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Abstract—Model checking is a powerful method widely
explored in formal verification. Given a model of a system,
e.g. a Kripke structure, and a formula specifying its expected
behavior, one can verify whether the system meets the behavior
by checking the formula against the model. Classically, system
behavior is given as a formula of a temporal logic, such as
LTL and the like. These logics are “point-wise” interpreted, as
they describe how the system evolves state-by-state. However,
there are relevant properties, such as those involving temporal
aggregations, which are inherently “interval-based”, and thus
asking for an interval temporal logic. In this paper, we give
a formalization of the model checking problem in an interval
logic setting. First, we provide an interpretation of formulas of
Halpern and Shoham’s interval temporal logic HS over Kripke
structures, which allows one to check interval properties of
computations. Then, we prove that the model checking problem
for HS against Kripke structures is decidable by a suitable
small model theorem, and we outline a PSPACE decision
procedure for the meaningful fragments AABB and AAEE.

I. INTRODUCTION

A classical problem in system design is to come up with
automatic techniques to ensure reliability. In this context,
formal methods have provided structures and algorithms that
have been successfully applied in several domains. One of the
most notable techniques is model checking, where a formal
specification of the desired properties of the system is checked
against a model of its behavior [6], [7], [18], [20]. The
solution of the model checking problem, and thus its precise
complexity, relies on the particular computational model and
specification language we consider. In finite-state system
verification, systems are usually modeled as labeled state-
transition graphs, or Kripke structures, while specifications
are formulas of a suitable (point-based) linear or branching
temporal logic. The first attempt in this direction goes back to
the late ’70s, when the use of the linear temporal logic LTL in
program verification was proposed by Pnueli [16]. LTL allows
one to reason about changes in the truth value of formulas in
a Kripke structure over a linearly-ordered temporal domain,
where each moment in time has a unique possible future.
More precisely, one has to consider all possible paths in
a Kripke structure and to analyze, for each of them, how
proposition letters, labeling the states, change from one state
to the next one along the path. The model checking problem
for LTL turns out to be PSPACE-COMPLETE [7], [17].

Propositional interval temporal logics provide an alterna-
tive setting for reasoning about time. They have been applied

in a variety of computer science fields, including artificial
intelligence, theoretical computer science, and databases [9].
Interval-based temporal logics take intervals as their primitive
temporal entities. Such a choice gives them the ability
to express temporal properties, such as durative actions,
accomplishments, and temporal aggregations, which cannot
be dealt with in standard (point-based) temporal logics. For
instance, interval temporal logics allow one to specify the
property: “p has to be true in (at least) an average number
of system states in a given computation sector”.

A prominent position among interval temporal logics is
occupied by Halpern and Shoham’s modal logic of time
intervals (HS, for short) [10]. HS features one modality
for each of the 13 possible ordering relations between pairs
of intervals (the so-called Allen’s relations [1]), apart from
the equality relation. As an example, the condition: “the
current interval meets an interval over which p holds” can
be expressed in HS by the formula 〈A〉p, where 〈A〉 is the
(existential) HS modality for Allen relation meet. In [10],
it has been shown that the satisfiability problem for HS
interpreted over all relevant (classes of) linear orders is highly
undecidable. Since then, a lot of work has been done on
the satisfiability problem for HS fragments, which showed
that undecidability rules over them [4], [12], [14]. However,
meaningful exceptions exist, including the logic of temporal
neighborhood and the logic of sub-intervals [2], [3], [5], [15].

Here, we focus our attention on the model checking
problem for HS. The idea is to interpret HS formulas on
finite Kripke structures making it possible to check the
correctness of the behavior of the system with respect to
meaningful interval properties. To this aim, we interpret each
finite path ρ of a Kripke structure K as an interval I , that
is, under the homogeneity assumption [19], we define the
labeling of I on the basis of the labeling of the states of ρ.
Formally, we will show that Kripke structures can be suitably
mapped into interval-based structures, called abstract interval
models (AIMs, for short), over which HS formulas can be
interpreted. Since Kripke structures may have loops, AIMs
have, in general, an infinite domain. In order to develop
a model-checking procedure, we first prove a small model
theorem showing that, given an HS formula ϕ and a Kripke
structure K, there exists a finite AIM which is equivalent
to the one induced by K with respect to the satisfiability
of ϕ. To this end, we define an equivalence relation over



sequences in K, which is parametric in the nesting depth
of Allen’s modalities 〈B〉 and 〈E〉 in ϕ, and we show that
the resulting quotient structure is finite. Then, we devise
a PSPACE model-checking procedure for two meaningful
syntactic fragments of HS, namely, AABB and AAEE, that
exploits a compact representation of finite AIMs.

The model checking problem for some fragments of HS
(different from the ones we consider here), extended with
epistemic modalities, has been studied in [13], showing
that the complexity of the problem ranges from PTIME
to PSPACE. As a matter of fact, the authors restrict their
attention to an alternative class of Kripke structures, where
the labeling function has been defined over pairs of states: a
finite path (from the unravelling of a Kripke structure) takes
as labeling the one associated to the pair of its extremity
states. This considerably simplifies the problem and limits
the applicability of the developed model checking procedure.

Relation Op Formal definition Example
(w.r.t. interval structures)

x y

meets 〈A〉 [x, y]RA[v, z]⇔y=v
v z

before 〈L〉 [x, y]RL[v, z]⇔y<v
v z

started-by 〈B〉 [x, y]RB [v, z]⇔x=v, z<y
v z

finished-by 〈E〉 [x, y]RE [v, z]⇔y=z, x<v
v z

contains 〈D〉 [x, y]RD[v, z]⇔x<v, z<y
v z

overlaps 〈O〉 [x, y]RO[v, z]⇔x<v<y<z
v z

Table I: Allen’s interval relations and corresponding HS modalities.

The rest of the paper is organized as follows. In Section II,
we introduce syntax and semantics of HS (over AIMs), and
we establish a suitable connection between Kripke structures
and AIMs. In Section III, we prove the small model theorem.
In Section IV, we provide a suitable encoding of finite AIMs,
and we show how to exploit it to develop a PSPACE model-
checking procedure for two relevant fragments of HS.

