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Abstract. We introduce and study three notions of typeness for automata on in-
finite words. For an acceptance-condition class γ (that is, γ is weak, Büchi, co-
Büchi, Rabin, or Streett), deterministic γ-typeness asks for the existence of an
equivalent γ-automaton on the same deterministic structure, nondeterministic γ-
typeness asks for the existence of an equivalent γ-automaton on the same structure,
and γ-powerset-typeness asks for the existence of an equivalent γ-automaton on
the (deterministic) powerset structure – one obtained by applying the subset con-
struction. The notions are helpful in studying the complexity and complication of
translations between the various classes of automata. For example, we prove that
deterministic Büchi automata are co-Büchi type; it follows that a translation from
deterministic Büchi to deterministic co-Büchi automata, when exists, involves no
blow up. On the other hand, we prove that nondeterministic Büchi automata are
not co-Büchi type; it follows that a translation from a nondeterministic Büchi to
nondeterministic co-Büchi automata, when exists, should be more complicated
than just redefining the acceptance condition. As a third example, by proving that
nondeterministic co-Büchi automata are Büchi-powerset type, we show that a
translation of nondeterministic co-Büchi to deterministic Büchi automata, when
exists, can be done applying the subset construction. We give a complete picture of
typeness for the weak, Büchi, co-Büchi, Rabin, and Streett acceptance conditions,
and discuss its usefulness.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s. Motivated by deci-
sion problems in mathematics and logic, Büchi, McNaughton, and Rabin developed a
framework for reasoning about infinite word and infinite trees [Büc62,McN66,Rab69].
The framework has proved to be very powerful. Automata, and their tight relation to
second-order monadic logics were the key to the solution of several fundamental deci-
sion problems in mathematics and logic [Tho90]. Today, automata on infinite objects
are used for specification and verification of nonterminating systems. In the automata-
theoretic approach to verification, we reduce questions about systems and their specifi-
cations to questions about automata. More specifically, questions such as satisfiability of
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specifications and correctness of systems with respect to their specifications are reduced
to questions such as nonemptiness and language containment [VW86,Kur94,VW94].
The automata-theoretic approach separates the logical and the combinatorial aspects
of reasoning about systems. The translation of specifications to automata handles the
logic and shifts all the combinatorial difficulties to automata-theoretic problems. Recent
industrial-strength property-specification languages such as Sugar [BBE+01], ForSpec
[AFF+02], and the recent standard PSL 1.01 [www.accellera.org] include regular ex-
pressions and/or automata, making the automata-theoretic approach even more essential.

Since a run of an automaton on an infinite word does not have a final state, acceptance
is determined with respect to the set of states visited infinitely often during the run.
There are many ways to classify an automaton on infinite words. One is the class of its
acceptance condition. For example, in Büchi automata, some of the states are designated
as accepting states, and a run is accepting iff it visits states from the accepting set
infinitely often [Büc62]. Dually, in co-Büchi automata, a run is accepting iff it visits
states from the accepting set only finitely often. More general are Rabin automata. Here,
the acceptance condition is a set α = {〈G1, B1〉, . . . , 〈Gk, Bk〉} of pairs of sets of
states, and a run is accepting if there is a pair 〈Gi, Bi〉 for which the set of states visited
infinitely often intersects Gi and is disjoint to Bi. The condition α can also be viewed
as a Streett condition, in which case a run is accepting if for all pairs 〈Gi, Bi〉, if the
set of states visited infinitely often intersects Gi, then it also intersects Bi. The number
k of pairs in α is referred to as the index of the automaton. Another way to classify
an automaton is by the type of its branching mode. In a deterministic automaton, the
transition function δ maps a pair of a state and a letter into a single state. The intuition
is that when the automaton is in state q and it reads a letter σ, then the automaton moves
to state δ(q, σ), from which it should accept the suffix of the word. When the branching
mode is nondeterministic, δ maps q and σ into a set of states, and the automaton should
accept the suffix of the word from one of the states in the set.

The applications of automata theory in reasoning about systems have led to the
development of new classes of automata. In [MSS86], Muller et al. introduced weak au-
tomata. Weak automata can be viewed as a special case of Büchi or co-Büchi automata
in which every strongly connected component in the graph induced by the structure of
the automaton is either contained in α or is disjoint from α. Since reasoning about spec-
ifications is often done by recursively reasoning about their sub-specifications, known
translations of temporal-logic specifications to Büchi automata actually result in weak
automata [MSS86,KVW00,KV98b]. The special structure of weak automata is reflected
in their attractive computational properties and makes them very appealing. Essentially,
while the formulation of acceptance by a Büchi or a co-Büchi automaton involves alter-
nation between least and greatest fixed-points, no alternation is required for specifying
acceptance by a weak automaton [KVW00]. Deterministic weak automata have recently
being used to represent real numbers. A real number x in base r is represented by a word
in the form wi • wf where wi is the integer part of x and wf is the float part of x, and
both are words over the alphabet {0, 1, ..., r−1}. This way for instance, the real number
5 1

