ cl(ϕ) it holds that K ,w |= ϕ′

iff the unwinding UK
w = 〈AP′,W′,R′,L′〉 of K starting from w is accepted by the au-

tomaton A ′
ϕ′ = 〈ecl(ϕ),2AP,deg(ϕ),δ,ϕ′,0,F〉. Moreover, if ϕ′ = E≥g(ϕ1U ϕ2) (resp.,

A<g(ϕ1U ϕ2), E≥g(ϕ1R ϕ2), or A<g(ϕ1R ϕ2)), the same unwinding is accepted by the
automaton A ′′

ϕ′ = 〈ecl(ϕ),2AP,deg(ϕ),δ,γ,g,F〉, with γ = 〈ϕ1U ϕ2〉 ∈ ecl(ϕ) (resp.,
[ϕ1Uϕ2], 〈ϕ1Rϕ2〉, or [ϕ1Rϕ2]).

Proof. We will show the thesis by induction on the structure of the formula ϕ. Note
that, A ′

ϕ′ (resp., A ′′
ϕ′ ) accepts the unwinding UK

w iff it has a run on it and so a 1-labeled
partial run on it.
Base case: Atomic propositions. ϕ′ = p (resp., ϕ′ = ¬p), with p ∈ AP = AP′.

1. If K ,w |= ϕ′ then the run of A ′
ϕ′ consisting of the only root is accepting, indeed

we have δ(ϕ′,0,L′(ε)) = t since δ(p,0,L′(ε)) = (p ∈ L′(ε)) and p ∈ L′(ε) = L(w)
(resp., δ(¬p,0,L′(ε)) = (p 6∈ L′(ε)) and p 6∈ L′(ε) = L(w)), thus we can choose an
empty set S satisfying the delta, which implies that the corresponding run will not
have successors of the root and then any infinite path, so it will be accepting for
definition.

2. Let us suppose that there exists an accepting run for A ′
ϕ′ on the unwinding tree in

input. Since δ(p,0,L′(ε)) = (p ∈ L′(ε)) (resp., δ(¬p,0,L′(ε)) = (p 6∈ L′(ε))) the
only way for the tree to be accepting is that δ(ϕ′,0,L′(ε)) = t, thus p must be (resp.,
must not be) in L′(ε) = L(w) and then K ,w |= ϕ′.
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Inductive case: And (resp., Or). ϕ′ = ϕ1∧ϕ2 (resp., ϕ′ = ϕ1∨ϕ2).

1. If K ,w |= ϕ′ it holds that K ,w |= ϕ1 and K ,w |= ϕ2 (resp., K ,w |= ϕ1 or K ,w |=
ϕ2). For inductive hypothesis we have that both A ′ϕ1

and A ′ϕ2
have (resp., at least one

between A ′ϕ1
and A ′ϕ2

has) an accepting 1-labeled partial run on the unwinding tree
UK

w in input. Let 〈Tpr1,prun1〉 and 〈Tpr2,prun2〉 be these two partial runs (resp.,
let 〈Tpri,pruni〉 be this partial run).
Since δ(ϕ1∧ϕ2,0,σ) = (ε,ϕ1)∧ (ε,ϕ2) (resp., δ(ϕ1∨ϕ2,0,σ) = (ε,ϕ1)∨ (ε,ϕ2)),
the transition function is satisfied by the set S = {(ε,ϕ1),(ε,ϕ2)} (resp., {(ε,ϕi)}),
so we construct the following accepting partial run 〈Tpr,prun〉: Tpr = {ε,0,1},
prun(ε) = (ε,ϕ′,0,1), prun(0) = (ε,ϕ1,0,0), prun(1) = (ε,ϕ2,0,0) (resp., Tpr =
{ε,0}, prun(ε) = (ε,ϕ′,0,1), prun(0) = (ε,ϕi,0,0)).
Now, extending 〈Tpr,prun〉 with 〈Tpr1,prun1〉 and 〈Tpr2,prun2〉 on 0 and 1 (resp.,
extending 〈Tpr,prun〉 with 〈Tpri,pruni〉 on 0), by Lemma 5 we obtain an accepting
1-labeled partial run of A ′

ϕ′ on the unwinding.
2. Let us suppose that there exists an accepting 1-labeled partial run 〈Tpr,prun〉 for