II. INTERVAL TEMPORAL LOGIC

In this section, we give syntax and semantics of HS with
respect to interval frames. Then, we provide a mapping
from Kripke structures to interval frames that allows us to
interpret HS formulas over Kripke structures and thus to
properly define the notion of interval-based model checking.

A. HS syntax and semantics

In [1], Allen proposes an interval algebra to reason about
all possible relations between pairs of (non-point) intervals
in a linear order (the 6 relations in Table I and their inverses,
plus the equality relation). A systematic logical study of
interval reasoning started with Halpern and Shoham’s work
on the logic HS featuring one modality for each (non trivial)
Allen’s relation [10]. Existential modalities are of the form
〈R〉 and 〈R〉, where 〈R〉 ∈ {〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉} and
〈R〉 is the transposed modality of 〈R〉. Universal modalities
are simply the dual modalities.

In [10], Halpern and Shoham show that, according to
the strict semantics (which excludes point-intervals), all HS
modalities are definable in the fragment featuring modalities
〈A〉, 〈B〉, and 〈E〉 and the transposed modalities 〈A〉, 〈B〉, and
〈E〉 (in case non-strict semantics is assumed, the 4 modalities
〈B〉, 〈E〉, 〈B〉, and 〈E〉 suffice [21]). In this paper, we assume
the strict semantics (all the results can be easily adapted to
non-strict semantics). The formal syntax of HS follows.

Definition II.1 (HS syntax). HS formulas are built recur-
sively from a set of proposition letters AP according to the
following grammar (where p ∈ AP):

ϕ := p |¬ϕ |ϕ ∧ ϕ | 〈A〉ϕ | 〈A〉ϕ | 〈B〉ϕ | 〈B〉ϕ | 〈E〉ϕ | 〈E〉ϕ.

In the sequel, if not stated otherwise, we refer to HS
formulas by using the symbol ϕ. The other Allen’s modal-
ities can be defined as follows: 〈L〉ϕ = 〈A〉〈A〉ϕ, 〈D〉ϕ
= 〈B〉〈E〉ϕ= 〈E〉〈B〉ϕ, 〈O〉ϕ = 〈E〉〈B〉ϕ, 〈L〉ϕ = 〈A〉〈A〉ϕ,
〈D〉ϕ = 〈B〉〈E〉ϕ = 〈E〉〈B〉ϕ, 〈O〉ϕ = 〈B〉〈E〉ϕ. Let
AllenSet = {A,A,B,B,E,E, L, L,D,D,O,O} be the set of
all Allen’s relations. For each existential modality 〈R〉, with
R ∈ AllenSet, the dual universal modality [R] is defined in
the standard way: [R]ϕ = ¬〈R〉¬ϕ. Given a set of Allen’s
relations {R1, . . . ,Rn}, we denote by R1 . . .Rn the fragment
of HS obtained by using only the modalities for Allen’s
relations {R1, . . . ,Rn}. As an example, AABE is the HS
fragment featuring modalities 〈A〉, 〈A〉, 〈B〉, and 〈E〉 only.

HS can be viewed as a multi-modal logic with primitive
modalities 〈A〉, 〈B〉, 〈E〉, 〈A〉, 〈B〉, and 〈E〉. Accordingly, we
can interpret HS formulas over Multi-Modal Kripke Structure,
here called Abstract Interval Model, which viewed the set of
intervals as an abstract set of (atomic) objects and Allen’s
relations as simple binary relations over this set. Such an
interpretation provides a uniform, formal interpretation of
HS formulas under different kinds of structures in which a
concept of interval can be given. Any such structure S can
indeed be suitably mapped into an Abstract Interval Model,
making it possible to interpret HS over S . In general, if C is
a class of structures mappable into Abstract Interval Models,
we name HS against C the interpretation of HS over these
structures. As an example, standard interval structures can
be mapped into Abstract Interval Models, thus obtaining HS
against interval structures [10]. In this paper, we consider HS
against Kripke Structures by providing a suitable mapping
of the latter into Abstract Interval Models.

Definition II.2 (Abstract Interval Model). Let I be a (possibly
infinite) set, AI,BI, and EI be three binary relations over
I, and AP be a finite set of proposition letters. An Abstract
Interval Model (AIM, for short) is a tuple A = 〈AP, I,AI,
BI,EI, σ〉, where σ : I → 2AP is a total labeling function
that maps each element of I in a subset of AP.

In the interval setting, relations AI, BI, and EI will be inter-
preted as Allen’s interval relations A, B, and E, respectively.



Moreover, Allen’s interval relations A, B, and E correspond
to the inverse relations AI, BI, and EI, respectively.

Definition II.3 (HS Semantics). Let A = 〈AP, I,AI,BI,
EI, σ〉 be an AIM and let I ∈ I. We recursively define the
semantics of an HS formula as follows:
• A, I |= p iff p ∈ σ(I), for p ∈ AP;
• A, I |= ¬ϕ iff A, I 6|= ϕ;
• A, I |= ϕ1 ∧ ϕ2 iff A, I |= ϕ1 and A, I |= ϕ2;
• A, I |= 〈R〉ϕ iff there is J ∈ I such that I RI J and
A, J |= ϕ, for RI ∈ {AI,BI,EI};

• A, I |= 〈R〉ϕ iff there is J ∈ I such that J RI I and
A, J |= ϕ, for RI ∈ {AI,BI,EI}.

B. From Kripke structures to Abstract Interval Models

As we already pointed out, AIMs can be viewed as abstract
interpretations of interval relations over concrete structures.
Once we find a suitable mapping from a given specific
structure into an AIM, we can de facto interpret HS formulas
over the former. In this section, we introduce the notion of
Kripke structure together with some related concepts. Then,
we show how to obtain an AIM AK from a Kripke structure
K. There is no a unique way to build such an AIM. The one
we propose is well suited for system verification.

Definition II.4 (Kripke Structure). A Kripke structure is a
tuple K = 〈AP,W, δ, µ, w0〉, where AP is a set of proposition
letters, W is a set of states, δ ⊆W×W is a left-total relation
over W, µ : W→ 2AP is a labeling function, and w0 ∈W
is the initial state.