2 in base r = 10 is represented by 0∗5•50ω or by 0∗5•49ω. In a similar way, a vector
v = 〈x1, x2, ..., xn〉 of real numbers is represented by a word of the form Wi • Wf

where Wi is in ({0, 1, ..., r− 1}n)∗ and Wf is in ({0, 1, ..., r− 1}n)ω. As real numbers
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may have several representations, real vectors may have several representations too. A
real vector automaton is a Büchi automaton that either accepts all the representations
of some vector v ∈ IRn or none of them. It is proved in [BJW01] that an RVA is a
deterministic weak automaton.

It turns out that different classes of automata have different expressive power. For
example, unlike automata on finite words, where deterministic and nondeterministic
automata have the same expressive power, deterministic Büchi automata are strictly
less expressive than nondeterministic Büchi automata [Lan69]. That is, there exists a
language L over infinite words such that L can be recognized by a nondeterministic
Büchi automaton but cannot be recognized by a deterministic Büchi automaton. It also
turns out that some classes of automata may be more succinct than other classes. For
example, translating a nondeterministic co-Büchi automaton into a deterministic one is
possible [MH84], but involves an exponential blow up. As another example, translat-
ing a nondeterministic Rabin automaton with n states and index k, into an equivalent
nondeterministic Büchi automaton may result in an automaton withO(k ·n) states, and
if we start with a Streett automaton, the Büchi automaton may have n · 2O(k) states
[SV89]. Note that expressiveness and succinctness depend in both the branching type
of the automaton as well as the class of its acceptance condition.

There has been extensive research on expressiveness and succinctness of automata
on infinite words [Tho90]. In particular, since reasoning about deterministic automata
is simpler than reasoning about nondeterministic ones, questions like deciding whether
a nondeterministic automaton has an equivalent deterministic one, and the blow-up in-
volved in determinization are of particular interest. These questions get further motiva-
tion with the discovery that many natural specifications correspond to the deterministic
fragments: it is shown in [KV98a] that an LTL formula ψ has an equivalent alternation-
free µ-calculus formula iff ψ can be recognized by a deterministic Büchi automaton,
and, as mentioned above, real vector automata are deterministic weak automata.

For deterministic automata, where Büchi and co-Büchi automata are less expressive
than Rabin and Streett automata, researchers have come up with the notion of a deter-
ministic automaton being Büchi type, namely it has an equivalent Büchi automaton on
the same structure [KPB94]. It is shown in [KPB94] that Rabin automata are Büchi type.
Thus, if a deterministic Rabin automaton A recognizes a language that can be recog-
nized by a deterministic Büchi automaton, thenA has an equivalent deterministic Büchi
automaton on the same structure. On the other hand, Streett automata are not Büchi
type: there is a deterministic Streett automaton A that recognizes a language that can
be recognized by a deterministic Büchi automaton, but all the possibilities of defining a
Büchi acceptance condition on the structure of A result in an automaton recognizing a
different language.

As discussed in [KPB94], Büchi-typeness is a very useful notion. In particular, a
Büchi-type deterministic automaton can be translated to an equivalent deterministic
Büchi automaton with no blow up. In this work, we study typeness in general: we
consider both nondeterministic and deterministic automata, for the five classes γ of
acceptance conditions described above (γ is either Büchi, co-Büchi, Rabin, Streett, or
weak). We define and examine three notion of typeness:
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1. Deterministic γ-typeness asks for which classes of deterministic automata, the ex-
istence of some equivalent deterministic γ automaton implies the existence of an
equivalent deterministic γ automaton on the same structure. For example, we show
that all deterministic automata are weak type.

2. Nondeterministic γ-typeness asks for which classes of nondeterministic automata,
the existence of some equivalent nondeterministic γ automaton implies the existence
of an equivalent nondeterministic γ automaton on the same structure. For example,
we show that nondeterministic Büchi automata are not co-Büchi type. This answers
a question on translating Büchi to co-Büchi automata that was left open in [KV98a].