A ′
ϕ′ on the unwinding tree UK

w in input. Since δ(ϕ1 ∧ϕ2,0,σ) = (ε,ϕ1)∧ (ε,ϕ2)
(resp., δ(ϕ1∨ϕ2,0,σ) = (ε,ϕ1)∨ (ε,ϕ2)), the transition function is satisfied by the
set S = {(ε,ϕ1),(ε,ϕ2)} (resp., {(ε,ϕi)}), so the root of the partial run must have
two successors 0 and 1 with labels (ε,ϕ1,0,1) and (ε,ϕ2,0,1) (resp., at least the
successor 0 with label (ε,ϕi,0,1)).
Now, consider the two trees 〈Tpr1,prun1〉 and 〈Tpr2,prun2〉 (resp., the tree 〈Tpri,
pruni〉) extracted from 〈Tpr,prun〉 on the nodes 0 and 1 (resp., on the node 0).
By Lemma 6, we obtain that these two trees are (resp., this tree is an) accepting
1-labeled partial runs (resp., run) of the automata A ′ϕ1

and A ′ϕ2
(resp., of the au-

tomaton A ′ϕi
) on the same tree in input, so by inductive hypothesis it holds that

K ,w |= ϕ1 and K ,w |= ϕ2 (resp., K ,w |= ϕ1 or K ,w |= ϕ2) and then K ,w |= ϕ′.

Inductive case: Exists Effective Next. ϕ′ = E≥gXϕ′′.

1. If K ,w |= E≥gX ϕ′′ it holds that UK
w ,ε |= E≥gX ϕ′′. Let X = {x ∈ succUK

w
(ε) |

UK
w ,x |= ϕ′′}. By Lemma 8, |X| = |minstructs(PA(UK

w ,ε,X ϕ′′))| ≥ g, so it is
possible to choose a set X′ = {x1, . . . ,xg} ⊆ N of g nodes in X. By inductive hy-
pothesis, we have that A ′

ϕ′′ has a 1-labeled accepting partial run 〈Tpri,pruni〉 on
xi /UK

w , for each index i ∈ N(g)+.
Since δ(E≥gX ϕ′′,0,σ) = (〈g〉,〈ϕ′′〉), the transition function is satisfied by the set
S = {(〈g〉,〈ϕ′′〉)}. Now, there is a sequence of numbers {hi}g

i ∈ CP(g) with h1 = g
and h2 = . . . = hg = 0, so there is a sequence of sets {Mi}g+1

i ∈ spart(dirUK
w

(ε),〈g〉)
such that M1 = X′ and M2 = . . . = Mg+1 = /0. At this point, it is evident that there
exists a set E ∈ exec(S,dirUK

w
(ε)) such that E = {(d,〈ϕ′′〉,1) | d ∈ X′}. Moreover

δ(〈ϕ′′〉,1,σ) = (ε,ϕ′′), so we can construct the following accepting partial run 〈Tpr,
prun〉 for A ′

ϕ′ on UK
w : Tpr = {ε}∪N(g−1)∪{i ·0 | i ∈ N(g−1)}, prun(ε) = (ε,ϕ′,0,

1), prun(i) = (xi+1,〈ϕ′′〉,1,1), and prun(i ·0) = (xi+1,ϕ
′′,0,0), for i ∈ N(g−1).

Now, extending 〈Tpr,prun〉 with {〈Tpri,pruni〉}
g
i on {(i−1) ·0}g

i , by Lemma 5 we
obtain an accepting 1-labeled partial run of A ′

ϕ′ on the unwinding.
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2. Let us suppose that there exists an accepting 1-labeled partial run 〈Tpr,prun〉 for
A ′

ϕ′ on the unwinding tree UK
w in input, with prun(ε) = (ε,ϕ′,0,1).