A track ρ over K is a finite sequence of states v0..vn,
with n ≥ 1, such that, for all i ∈ [0, n[ , it holds that
(vi, vi+1) ∈ δ. We denote by TrkK the set of all tracks over
K; moreover, for all w ∈ W, we denote by TrkK(w) the
set of tracks starting from w. TrkK(w0) is the set of initial
tracks. Given a track ρ = v0..vn ∈ TrkK, we denote by
|ρ| = n + 1 the number of states in ρ (length of ρ). We
denote by fst(ρ) = v0 and lst(ρ) = vn the first and last state
of ρ, respectively. Moroever, for all i ∈ [0, n[ , we denote by
ρ≤i = v0..vi the proper prefix of ρ up to the i-th element,
and, for all i ∈ ]0, n], we denote by ρ≥i = vi..vn the proper
suffix of ρ from the i-th element. We denote by Pref(ρ)
and Suff(ρ) the sets of all proper prefixes and suffixes of
ρ, respectively. Finally, we denote by state(ρ) = {v0, .., vn}
(resp., intstate(ρ) = {v1, .., vn−1}) the set of states that
occur at least once in ρ (resp., in ρ excluding the first and
the last state). In the sequel, we use symbols K and ρ to
refer to a Kripke structure and a track in TrkK, respectively.

In Figure 1, we depict a Kripke structure KSched modeling
a scheduler that serves in rounds three processes p1, p2,
and p3, in such a way that, in two successive rounds, the
scheduler cannot serve twice the same process. KSched has
seven states v0, v1, v2, v3, v1, v2, and v3. The computation
starts in v0. Depending on which process pi, with 1 ≤ i ≤ 3,

v0
∅

v2
p2

v1
p1

v3
p3

v1
p1

v2
p2

v3
p3

r1
r2

r3

u1 u2 u3r2

r3

r1 r3

r1

r2

Figure 1: The Kripke structure KSched.

is selected by the scheduler (we assume that all processes
are continuously asking for the use of the common resource
by sending a request ri, for 1 ≤ i ≤ 3, to the scheduler),
we move to state vi, which is accordingly labeled with pi.
Then, from each state vi, when the process pi has been
served, it sends an unlock command ui to the scheduler and
we move to state vi. This state is labeled with pi as well,
as it remembers the last process served by the scheduler.
From vi, it is only possible to satisfy new requests from
a process pj , with j 6= i. Indeed, from vi only outcoming
edges labeled by rj , with j 6= i, can be taken. Let rj be the
selected request. Then, we move to the corresponding state
vj and keep working as before. Such a Kripke structure can
be easily generalized to model a scheduler that handles n
processes, with n > 3.

If we interpret a track ρ as an interval bounded by its first
and last states, then a Kripke structure K naturally induces
an abstract interval model AIM over the set TrkK of its
tracks. The relations AI, BI, and EI, corresponding to Allen’s
interval relations A, B, and E, can be defined in terms of
suitable binary relations over tracks. As for the labeling of
tracks, given a track ρ = v0 . . . vn, we set p ∈ σ(ρ) if and
only if p ∈ µ(v0)∩ . . .∩µ(vn). Such a rule for track labeling
conforms to the homogeneity principle in interval temporal
logics, according to which a proposition letter p holds over
an interval if and only if it holds over all its subintervals.

Definition II.5 (Induced Abstract Interval Model). The ab-
stract interval model induced by K, called Induced Abstract
Interval Model (IAIM, for short) is the AIM AK = 〈AP, I,
AI,BI,EI, σ〉, where AP is a set of proposition letters and

• I = TrkK;
• AI = {(ρ, ρ′) ∈ I× I : lst(ρ) = fst(ρ′)};
• BI = {(ρ, ρ′) ∈ I× I : ρ′ ∈ Pref(ρ)};
• EI = {(ρ, ρ′) ∈ I× I : ρ′ ∈ Suff(ρ)};
• σ : I → 2AP is such that, for all ρ ∈ I, we have that
σ(ρ) =

⋂
w∈state(ρ) µ(w).

The notion of satisfiability of an HS formula over a Kripke
structure K and ρ ∈ TrkK can be given in terms of IAIMs.



Definition II.6 (Satisfaction of HS formulas over Kripke
structures). Let K be a Kripke structure, ρ be a track in
TrkK, and ϕ be an HS formula. We say that K and ρ model
ϕ, denoted by K, ρ |= ϕ, iff it holds that AK, ρ |= ϕ.

The model checking problem for HS against Kripke
structures can thus be formalized as follows.

Definition II.7 (Model checking). We say that K models ϕ,
in symbols K |= ϕ, iff, for all initial tracks ρ ∈ TrkK(w0),
it holds that K, ρ |= ϕ.

We conclude the section by specifying some meaningful
properties that can be checked over KSched. In the following
formulas, we use wit({p1, p2, p3}) ≥ 2 as a shorthand
for (〈D〉p1 ∧ 〈D〉p2) ∨ (〈D〉p1 ∧ 〈D〉p3) ∨ (〈D〉p2 ∧ 〈D〉p3).
Intuitively, it states that at least two proposition letters
among p1, p2, and p3 occur in some state of the track.
A similar interpretation can be given to shorthands of
the form wit({p1, . . . , pn}) ≥ k, for any n and k. We
also use [G] as a shorthand for the (derived) universal
modality and 〈B〉k for k nested applications of modality
〈B〉. We start with the formula ϕ1 = [G](〈B〉5> →
wit({p1, p2, p3}) ≥ 2) stating that over every interval
of length greater than or equal to 7 at least two atomic
propositions among p1, p2, p3 are witnessed. Moreover, the
formula ϕ2 = [G](〈B〉k> → wit({pi}) = 1) prevents the
scheduler from delaying the execution of a specific process
pi, with i ∈ {1, 2, 3}, too much (depending on k). Finally,
the formula ϕ3 = [G](〈B〉9> → wit({p1, p2, p3}) = 3)
forces the scheduler to execute the three process in a strictly
periodic manner. It can be easily checked that KSched models
ϕ1, but it violates both ϕ2 and ϕ3.