3. γ-powerset-typeness asks for which classes of nondeterministic automata, the ex-
istence of some equivalent deterministic γ automaton implies the existence of an
equivalent deterministic γ automaton on the structure obtained by applying the sub-
set construction to the original automaton. For example, while deterministic Rabin
automata are Büchi-type, nondeterministic Rabin automata are not Büchi powerset-
type. The notion of powerset-typeness is important for the study of the blow-up
involved in the translation of automata to equivalent deterministic ones. While for
some classes a 2O(n logn) lower bound is known, powerset-typeness implies a 2n

upper bound for other classes. We also examine finite-typeness for nondeterministic
Büchi automata – cases where the limit language of the automaton when viewed as
an automaton on finite words is equivalent to that of the Büchi automaton, and we
relate finite-typeness with powerset-typeness.

Our results, along with previously known results, are described in Figures 2, 3, and 5.

2 Preliminaries

Given an alphabetΣ, an infinite word overΣ is an infinite sequencew = σ0 ·σ1 ·σ2 · · ·
of letters in Σ. We denote the set of all infinite words over Σ by Σω. A language L is a
set of words fromΣω. An automaton over infinite words is a tupleA = 〈Σ,Q, δ,Q0, α〉,
where Σ is the input alphabet, Q is a finite set of states, δ : Q×Σ → 2Q is a transition
function, Q0 ⊆ Q is a set of initial states, and α is an acceptance condition which is a
condition that defines a subset of Qω. We define several acceptance conditions below.
Intuitively, δ(q, σ) is the set of states that A may move into when it is in the state q and
it reads the letter σ. The automaton A may have several initial states and the transition
function may specify many possible transitions for each state and letter, and hence we
say that A is nondeterministic. In the case where |Q0| = 1 and for every q ∈ Q and
σ ∈ Σ, we have that |δ(q, σ)| = 1, we say that A is deterministic.

Given an input infinite word w = σ0 · σ1 · σ2 · · · ∈ Σω, a run of A on w can be
viewed as a function r : IN → Q where r(0) ∈ Q0, i.e., the run starts in one of the
initial states, and for every i ≥ 0, we have that r(i+ 1) ∈ δ(r(i), σi), i.e., the run obeys
the transition function. Note that while a deterministic automaton has a single run on
an input word w, a nondeterministic automaton may have several runs on w or none
at all. Each run r induces a set inf(r) of states that r visits infinitely often. Formally,
inf(r) = {q ∈ Q : for infinitely many i ∈ IN, we have r(i) = q}. As Q is finite,
it is guaranteed that inf(r) �= ∅. The run r is accepting iff the set inf(r) satisfies
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the acceptance condition α. A run that is not accepting is rejecting. We consider the
following acceptance conditions.

– A set S satisfies a Büchi acceptance condition α ⊆ Q if and only if S ∩ α �= ∅.
– A set S satisfies a co-Büchi acceptance condition α ⊆ Q if and only if S ∩ α = ∅.
– A set S satisfies a Rabin acceptance condition α = {〈G1, B1〉, . . . , 〈Gk, Bk〉} ⊆

2Q × 2Q if and only if there exists a pair 〈Gi, Bi〉 ∈ α for which S ∩Gi �= ∅ and
S ∩Bi = ∅.

– A set S satisfies a Streett acceptance condition α = {〈G1, B1〉, . . . , 〈Gk, Bk〉} ⊆
2Q × 2Q if and only if for all pairs 〈Gi, Bi〉 ∈ α we have that S ∩ Gi = ∅ or
S ∩Bi �= ∅.

Note that the Büchi acceptance condition is dual to the co-Büchi acceptance con-
dition: a set S satisfies a Büchi acceptance condition α iff S does not satisfy α as a
co-Büchi acceptance condition. Similarly, the Rabin acceptance condition is dual to the
Streett acceptance condition. The number k appearing in the Rabin and Street conditions
is called the index of the automaton. An automaton A accepts an input word w iff there
exists an accepting run of A on w. The language of A, denoted L(A), is the set of all
infinite words that A accepts.

The transition function δ induces a relationRδ ⊆ Q×Q, whereRδ(q, q′) iff there is
σ ∈ Σ with δ(q, σ) = q′.Accordingly, the automatonA induces a graphGA = 〈Q,Rδ〉.
For two states, q and q′ of A, we say that q′ is reachable from q if there is a (possibly
empty) path in GA from q to q′. A strongly connected component (SCC, for short) in
GA is a setC ⊆ Q such that for all states q and q′ inC, we have that q is reachable from
q′. A maximal strongly connected component (MSCC, for short) is an SCC C that is
maximal in the sense that we cannot add to C states and stay with an SCC. Thus, for all
C ′ ⊆ Q\C, the setC ∪C ′ is not an SCC. Note that a run of an automatonA eventually
get trapped in an MSCC of GA. We say that a Büchi automaton A is weak if for each
MSCCC ofGA, eitherC ⊆ α (in which case we say thatC is an accepting component)
or C ∩ α = ∅ (in which case we say that C is a rejecting component). Note that a weak
automaton can be viewed as both a Büchi and a co-Büchi automaton. Indeed, a run of
A visits α infinitely often iff it gets trapped in an accepting component, which happens
iff it visits states in Q \ α only finitely often.