Since δ(E≥gX ϕ′′,0,σ) = (〈g〉,〈ϕ′′〉), the transition function is satisfied by the set
S = {(〈g〉,〈ϕ′′〉)}, so there exists a sequence {Mi}g+1

i ∈ spart(dirUK
w

(ε),〈g〉) such
that for all indexes i ∈ N(g)+ and directions d ∈ Mi \Mi+1 there is a node y ∈
succTpr(ε) such that prun(y) = (d,〈ϕ′′〉, i,1). Now, for all i > 1, δ(〈ϕ′′〉, i,σ) = f, so
we have that |M1|= g and M2 = . . . = Mg+1 = /0. Moreover, δ(〈ϕ′′〉,1,σ) = (ε,ϕ′′),
so each node yi ∈ succTpr(ε), with prun(yi) = (xi,〈ϕ′′〉,1,1) has a successor yi · j,
with j ∈ N, labeled by prun(y · j) = (xi,ϕ

′′,0,1).
Now, consider the trees 〈Tpri,pruni〉 extracted from 〈Tpr,prun〉 on the nodes yi · j.
By Lemma 6, we obtain that these trees are accepting 1-labeled partial runs of the
automata A ′

ϕ′′ on the trees xi /UK
w , so by inductive hypothesis it holds that UK

w ,xi |=
ϕ′′. Let X = {x ∈ succUK

w
(ε) |UK

w ,x |= ϕ′′}. By Lemma 8, |minstructs(PA(UK
w ,ε,

Xϕ′′))|= |X| ≥ |M1|= g, so UK
w ,ε |= E≥gXϕ′′ and then K ,w |= E≥gXϕ′′.

Inductive case: For all Hypothetical Next. ϕ′ = A<gX̃ϕ′′.

1. If K ,w |= A<gX̃ϕ′′ it holds that UK
w ,ε |= A<gX̃ϕ′′. Let X = {x ∈ succUK

w
(ε) |

UK
w ,x |= ¬ϕ′′} = {x′1, . . . ,x′|X|}. By Lemma 8, |X| = |minstructs(paths(UK

w ,ε) \
PE(UK

w ,ε, X̃ϕ′′))| < g, so it is possible to choose the set X′ = {x1,x2, . . .} =
succUK

w
(ε) \X ⊆ N. By inductive hypothesis, we have that A ′

ϕ′′ has a 1-labeled

accepting partial run 〈Tpri,pruni〉 on xi /UK
w , for each index i ∈ N(|X′|)+.

Since δ(A<gX̃ϕ′′,0,σ) = ([g], [ϕ′′]), the transition function is satisfied by the set
S = {([g], [ϕ′′])}. Now, there is a sequence of numbers {hi}g

i ∈ CP(g) with h1 = g
and h2 = . . . = hg = 0, so there is a sequence of sets {Mi}g+1

i ∈ spart(dirUK
w

(ε), [g])
such that M1 = dirUK

w
(ε), M2 = X, and M3 = . . . = Mg+1 = /0. At this point, it is

evident that there exists a set E ∈ exec(S,dirUK
w

(ε)) such that E = {(d, [ϕ′′],1) | d ∈
X′}∪{(d, [ϕ′′],2) | d ∈ X}. Moreover δ([ϕ′′],1,σ) = (ε,ϕ′′) and δ([ϕ′′],2,σ) = t,
so we can construct the following accepting partial run 〈Tpr,prun〉 for A ′

ϕ′ on UK
w :

Tpr = {ε} ∪N(|dir
UK

w
(ε)|−1) ∪ {(i + |X|) · 0 | i ∈ N(|X′|−1)}, prun(ε) = (ε,ϕ′,0,1),

prun(i) = (x′i+1, [ϕ
′′],2,1), prun( j + |X|) = (x j+1, [ϕ′′],1,1), and prun(( j + |X|) ·

0) = (x j+1,ϕ
′′,0,0), for i ∈ N(|X|−1) and j ∈ N(|X′|−1).

Now, extending 〈Tpr,prun〉 with {〈Tpri,pruni〉}
|X′|
i on {(i + |X| − 1) · 0}|X

′|
i , by

Lemma 5 we obtain an accepting 1-labeled partial run of A ′
ϕ′ on the unwinding.

2. Let us suppose that there exists an accepting 1-labeled partial run 〈Tpr,prun〉 for
A ′

ϕ′ on the unwinding tree UK
w in input, with prun(ε) = (ε,ϕ′,0,1).