III. FINITE MODEL PROPERTY OF HS AGAINST KRIPKE
STRUCTURES

In the previous section, we have shown that, for a given
Kripke structure K, one can define a corresponding IAIM
AK, featuring one interval for each track of K. Since K may
have loops, the number of its tracks, and thus the number of
intervals of AK, is, in general, infinite. In this section, we
prove that, given a Kripke structure K and an HS formula
ϕ, there exists a finite AIM that is equivalent to the IAIM
AK with respect to the satisfiability of ϕ.

A. Bk- and Ek-descriptors for tracks

In order to define a suitable notion of track equivalence,
we need to preliminarily show how HS formulas can be
used to distinguish tracks. Consider, for instance, the HS
formula 〈B〉k>. Such a formula allows one to distinguish
pairs of tracks ρ and ρ′ such that |ρ| < k + 2 and |ρ′| ≥
k + 2, as 〈B〉k> is satisfied by all and only those tracks
whose length is at least k + 2. As another example, let us
consider the Kripke structure KEquiv in Figure 2 and the
tracks v0v1v0v1 and v0v1v0. It can be easily checked that
formula 〈A〉q is satisfied by the former track, but not by the

latter one. Similarly, given the tracks v0v1v0v1 and v1v0v1,
it holds that formula 〈A〉p is satisfied by the former track,
but not by the latter one. In general, modalities 〈A〉 and
〈A〉 can be used to distinguish between tracks that start or
end at different states. Modalities 〈B〉 and 〈E〉 allow one to
distinguish between tracks encompassing a different number
of iterations of a given loop. For instance, consider the
two tracks v1(v0v1)3 and v1(v0v1)2 consisting of three and
two iterations of the loop v1v0v1, respectively. It can be
easily checked that the former track satisfies the formula
〈B〉(〈A〉p∧ 〈B〉(〈A〉p∧ 〈B〉〈A〉p)), while the latter one does
not satisfy it. In general, to distinguish between tracks that
differ in their length or in the number of loop iterations,
formulas can exploit the nesting degree of occurrences of
modality 〈B〉 (or, equivalently, of modality 〈E〉). To make
such an intuition more precise, we introduce the notion of
BE-nesting depth.

Definition III.1 (BE-nesting depth). The BE-nesting depth
of ϕ, denoted by NestBE(ϕ), is recursively defined as follows:
NestBE(p) = 0, for p ∈ AP; NestBE(¬ϕ) = NestBE(ϕ);
NestBE(ϕ1 ∧ ϕ2) = max{NestBE(ϕ1),NestBE(ϕ2)};
NestBE(〈R〉ϕ) = NestBE(ϕ), for R ∈ {A,A,B,E};
NestBE(〈R〉ϕ) = NestBE(ϕ) + 1, for R ∈ {B,E}.

v0
p

v1
q

Figure 2: The Kripke structure KEquiv .

In order to define a suitable equivalence relation over
tracks, we need additional information. Let us consider,
for instance, the tracks v03v1v0 and v0v1v0

3 of Kequiv in
Figure 2. Both tracks involve the same loop, with the same
number of iterations, but they differ in the order of loop
occurrence. Such a difference can be detected by the formula
〈B〉(〈A〉q ∧ 〈B〉(〈A〉p ∧ 〈B〉〈A〉p)), which is satisfied by the
former track, but not by the latter one.

In the following, we distill the essential characteristics of
tracks that play a key role in satisfiability of HS formulas.
They will be at at the basis of the definition of the equivalence
relation over tracks. The idea is that two tracks can be

(v0, {v0, v1}, v1)

(v0, {v1}, v0)(v0, {v0, v1}, v0) (v0, ∅, v1)

(v0, {v1}, v0) (v0, ∅, v1) (v0, ∅, v1)

Figure 3: The B2-descriptor for ρ.

considered equivalent (for a given nesting depth k) if they
both conform to a pair of descriptors (DB,DE), accounting
for the B and the E relations, respectively. In order to
handle satisfiability of proposition letters, (DB,DE) keeps
information about the states occurring in tracks; moreover,



to deal with satisfiability of formulas of the forms 〈A〉ϕ and
〈A〉ϕ, it maintains information about starting and ending
states of the track. More precisely, a descriptor element
associated with a track ρ is a triple (vin,S, vfin) consisting
of its starting state, the set of its internal (proper) states,
and its ending state. In addition, to manage satisfiability of
formulas of the forms 〈B〉ϕ (resp., 〈E〉ϕ), DB (resp., DE)
maintains information about all possible descriptor elements
associated with prefixes (resp., suffixes) of ρ. No additional
information is needed to deal with modalities 〈B〉 and 〈E〉.

(v0, {v0, v1}, v1)

(v0, {v0}, v1)(v1, {v0}, v1) (v0, ∅, v1)

(v0, {v0}, v1) (v0, ∅, v1) (v0, ∅, v1)

Figure 4: The E2-descriptor for ρ.

Such a construction is then repeatedly applied to prefixes
of prefixes (resp., suffixes of suffixes), thus obtaining a pair
of trees of depth k whose nodes are labeled with descriptor
elements. As an example, consider the track ρ = v0v1v0v0v1
of Kequiv and assume nesting depth k = 2. The pair (DB,DE)
of descriptors for ρ is the couple of labeled trees in Figure 3
and Figure 4, respectively.

Definition III.2 (B- and E-descriptors). An R-descriptor,
with R ∈ {B,E}, is a labeled tree D = 〈V,E , λ〉, where V
is the set of vertexes, E ⊆ V × V is the set of edges, and
λ : V→W× 2W×W is the labeling function, that satisfies
the following conditions:

1) for all v, v′, v′′∈V, with (v, v′), (v, v′′)∈E , if sub(v′)
is isomorphic to sub(v′′), then v′ = v′′ (we denote by
sub(v) the largest labeled subtree of V rooted in v);

2) for all v, v′ ∈ V such that (v, v′) ∈ E , λ(v) = (vin,S,
vfin), and λ(v′) = (v′in,S

′, v′fin), it holds that:
• if R = B, then vin = v′in, S′ ⊆ S, and v′fin ∈ S;
• if R = E, then v′in ∈ S, S′ ⊆ S, and vfin = v′fin.