We denote the different types of automata by three letters acronyms in {D,N} ×
{B, C, R, S, W}×{W,T}. The first letter stands for the branching mode of the automaton
(deterministic or nondeterministic); the second letter stands for the acceptance-condition
type (Büchi, co-Büchi, Rabin, Streett, or weak). The third letter stands for the objects on
which the automata run (words or trees). For Rabin and Streett automata, we sometimes
also indicate the index of the automaton. In this way, for example, NBW are nonde-
terministic Büchi word automata, and DRW[1] are deterministic Rabin automata with
index 1.

Expressiveness and Typeness

For two automataA andA′, we say thatA andA′ are equivalent if L(A) = L(A′). For
an automaton type β (e.g., DBW) and an automaton A, we say that A is β-realizable



Typeness for ω-Regular Automata 329

if there is a β-automaton equivalent to A. In Figure 1 below we describe the known
expressiveness hierarchy for automata on infinite words. As described in the figure,
DRW and DSW are as expressive as NRW, NSW, and NBW, which recognize all ω-
regular language [McN66]. On the other hand, DBW are strictly less expressive than
NBW, and so are DCW. In fact, since by dualizing a Büchi automaton we get a co-Büchi
automaton, the two internal ovals complement each other. The intersection of DBW and
DCW is DWW (note that while a DWW is clearly both a DBW and DCW, the other
direction is not trivial, and is proven in [BJW01]). Finally, NCW can be determinized
(when applied to universal Büchi automata, the translation in [MH84], of alternating
Büchi automata into NBW, results in DBW. By dualizing it, one gets a translation of
NCW to DCW). In addition to the results described in the figure, the index of DRW
and DSW also induces a hierarchy, thus DRW[k + 1] are strictly more expressive than
DRW[k], and similarly for DSW [Kam85].

DBWDWW
NCW

NWW
DCW

NBW, NRW, DRW, NSW, DSW

Fig. 1. The expressiveness hierarchy for ω-regular automata.

Consider an automatonA = 〈Σ,Q, δ,Q0, α〉. We refer to 〈Q, δ,Q0〉 as the structure
of the automaton. The powerset structure induced by A is P(A) = 〈2Q, δP , {Q0}〉,
where for all S ∈ 2Q and σ ∈ Σ, we have that δP(S, σ) =

⋃
s∈S δ(s, σ). Thus, the

powerset structure is obtained by the usual subset construction [RS59].
For an acceptance-condition class γ (e.g., Büchi), we say that A is γ-type if A has

an equivalent γ automaton with the same structure as A. That is, there is an automaton
A′ = 〈Σ,Q, δ,Q0, α

′〉 such that α′ is an acceptance condition of class γ and L(A′) =
L(A). We say that A is γ-powerset-type if A has an equivalent γ automaton with the
same structure as the powerset structure of A. That is, there is an automaton AP =
〈Σ, 2Q, δP , {Q0}, αP〉 such thatαP is an acceptance condition of class γ andL(AP) =
L(A). Note that the automaton AP is deterministic.

3 Typeness for Deterministic Automata

In this section we consider the following problem: given two acceptance-condition types
β and γ, is it true that every DβW that is DγW-realizable, is also γ-type? We then say that
DβW are γ-type. In other words, DβW are γ-type if every deterministic β-automaton
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that has an equivalent deterministic γ-automaton, also has an equivalent deterministic
γ-automaton on the same structure.

Our results are described in Figure 2 below. Some results are immediate. For example,
since the Büchi and the co-Büchi acceptance conditions are special cases of Rabin and
Streett conditions (a Büchi condition α is equivalent to the Rabin condition {〈α, ∅〉}
and to the Streett condition {〈Q,α〉}, and dually for co-Büchi), it is clear that DBW and
DCW are Rabin-type and Streett-type. Similarly, since weak automata can be viewed
as Büchi or co-Büchi automata, they can also be viewed as a special case of Rabin
and Streett automata. Thus, DWW are γ-type for all the types γ we consider. Such
cases, where a translation of the acceptance condition exists, and is independent of the
automaton, are indicated in the table by←↩. Some results are known, or obtained easily
by dualizing known results, and the table contains the appropriate reference. Below we
prove the new results.