Since δ(A<gX̃ϕ′′,0,σ) = ([g], [ϕ′′]), the transition function is satisfied by the set
S = {([g], [ϕ′′])}, so there exists a sequence {Mi}g+1

i ∈ spart(dirUK
w

(ε), [g]) such
that for all indexes i ∈ N(g)+ and directions d ∈ Mi \Mi+1 there is a node y ∈
succTpr(ε) such that prun(y) = (d, [ϕ′′], i,1). Note that |M2|< g. Moreover, δ([ϕ′′],
1,σ) = (ε,ϕ′′), so each node yi ∈ succTpr(ε), with prun(yi) = (xi, [ϕ′′],1,1) has a
successor yi · j, with j ∈ N, labeled by prun(y · j) = (xi,ϕ

′′,0,1).
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Now, consider the trees 〈Tpri,pruni〉 extracted from 〈Tpr,prun〉 on the nodes yi · j.
By Lemma 6, we obtain that these trees are accepting 1-labeled partial runs of the
automata A ′

ϕ′′ on the trees xi /UK
w , so by inductive hypothesis it holds that UK

w ,xi |=
ϕ′′. Let X = {x ∈ succUK

w
(ε) |UK

w ,x |=¬ϕ′′}. By Lemma 8, |minstructs(paths(K ,

w) \PE(UK
w ,ε, X̃ϕ′′))| = |X| ≤ |M2| < g, so UK

w ,ε |= A<gX̃ϕ′′ and then K ,w |=
A<gXϕ′′.

Inductive case: Does not exist a successor. ϕ′ = EX̃ f.

1. If K ,w |= EX̃ f, by Lemma 7, it holds that succUK
w

(ε) = /0. Then, we can construct

the following accepting 1-labeled partial run 〈Tpr,prun〉 for A ′
ϕ′ on UK

w : Tpr = {ε}
and prun(ε) = (ε,ϕ′,0,1). This partial run is also a valid run. Indeed, δ(EX̃ f,0,σ) =
([1], f), so we can choose the set S = {([1], f)} and then, accordingly to exec(S,
dirUK

w
(ε)), for all x ∈ succUK

w
(ε) it holds that ε has a successor with label (x, f,1,

1), but δ(f,1,σ) = f, so the construction is correct since succUK
w

(ε) = /0.
2. Let us suppose that there exists an accepting 1-labeled partial run 〈Tpr,prun〉 for

A ′
ϕ′ on the unwinding tree UK

w in input, with prun(ε) = (ε,ϕ′,0,1).
Since δ(EX̃ f,0,σ) = ([1], f), the transition function is satisfied by the set S = {([1],
f)}, so accordingly to exec(S,dirUK

w
(ε)), for all x ∈ succUK

w
(ε) it holds that ε has a

successor with label (x, f,1,1), but δ(f,1,σ) = f, so it must hold that succUK
w

(ε) = /0

then, by Lemma 7, K ,w |= EX̃ f.

Inductive case: There exists a successor. ϕ′ = AX t.

1. If K ,w |= AX t, by Lemma 7, it holds that succUK
w

(ε) 6= /0. Then, we can construct

the following accepting 1-labeled partial run 〈Tpr,prun〉 for A ′
ϕ′ on UK

w : Tpr =
{ε,0}, prun(ε) = (ε,ϕ′,0,1), and prun(0) = (x, t,1,1), with x ∈ succUK

w
(ε). This

partial run is also a valid run.
Indeed, δ(AX t,0,σ) = (〈1〉, t), so we can choose the set S = {(〈1〉, t)} and then,
accordingly to exec(S,dirUK

w
(ε)), there exists x ∈ succUK

w
(ε) such that ε has a suc-

cessor 0 with label (x, t,1,1). Moreover, since δ(t,1,σ) = t, we can choose the set
S = /0 and thus 0 does not need to have any successor.

2. Let us suppose that there exists an accepting 1-labeled partial run 〈Tpr,prun〉 for
A ′

ϕ′ on the unwinding tree UK
w in input, with prun(ε) = (ε,ϕ′,0,1).

Since δ(AXt,0,σ) = (〈1〉, t), the transition function is satisfied by the set S = {(〈1〉,
t)}, so accordingly to exec(S,dirUK

w
(ε)), there exists x ∈ succUK

w
(ε) such that ε

has a successor 0 with label (x, t,1,1), with x ∈ succUK
w

(ε), so it must hold that
succUK

w
(ε) 6= /0 then, by Lemma 7, K ,w |= AX t.
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