The depth of a B-descriptor (resp., E-descriptor) 〈V,E , λ〉
is the depth of the tree graph 〈V,E 〉. A B-descriptor (resp.,
E-descriptor) of depth k is called a Bk-descriptor (resp.,
Ek-descriptor). A B0-descriptor (resp., E0-descriptor) D is a
descriptor consisting of the root only, denoted by root(D).
By condition 1, it holds that, for any Kripke structure K
and any k ∈ N, each Bk-descriptor (resp., Ek-descriptor) is
a finite labeled tree (the number of children of each node is
finite) of hight k. Moreover, the number of Bk-descriptors
(resp., Ek-descriptors) for K is finite as well.

Hereafter, we consider two descriptors equal up to isomor-
phism. Thanks to such an equality notion, we can suitably
connect B-descriptors (resp., E-descriptors) with tracks.

Definition III.3 (Bk- and Ek-descriptors for tracks). The
Rk-descriptor for a track ρ, with R ∈ {B,E} and k ∈ N, is

inductively defined as follows:
• for k = 0, the Rk-descriptor for ρ is the R-descriptor
D = 〈{root(D)}, ∅, λ〉, with λ(root(D)) = (fst(ρ),
intstate(ρ), lst(ρ));

• for k > 0, the Rk-descriptor for ρ is the R-descriptor
D = 〈V,E , λ〉, with λ(root(D)) = (fst(ρ), intstate(ρ),
lst(ρ)), that satisfies the following properties:
• if R = B :

1) for each prefix ρ′ of ρ, there is v ∈ V such
that (root(D), v) ∈ E and sub(v) is the Rk−1-
descriptor for ρ′;

2) for each vertex v ∈ V such that (root(D), v) ∈ E ,
there is a prefix ρ′ of ρ such that sub(v) is the
Rk−1-descriptor for ρ′.

• if R = E :

1) for each suffix ρ′ of ρ, there is v ∈ V such
that (root(D), v) ∈ E and sub(v) is the Rk−1-
descriptor for ρ′;

2) for each vertex v ∈ V such that (root(D), v) ∈ E ,
there is a suffix ρ′ of ρ such that sub(v) is the
Rk−1-descriptor for ρ′.

Notice that not all the B-descriptors are B-descriptors for
some track ρ in the Kripke structure. Consider, for instance,
the Kripke structure K of Figure 5 and the B1-descriptor
D having (v0, {v1, v2}, v3) as its root and the two children
(v0, {v1}, v2) and (v0, {v2}, v1). It is evident that the two
tracks ρ1 = v0v1v2v3 and ρ2 = v0v2v1v3 associated with
the root are not described by the B1-descriptor D, since ρ1
has not a prefix represented by (v0, {v2}, v1) and ρ2 has not
a prefix represented by (v0, {v1}, v2).

v0 v1

v2 v3

Figure 5: A Kripke structure K.

We are now ready to introduce the notion of k-descriptor
equivalence.

Definition III.4. Let K be a Kripke structure, ρ, ρ′ be two
tracks over K, and k ∈ N. We say that ρ and ρ′ are k-
descriptor equivalent, denoted by ρ ∼k ρ′, if and only if they
have the same Bk- and Ek-descriptors.

It can be easily checked that the k-descriptor equivalence
is an equivalence relation. Moreover, each equivalence class
is univocally identified by a pair (DBk

,DEk
) of descriptors

whose roots have the same labeling.

B. Quotient Induced Abstract Interval Models

We now show how descriptors allow one to obtain a finite
representation of an IAIM, called quotient IAIM. To start
with, for any k ∈ N, we denote by k-Desc the set of all pairs



(DBk
,DEk

) such that there exists a track in TrkK which has
DBk

and DEk
respectively as its Bk- and Ek-descriptor or,

equivalently, the set of equivalence classes in TrkK. Since k-
Desc can be viewed as the quotient set of TrkK with respect
to descriptor equivalence, we denote its elements by [ρ]∼k

.
Allen’s relations over k-Desc can be defined as follows.

Definition III.5 (Allen’s relations over k-Desc). Let (DBk
,

DEk
), (D′Bk

,D′Ek
) ∈ k-Desc, with DBk

= 〈VB,EB, λB〉,
DEk

= 〈VE,EE, λE〉, D′Bk
= 〈V′B,E ′B, λ′B〉, and D′Ek

= 〈V′E,
E ′E, λ

′
E〉. We say that:

1) ((DBk
,DEk

), (D′Bk
,D′Ek

)) ∈ ADesc iff λB(root(DBk
))

= (vin,S, vfin), λ′B(root(D′Bk
)) = (v′in,S

′, v′fin), and
vfin = v′in;

2) ((DBk
,DEk

), (D′Bk
,D′Ek

)) ∈ BDesc iff there exists v ∈
VB such that (root(DBk

), v) ∈ EB and subDBk
(v) is

isomorphic to the subtree of D′Bk
obtained by removing

the nodes of depth k;
3) ((DBk

,DEk
), (D′Bk

,D′Ek
)) ∈ EDesc iff there exists v ∈

VE such that (root(DEk
), v) ∈ EE and subDEk

(v) is
isomorphic to the subtree of D′Ek

obtained by removing
the nodes of depth k.

Intuitively, Item 1 of Definition III.5 states that Allen
relation A holds between (DBk

,DEk
) and (D′Bk

,D′Ek
) if and

only if the ending state in the root label of DBk
(and then of

DEk
) is equal to the initial state in the root label of D′Bk

(and
then of D′Ek

). By definition of descriptors, if ρ and ρ′ are
tracks that are represented by (DBk

,DEk
) and (D′Bk

,D′Ek
),

respectively, then lst(ρ) = fst(ρ′) and thus Allen relation A
holds between them. Item 2 of Definition III.5 states that
Allen relation B holds between (DBk

,DEk
) and (D′Bk

,D′Ek
)

if and only if there exists a subtree of DBk
, rooted in a

child of the root, which is isomorphic to the Bk-descriptor
D′Bk

up to nodes of level k − 1. By definition of descriptor,
all tracks represented by D′Bk

are prefixes of at least one
track represented by DBk

. Finally, Item 3 of Definition III.5
states that Allen relation E holds between (DBk

,DEk
) and

(D′Bk
,D′Ek

) if and only if there exists a subtree of DEk
,

rooted in a child of the root, which is isomorphic to the
Ek-descriptor D′Ek

up to nodes of level k− 1. As in the case
of Item 2, all tracks represented by D′Ek

are suffixes of at
least one track represented by DEk

. A graphical account of
the behavior of Allen relation B over descriptors (the case of
E is analogous) is given in Figure 6, which puts in evidence
the correspondence between the subtree with black vertexes
in Figure 6(a) and that in Figure 6(b).