DWW DBW DCW DRW DSW

DWW YES YES YES YES
Lemma 1 Lemma 1 Lemma 1 Lemma 1

DBW YES YES YES NO
←↩ Lemma 2 [KPB94] [KPB94]

DCW YES YES NO YES
←↩ Lemma 2 dualizing [KPB94] dualizing [KPB94]

DRW YES YES YES NO
←↩ ←↩ ←↩ Lemma 3

DSW YES YES YES NO
←↩ ←↩ ←↩ Lemma 3

DRW[k] are not Rabin[k − 1]-type, DSW[k] are not Streett[k − 1]-type. Lemma 4

Fig. 2. Typeness for deterministic automata.

Lemma 1. DβW are weak-type for all acceptance-condition types β.

Proof. In [BJW01], the authors introduce the notion of a deterministic automaton being
inherently weak (the definition in [BJW01] is for DBW, and is easily extended to DβW
for all acceptance-condition types β). A DβW is inherently weak if none of its reachable
MSCC contains both accepting and rejecting SCCs. It is easy to see that an inherently
weak automaton has an equivalent DWW on the same structure. Indeed, by definition,
each of the MSCC of the automaton can be made accepting or rejecting according to the
classification of all its SCCs.

Let A be a DWW-realizable DβW. Then, A is both DBW-realizable and DCW-
realizable. Assume by the way of contradiction that A is not weak type. Then, A is
not inherently weak, so there exists a reachable MSCC C of A such that C contains
both an accepting SCC S and a rejecting SCC R. Since A is DBW-realizable, then, by
[Lan69], every SCC S′ ⊇ S is accepting. In particular, C is accepting. Dually, Since A
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is DCW-realizable, then every SCC R′ ⊇ R is rejecting. In particular, C is rejecting. It
follows that C is both accepting and rejecting, and we reach a contradiction.

We note that [BJW01] prove that every DBW that accepts a language in Fσ ∩Gδ is
inherently weak. The proof there, however, does not make a direct use of [Lan69], and
is therefore much more complicated.

Lemma 2. DCW are Büchi-type, and DBW are co-Büchi-type.

Proof. Since a DCW can be viewed as a DRW, and DRW are Büchi type [KPB94],
DCW are Büchi type too. Dually, DBW are co-Büchi-type.

Note that if a DCW A is DBW-realizable, then it is also DWW-realizable. Indeed,
by [BJW01], DCW ∩ DBW = DWW. Hence, by Lemma 1, A has an equivalent deter-
ministic weak automaton on the same structure. Thus, Lemma 2 can be strengthen: a
DCW that is DBW-realizable (dually, a DBW that is DCW-realizable) has an equivalent
deterministic weak automaton on the same structure.

Lemma 3. DRW are not Streett-type, and DSW are not Rabin-type.

Proof. Since DSW can recognize allω-regular languages, DSW being Rabin-type means
that every DSW has an equivalent DRW on the same structure. In [Löd99], Löding shows
that a translation of a DSW to an equivalent DRW may involve an exponential blow up,
thus typeness obviously cannot hold. The argument for DRW is dual.

In addition to the results in the table, we prove that the expressiveness hierarchy
known for the indices of DRW and DSW induces a typeness hierarchy:

Lemma 4. For all k ≥ 2, we have that DRW[k] are not Rabin[k−1]-type, and DSW[k]
are not Streett[k − 1]-type.

Proof. Let Σk = {1, 2, . . . , k}. Consider the languages Lk of exactly all words
containing infinitely many i’s, for all 1 ≤ i ≤ k. Consider the DSW[k] Ak =
〈Σk, Σk, δ, {1}, αk〉, with δ(q, i) = i, for all q, i ∈ Σk, and
αk = {〈Σk, {1}〉, 〈Σk, {2}〉, . . . , 〈Σk, {k}〉}. Thus, whenever Ak reads a letter
i, it moves to state i, and the acceptance condition requires an accepting run to visit all
states infinitely often. It is easy to see that Ak recognizes Lk. Also, since Lk can be
viewed as the intersection of k DBWs Di, each for the language “infinitely many i’s,”
we know that Lk is DBW-recognizable, and hence also DSW[k− 1]-realizable. On the
other hand, it is impossible to define a Streett[k − 1] acceptance condition α′

k so that
Ak with condition α′

k recognizes Lk. To see this, note that for each letter i ∈ Σk, the
DSW Ak accepts (1 · 2 · · · k)ω and rejects (1 · 2 · · · i − 1 · i + 1 · · · k)ω. For that, Ak
must contain, for each i ∈ Σk, a pair 〈Gi, Bi〉 such that Gi ∩ Σk �= ∅ and Bi = {i}.
Thus, Ak must contain at least k pairs, and we are done. It follows that DSW[k] are
not Streett[k − 1]-type. The argument for Rabin automata is dual, and considers the
complement of Ln.
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4 Typeness for Nondeterministic Automata

In this section we consider the following problem: given two acceptance-condition types
β and γ, is it true that every NβW that is NγW-realizable, is also γ-type? We then say
that NβW are γ-type. In other words, NβW are γ-type if every nondeterministic β-
automaton that has an equivalent nondeterministic γ-automaton, also has an equivalent
nondeterministic γ-automaton on the same structure.