Definition III.5 can be easily generalized to pairs of
descriptors belonging to k-Desc and k′-Desc, with k 6= k′ (in
case of ADesc, all possible values for k, k′ must be considered,
while in case of BDesc and EDesc, only pairs k, k′, with
k′ < k, must be taken into consideration).

Quotient induced abstract interval models of depth k
(quotient IAIM for short) are finite AIM consisting of h-
Desc, with h ≤ k. Let Ω =

⋃
h≤k h-Desc. Quotient IAIM

(a) (b)
Figure 6: A graphical representation of the B relation between
B-descriptors.

of depth k are formally defined as follows.

Definition III.6 (Quotient IAIM of depth k). Let K be a
Kripke structure and k be a natural number, which represents
the nesting depth of an HS formula. The quotient IAIM
of depth k is the finite AIM A/∼k= 〈AP,Ω,ADesc,BDesc,
EDesc, σ〉, where the mapping σ : Ω → 2AP is defined
as follows: for all (DB,DE) ∈ Ω, with λ(root(DB)) =
λ(root(DE)) = (vin,S, vfin), it holds that σ((DB,DE)) =
µ(vin) ∩ µ(vfin) ∩

⋂
v∈S µ(v).

It can be shown that the finite quotient IAIM and the
possibly infinite IAIM AK induced by K are equivalent with
respect to satisfiability of HS formulas with nesting depth
at most k, as formally stated by the following theorem.

Theorem III.1 (Satisfiability preservation). Let K be a finite
Kripke structure, ρ, ρ′ be two tracks in TrkK, AK be the
IAIM associated with K, and ϕ be an HS formula with
NestBE(ϕ) = k. If ρ and ρ′ have the same Bk- and Ek-
descriptors, then AK, ρ |= ϕ iff AK, ρ′ |= ϕ.

Since satisfiability of HS formulas is preserved by k-
descriptor equivalence, from Theorem III.1 it immediately
follows that the model checking problem K, ρ |= ϕ can be
reduced to the problem A/∼k, [ρ]∼k

|= ϕ.

Corollary III.1. Let K be a finite Kripke structure, ρ ∈ TrkK,
and ϕ be an HS formula with NestBE(ϕ) ≤ k. Then, it holds
that K, ρ |= ϕ iff A/∼k, [ρ]∼k

|= ϕ.

IV. MODEL CHECKING PROCEDURES FOR AABB / AAEE

The decidability of the model checking problem for HS
formulas against Kripke structures immediately follows from
the small model property stated by Corollary III.1. Given
a Kripke structure K of size n and an HS formula ϕ, with
NestBE(ϕ) = k, one can interpret the quotient IAIM A/∼k as
a multi-modal Kripke structure and the formula ϕ as a multi-
modal logic formula. In [8], [11], it is proved that the model
checking problem for multi-modal Kripke structures and
formulas is solvable in PTIME with respect to both the size
of the model and the size of the formula. Thus, by exploiting
this result, the model checking problem for HS against Kripke
structures can be dealt with by first constructing A/∼k and
then solving the model checking problem for a multi-modal
logic. Such a translation to multi-modal logic is useful to
prove that the model checking problem for HS against Kripke
structures is decidable; however, it is of little help in the
identification of a significant upper bound to the complexity



of the problem. In this section, we outline PSPACE model
checking procedures for two meaningful fragments of HS
that make an essential use of a compact representation of
Bk- and Ek-descriptors.

A. Compact Bk- and Ek-descriptors

As a preliminary step, we introduce and describe the
compact representation of descriptors the proposed model
checking procedures rely on. We focus our attention on Bk-
descriptors, as a compact representation of Ek-descriptors
can be obtained in a completely symmetric way.

Let DB be the Bk-descriptor 〈V,E , λ〉 for a track ρ and let
(vin,S, vfin) be the label of its root. We show that DB can
be equivalently represented by a structure, called compact
Bk-descriptor, whose size is polynomial in both the size of
S and the nesting degree k. Compact Bk-descriptors exploit
the fact that the set of descriptor elements associated with the
prefixes of a given track can be suitably arranged. Let Ξ be
the set {λ(v) : v ∈ V} of descriptor elements that occur as
labels of elements in DB. We define a transitive relation Rt
on Ξ as follows. Let ρ′ and ρ′′ be two proper prefixes of ρ
and let d′ = (vin,S

′, vfin
′) and d′′ = (vin,S

′′, vfin
′′) be the

descriptor elements for ρ′ and ρ′′ in Ξ, respectively. We say
that d′Rtd′′ if (and only if) S′∪{vfin′} ⊆ S′′. It is immediate
to check that Rt is transitive. Moreover, it trivially holds that
if ρ′ is proper prefix of ρ′′, denoted by ρ′ ≺ ρ′′, then d′Rtd′′.
In general, it may happen that both d′Rtd′′ and d′′Rtd′ hold
for some descriptor elements d′ and d′′. Consider a track
ρ = v0

k for some k ≥ 5. The corresponding set of descriptor
elements Ξ is equal to {(v0, ∅, v0), (v0, {v0}, v0)}, and it
holds that (v0, {v0}, v0)Rt(v0, {v0}, v0) As another example,
consider the track ρ = v0(v1v0)4v0 for the Kripke structure in
Figure 2, and the descriptor elements d′ = (v0, {v0, v1}, v1)
and d′′ = (v0, {v0, v1}, v0). It can be easily checked that
both d′Rtd′′ and d′′Rtd′. As a general rule, by definition of
Rt, we have that, whenever both d′Rtd′′ and d′′Rtd′ hold,
then S′ = S′′ and both vfin′ and vfin′′ belong to S′(= S′′).
On the contrary, a pair of descriptor elements d′, d′′ is strictly
ordered by Rt, that is, d′Rtd′′ and not d′′Rtd′ if (and only
if) one of the following two cases holds: (i) S′ ⊂ S′′ and
vfin