Our results are described in Table 3 below. As in Section 3, some results follow
immediately from translations of the acceptance condition, and are indicated in the table
by←↩. The new results are proven in Lemmas 5, 6, and 7. When the results follow from
applying translations to results proven in the Lemmas, we indicate it with←↩ too.

NWW NBW NCW NRW NSW

NWW NO NO NO NO
Lemma 5 Lemma 6 Lemmas 5 and 6←↩ Lemmas 5 and 6←↩

NBW YES NO NO NO
←↩ Lemma 6 Lemma 6←↩ Lemma 6←↩

NCW YES NO NO NO
←↩ Lemma 5 Lemma 5←↩ Lemma 5←↩

NRW YES YES YES NO
←↩ ←↩ ←↩ Lemma 7

NSW YES YES YES NO
←↩ ←↩ ←↩ Lemma 7

Fig. 3. Typeness for nondeterministic automata.

Lemma 5. NBW are neither co-Büchi- nor weak-type.

Proof. Consider the NBWA1 described in Figure 4. The NBW recognizes the language
a∗ · b · (a+ b)∗ (at least one b). This language is in NWW and NCW, yet it is easy to see
that there is no NCW (and hence also no NWW) recognizing L on the same structure.

We note that the automaton in Figure 4 is a single-run automaton: every word ac-
cepted by it has a single accepting run. This is of particular interest in the context
of specification and verification, as the NBW described in [VW94] for LTL formulas
are single-run automata. Our example shows that even such automata are neither co-
Büchi- nor weak-type. It is shown in [KV98a] that an LTL formula ψ has an equivalent
alternation-free µ-calculus formula ψ′ iff the language of ψ can be recognized by a
DBWAψ . The construction of the formula ψ′ in [KV98a] goes viaAψ , and therefore it
involve a doubly-exponential blow-up. The construction of ψ′ may also go via an NCW
Ãψ , for ¬ψ. While ψ′ is of length linear in the size of Ãψ , the best known translation of
LTL to NCW (when exists) actually constructs a DCW and is doubly-exponential. It is
conjectured in [KV98a] that single-run NBW can be translated to NCW with only a lin-
ear blow up, leading to an exponential translation of LTL to alternation-free µ-calculus.
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Fig. 4. NBWs for a∗ · b · (a + b)∗.

In particular, the question of obtaining the NCW by modifying the acceptance condition
of the NBW is left open in [KV98a]. Our result here answers the question negatively.

We also note that NCW-typeness and weak-typeness do not coincide. Figure 4 also
describes a different NBW, A2, for L. This NBW is NCW-type: an NCW with the
same structure but with the acceptance condition α = {q0, q1} accepts L. Yet, it is not
weak-type.

Lemma 6. NCW are neither Büchi- nor weak-type.

Proof. Consider the two-state DCW A for the language L of all words with finitely
many a’s. Since L is not DBW-realizable, and A is deterministic, A is not Büchi-type.
The language L is NWW-realizable. But again, since A is deterministic and L is not
DWW-realizable, it is not weak-type.

Lemma 7. NRW are not Streett-type, and NSW are not Rabin-type.

Proof. By Lemma 3, DRW are not Streett-type. Hence, there are DRW that are DSW-
realizable but do not have an equivalent DSW on the same structure. Since DRW are a
special case of NRW, it follows that NRW are not Streett-type. The proof for NSW not
being Rabin-type is similar.

By Lemma 4, DRW[k] are not Rabin[k−1]-type, and DSW[k] are not Streett[k−1]-
type, for all k ≥ 2. Thus, following the same considerations as in the proof of Lemma 7,
we get that NRW[k] are not Rabin[k−1]-type, and NSW[k] are not Streett[k−1]-type.

5 Powerset-Typeness for Nondeterministic Automata

In this section we consider the following problem: given two acceptance-condition types
β and γ, is it true that every NβW that is DγW-realizable, is also γ-powerset-type?
We then say that NβW are γ-powerset-type. In other words, NβW are γ-type if every
nondeterministic β-automaton that has an equivalent deterministic γ-automaton, also
has an equivalent deterministic γ-automaton on the powerset structure.
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Our results are described in Table 5 below. Since A = P(A) for a deterministic
automaton A, we know that NβW cannot be γ-powerset-type if DβW are not γ-type.
Thus, the negative cases in Figure 2 immediately induce negative cases here. In particular,
for all k ≥ 2, we have that NRW[k] are not Rabin[k − 1]-powerset-type, and NSW[k]
are not Streett[k − 1]-powerset-type.