′ ∈ S′′ or (ii) S′ = S′′, vfin′ ∈ S′ and vfin
′′ 6∈ S′′. As

an example, let us consider the two prefixes v0v0v1v2 and
v0v0v1v2v2 (the former is a proper prefix of the latter), whose
descriptor elements are respectively d′ = (v0, {v0, v1}, v2)
and d′′ = (v0, {v0, v1, v2}, v2). By condition (i), it holds that
d′Rtd

′′ and not d′′Rtd′.
Tracks are generated by a (finite) Kripke structure. By

definition, their length is finite, but they can be arbitrarily
long. Given a track ρ, we can associate a decriptor element
d′ with any prefix ρ′ ∈ Pref(ρ), with |ρ′| ≥ 2. Accordingly,
we can associate an ordered sequence of element descriptors
σ with the ordered sequence of prefixes of ρ. A compact Bk-
descriptor for ρ can be viewed as a compact representation of
the sequence σ and of the relationships among its elements

up to depth k. Such a representation can be obtained by
identifying and suitably encoding those (maximal) contiguous
subsequences σ′ of σ such that (i) each descriptor element
occurring in σ′ occurs at least two times (in σ′), and (ii) for
all pairs of distinct descriptor elements d′, d′′ occurring in
σ′, there exists an occurrence of d′ (in σ′) that preceeds an
occurrence of d′′ (in σ′) and vice versa. In terms of Rt, any
such subsequence σ′ can be viewed as an equivalence class,
the simplest case being that of singleton classes (when σ′

consists of 2 or more consecutive occurrences of the same
descriptor element). To contract the sequence σ, we replace
each σ′ by the set of all and only the descriptor elements
belonging to the corresponding equivalence class1. To build
a compact Bk-descriptor, we further need to extract from
each equivalence class C of the resulting contracted sequence
one occurrence of each descriptor element belonging to it,
and to insert them immediately before C in the same order
they were in the original sequence. Such a little expansion
of the contracted sequence is necessary because modality
〈B〉 is able to distinguish the first prefix associated with a
descriptor element in C from the subsequent ones.

A few examples of contracted sequences of descriptor
elements follow. Let ρ be the track v0(v1v0)3v0. The con-
tracted sequence for ρ is σ = (v0, ∅, v1), (v0, {v1}, v0), (v0,
{v0, v1}, v1), (v0, {v0, v1}, v0), {(v0, {v0, v1}, v0), (v0, {v0,
v1}, v1)} (notice that this is the contracted sequence for all
tracks v0(v1v0)nv0, with n ≥ 3). Consider now the track
ρ′ = v0(v0v1)3v0 The contracted sequence for ρ′ is σ′ =
(v0, ∅, v0), (v0, {v0}, v1), (v0, {v0, v1}, v0), (v0, {v0, v1}, v1),
{(v0, {v0, v1}, v0), (v0, {v0, v1}, v1)}( 6= σ). Finally, let
us consider the track ρ′′ = v0(v1v0)2v1, which is a
prefix of ρ. The contracted sequence for ρ′′ is σ′′ =
(v0, ∅, v1), (v0, {v1}, v0), (v0, {v0, v1}, v1), (v0, {v0, v1}, v0),
(v0, {v0, v1}, v1)( 6= σ).

Compact Bk-descriptors can be obtained from contracted
sequences by suitably connecting a descriptor element
associated with a given prefix ρ to the descriptor elements
associated with the prefixes of ρ up to depth k (see Definition
IV.1 below).

Let us now formalize the notion of compact Bk-
descriptor. Consider the contracted sequence of descriptor
elements introduced above. As a preliminary step, we
linearize contracted sequences by replacing each set
(that is, equivalence class) that occurs in them by the
sequence of its elements in the same order as the
order of their first occurrences. Moreover, whenever the
resulting sequence features two occurrences of the same
descriptor element d, we replace the first one by fst(d).
Consider again tracks ρ, ρ′, and ρ′′. Once such a rewriting
has been applied, we get the following sequences: σ =
(v0, ∅, v1), (v0, {v1}, v0), fst((v0, {v0, v1}, v1)), fst((v0, {v0,

1Notice that different sequences may generate the same contracted
sequence.



v1}, v0)), (v0, {v0, v1}, v1), (v0, {v0, v1}, v0), σ′ = (v0, ∅,
v0), (v0, {v0}, v1), fst((v0, {v0, v1}, v0)), fst((v0, {v0, v1},
v1)), (v0, {v0, v1}, v0), (v0, {v0, v1}, v1), and σ′′ = (v0, ∅,
v1), (v0, {v1}, v0), fst((v0, {v0, v1}, v1)), fst((v0, {v0, v1},
v0)), (v0, {v0, v1}, v1).

A compact Bk-descriptor consists of a set of descriptor
elements Ξ = {d1, . . . , dn} and a set of first occurrences
fst(Ξ) = {fst(di1), . . . , fst(dim)}, with {di1 , . . . , dim} ⊆
Ξ and m ≤ n, the transitive relation Rt on Ξ, and a
function Bmap that takes as input an element in Ξ∩ fst(Ξ)
and a depth level l, with 0 ≤ l ≤ k − 1, and returns
the greatest (with respect to the total ordering induced by
the linearized contracted sequence) descriptor element, or
copy of it, associated with a prefix at depth l. We make
use of an auxiliary function descr to extract a descriptor
from a copy of it, that is, we define a function descr
such that descr(d) = d, if d is a descriptor element, and
descr(d) = d′, if d = fst(d′). We extend descr to sets
S ⊆ Ξ ∩ fst(Ξ) in the obvious way.