NWW NBW NCW NRW NSW

DWW YES YES YES YES YES
[MS97] [MS97] [MS97] [MS97] [MS97]

DBW YES NO YES NO NO
Lemma 8 Lemma 9 Lemma 8 Lemma 9←↩ Lemma 9←↩

DCW NO NO NO NO NO
Lemma 10 Lemma 10←↩ Lemma 10←↩ Lemma 10←↩ Lemma 10←↩

DRW NO NO NO NO NO
Lemma 10 Lemma 10←↩ Lemma 10←↩ Lemma 10←↩ Lemma 10←↩

DSW NO NO NO NO NO
Lemma 10 Lemma 10←↩ Lemma 10←↩ Lemma 10←↩ Lemma 10←↩

Fig. 5. Powerset-typeness for nondeterministic automata.

Lemma 8. NWW and NCW are Büchi-powerset-type.

Proof. Consider an NCWA. Recall thatA is DCW-realizable. Therefore, ifA is DBW-
realizable, then it is also DWW-realizable. Hence, as NCW are weak-powerset-type,
there is a DWW, and thus also a DBW, equivalent to A with structure P(A). Thus,
NCW are Büchi-powerset-type. Since NWW are a special case of NCW, the result for
NWW follows.

Lemma 9. NBW are not Büchi-powerset-type.

Proof. The NBW A in Figure 6 recognizes the language of all words with infinitely
many occurrences of the subword ab. The language can be recognized by a DBW, yet
no DBW for it can be defined on top of P(A).

A :

q2q1

a

b

a, b ab

a

b

{q1} {q1, q2}

P(A) :

Fig. 6. An NBW for ((a + b)∗ · a · b)ω that is not Büchi-powerset-type.
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Lemma 10. NWW are neither co-Büchi-, Rabin-, nor Streett-powerset-type.

Proof. The NWW A in Figure 7 recognizes the language of all words with a (a · b)ω
tail. The language can be recognized by a DCW, and hence also by a DRW and DSW.
Yet, no DCW, DRW, or DSW for it can be defined on top of P(A).

Fig. 7. An NBW for (a+b)∗ · (a ·b)ω that is neither co-Büchi-, Rabin-, nor Streett-powerset-type.

5.1 From NBW to NFW

Recall that DBW are strictly less expressive than NBW. A language L ⊆ Σω can be
recognized by a DBW iff there is a regular language R ⊆ Σ∗ such that L = limR;
that is, w ∈ L iff w has infinitely many prefixes in R [Lan69]. An open problem is to
construct, given an NBW A for L, such that A is DBW-realizable, an NFW A′ for the
corresponding R. An immediate 2O(n log n) upper bound follows from the 2O(n log n)

determinization construction of [Saf88] for A (since DRW are Büchi type, the DRW
constructed in [Saf88], can be converted to a DBW on the same structure). While the
2O(n logn) blow up in determinization is tight [Mic88,Löd99], no super-linear lower
bound is known for the translation ofA toA′. The challenges in this problem are similar
to these in the problem of translating an NBW that is NCW-realizable to an equivalent
NCW. While a 2O(n logn) upper bound is immediate, no super-linear lower bound is
known.

Consider and NBWA. LetAfin beA viewed as an NFW. We say thatA is finite-type
if L(A) = limL(A). Note that for a finite-type NBW, the translation to NFW is linear,
and the NFW is on the same structure as the NBW.

The notion of powerset-typeness turns out to be related to finite-typeness: for an
automaton A = 〈Σ,Q, δ,Q0, α〉, let S(A) = 〈2Q, δP , {Q0}, αP 〉 be the automaton
obtained fromA by applying to it the subset construction. Thus, the structure of S(A) is
the powerset-structure ofA, and a state is inαP if its intersection withα is not empty. We
refer to S(A) as the subset automaton ofA. Clearly, for an NFWA, we have thatA and
S(A) are equivalent [RS59]. We say that an NBWA is Büchi-subset-type ifA and S(A)
are equivalent. Note that if A is Büchi-subset-type, then it is also Büchi-powerset-type,
but as we shall see below, the other direction does not necessarily hold.

Theorem 1. An NBW is Büchi-subset-type iff it is finite-type.
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Proof. Assume first that A is not Büchi subset-type. Since S(A) is a DBW, then
L(S(A)) = limL(S(A)fin). SinceAfin is an NFW, thenL(Afin) = L(S(A)fin). It fol-
lows thatL(S(A)) = limL(Afin). SinceA is not Büchi subset-type,L(A) �= L(S(A)).
It follows that L(A) �= limL(Afin), thus A is not finite-type.

Assume now that A is Büchi subset-type. For every NBW A, we have that L(A) ⊆
limL(Afin). Indeed, an accepting run ofA on a wordw points to infinitely many prefixes
of w that are accepted by Afin . It is left to prove that limL(Afin) ⊆ L(A). Consider a
word w ∈ limL(Afin). Thus, w has infinitely many prefixes in L(Afin). Since Afin is
an NFW, then L(Afin) = L(S(A)fin). It follows that w has infinitely many prefixes in
L(S(A)fin), or equivalently, that the run of S(A) on w visits the set of accepting states
infinitely often, implying that w ∈ L(S(A)). Since A is Büchi-subset-type, w is also
accepted by A, and we are done.

As proved in [MS97], an NBW that is DWW-realizable is also Büchi-subset-type
(note that since all DBW are Büchi-subset-type whereas not all DBW are DWW-
realizable, the other direction does not hold). It follows that all NBW that are DWW-
realizable are finite-type and can be linearly translated to the corresponding NFW.

We now show that powerset-typeness is not sufficient for finite-typeness, and the
stronger condition of subset-typness is required.

Lemma 11. Powerset-type NBW are not finite-type.

Proof. The NBW A in Figure 8 recognizes the language of all words with infinitely
many b’s but no two successive b’s. The DBW obtained by augmenting the powerset
structure of A, also described in the figure, with the acceptance condition αP = {{1}}
is equivalent to A. Thus, A is powerset type. On the other hand, S(A) is not equivalent
toA, and indeed, there is no way to augmentAfin with an acceptance condition αF that
results in an automatonAF for which lim(L(AF )) = L(A). To see this, note that either
αF is empty, in which case L(AF ) is empty, or αF is not empty, in which case L(AF )
contains a+, thus lim(L(AF )) contains aω, which is not in L(A).

a q2q1

a

b

a

a

b

{q1} {q1, q2}

P(A) :A :

Fig. 8. An NBW for (a+ · b)ω that is powerset-type but not finite-type.

6 Discussion

We studied three notions of typeness for automata on infinite words. The notions are
helpful in studying the complexity and complication of translations between the various
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classes of automata. Of special interest is the blow-up involved in a translation of NBW
to NCW, when exists. As discussed in Section 4, a polynomial translation will enable an
exponential translation of LTL to alternation-free µ-calculus (for formulas that can be
expressed in the alternation-free µ-calculus), improving the doubly-exponential known
upper bound. Current translations of NBW to NCW actually construct a DCW with
2O(n logn) states (starting with an NBW with n states), whereas even no super-linear
lower bound is known.

A related notion has to do with the translation of an NBW to an NFW whose limit
language is equivalent to that of the NBW. We studied also this notion, and charac-
terized NBW that are finite-type, and for which a linear translation exists. We hope to
relate finite-typeness with co-Büchi typeness, aiming at developing more techniques and
understanding for approaching the NBW to NCW problem.
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[Löd99] C. Löding. Optimal bounds for the transformation of omega-automata. In Proc. 19th
Conference on the Foundations of Software Technology and Theoretical Computer
Science, volume 1738 of Lecture Notes in Computer Science, pages 97–109, December
1999.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9:521–530, 1966.

[MH84] S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical
Computer Science, 32:321–330, 1984.

[Mic88] M. Michel. Complementation is more difficult with automata on infinite words. CNET,
Paris, 1988.

[MS97] O. Maler and L. Staiger. On syntactic congruences for ω-languages. Theoretical
Computer Science, 183(1):93–112, 1997.

[MSS86] D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic
theory of the tree and its complexity. In Proc. 13th International Colloquium on
Automata, Languages and Programming, volume 226 of Lecture Notes in Computer
Science. Springer-Verlag, 1986.

[Rab69] M.O. Rabin. Decidability of second order theories and automata on infinite trees.
Transaction of the AMS, 141:1–35, 1969.

[RS59] M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, 3:115–125, 1959.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foundations
of Computer Science, pages 319–327, White Plains, October 1988.

[SV89] S. Safra and M.Y. Vardi. On ω-automata and temporal logic. In Proc. 21st ACM Symp.
on Theory of Computing, pages 127–137, Seattle, May 1989.

[Tho90] W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science,
pages 165–191, 1990.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st Symp. on Logic in Computer Science, pages 332–344, Cam-
bridge, June 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, November 1994.


	Introduction
	Preliminaries
	Typeness for Deterministic Automata
	Typeness for Nondeterministic Automata
	Powerset-Typeness for Nondeterministic Automata
	From NBW to NFW

	Discussion