Definition IV.1. A compact Bk-descriptor over a set of state
symbols W is a tuple 〈DElm, droot, Rt, Bmap〉 such that:

1) DElm is a set of elements of forms (vin,S, vfin)
(descriptor elements) or fst((vin, S, vfin)) (first oc-
currences), with vin, vfin ∈ W and S ⊆W;

2) Rt is a transitive relation over descr(DElm);
3) for each d ∈ descr(DElm), fst(d) ∈ DElm iff there

exist d′ ∈ descr(DElm) such that dRtd′ and d′Rtd;
4) the elements of DElm can be ordered in a sequence

d0 . . . dn, with descr(di) = (vini
,Si, vfini

), in such a
way that:
• descr(di)Rtdescr(di+1), for all 0 ≤ i < n;
• for all d, fst(d) ∈ DElm, if fst(d) = di and
d = dj , then i < j;

• for all di, dj ∈ descr(DElm) such that diRtdj
and djRtdi, if fst(di) = dh and fst(dj) = dm,
then i < j iff h < k;

• S0 = ∅; Si+1 = Si ∪ {vfini}, for all 0 ≤ i < n;
• if vfini+1 6∈ Si, then diRtdi+1 and not di+1Rtdi;
• if vfini+1

∈ Si, then diRtdi+1 and di+1Rtdi;
5) Bmap : DElm×{0, .., k− 1} → DElm is such that

• if Bmap(di, l) = dj and i < j, then djRtdi;
• otherwise (Bmap(di, l) = dj and j ≤ i), for all
j < r < i, diRtdr.

The compact Bk-descriptor for a track ρ can be equiva-
lently derived from its descriptor DB as follows. For each
pair of descriptor elements d′ and d′′,
• d′Rtd

′′ if (and only if) there exists an edge (v, v′) ∈ E ,
with λ(v) = d′′ and λ(v′) = d′;

• for all v1, v2, v3, v4 ∈ V such that λ(v1) = λ(v3) =
d′′, λ(v2) = λ(v4) = d′, and (v1, v2), (v4, v3) ∈ E,
fst(d′) preceeds fst(d′′) (in the ordering induced by
the compact Bk-descriptor) if and only if there is v ∈ V

such that (i) there exists v′ ∈ V such that (v, v′) ∈ E
and λ(v′) = d′ and (ii) there exists no v′′ ∈ V such
that (v, v′′) ∈ E and λ(v′′) = d′′.

By construction, descriptor elements in a descriptor DB

range over Ξ. We need to identify those nodes, labeled by
some d ∈ Ξ, that act as elements in fst(Ξ). To this end, we
introduce an auxiliary total function Fst : V→ Ξ ∪ fst(Ξ),
that replaces, whenever necessary, a descriptor element d
labeling a descriptor node by fst(d). Fst is defined as
follows. Let d = λ(v) and assume that both dRtd

′ and
d′Rtd hold for some d′ (not necessarily distinct from d),
which labels other nodes of the descriptor. If there are no
edges (v, v′) ∈ E with λ(v′) = d′ for some d′ such that
fst(d) preceeds fst(d′) (in the ordering induced by the
compact Bk-descriptor), then Fst(v) = fst(d). Otherwise,
Fst(v) = λ(v).

Definition IV.2. The compact Bk-descriptor for the descrip-
tor DB, denoted by cmpt(DB), is the tuple 〈DElm, droot,
Rt, Bmap〉, where:

• DElm = Fst(V);
• droot is the root element descriptor of DB;
• Rt is the above-defined transitive relation on Ξ;
• let d0 . . . dn be the total ordering obtained by pairing
Rt and the ordering of the elements of fst(Ξ); then,
Bmap : DElm × {0, . . . , k − 1} → DElm is the
map defined as follows: Bmap(d, i) = dj , where j is
the maximum index such that (v, v′) ∈ E , depth(v) =
i, Fst(v) = d, and Fst(v′) = dj .

It can be easily checked that Definition IV.2 fulfills the
requirements of Definition IV.1.

The compact Bk-descriptor for a descriptor DB is poly-
nomial (precisely, quadratic) in the size of the descriptor
element d = (vin,S, vfin) decorating the root of DB. In
particular, |Ξ ∪ fst(Ξ)| is quadratic in |S|, |Rt| is linear in
|Ξ ∪ fst(Ξ)|, and |Bmap| is linear in |Ξ ∪ fst(Ξ)| and k.

To prove the correctness of the construction, we show how
a descriptor can be recovered from its compact representation.

Let CD = 〈DElm, droot, Rt, Bmap〉 be a compact Bk-
descriptor, d0 . . . dn be the total ordering of the elements
of DElm, and d ∈ DElm. We denote by subB(CD, d) the
compact Bk−1-descriptor 〈DElm′, d, R′t, Bmap′〉, rooted in
d, such that:

1) DElm′ = {di : i ≤ j ∧ d = dj} ∪ {d′ : d′Rtd};
2) R′t is the restriction of Rt to descr(DElm′);
3) Bmap′ is such that DElm′(d′, j) = DElm(d′, j+1),

for d′ ∈ DElm′ and 0 ≤ j ≤ k − 2.

Given a compact Bk-descriptor CD, the expanded de-
scriptor DB for CD, written expand(CD), is defined as
follows.

Definition IV.3 (Bk-expanded descriptors). The expanded
Bk-descriptor for CD = 〈DElm, droot, Rt, Bmap〉, written



expand(CD), is the Bk-descriptor D = 〈V,E , λ〉, with
λ(root(D)) = descr(droot), inductively defined as follows:
• for k = 0, D = 〈{root(D)}, ∅, λ〉;
• for k > 0, D = 〈V,E , λ〉, where:

(i) for each di ∈ DElm such that dj = Bmap(droot, 0)
and i < j or diRtdj , there is v ∈ V such that
(root(D), v) ∈ E and sub(v) is the expanded Bk−1-
descriptor for subB(CD, di);
(ii) for each vertex v ∈ V such that (root(D), v) ∈ E ,
there is di ∈ DElm such that dj = Bmap(droot, 0)
and i < j or diRtdj , and sub(v) is the expanded
descriptor Bk−1-descriptor for subB(CD, di).

The following proposition formally states the correctness
of the construction of compact Bk-descriptors.

Proposition IV.1. Given a DBk
for a track ρ, DBk

is
isomorphic to expand(cmpct(DBk

)).

The construction of compact Bk-descriptors can be sym-
metrically done for DEk

and the analogues of Definitions
IV.1, IV.2, IV.3, and Proposition IV.1 can be easily stated
(they are omitted here due to space limitations).

B. A PSPACE model checking algorithm

We start by showing that given a compact Bk-descriptor
CD of the form 〈DElm, droot,�, Bmap〉, rooted in a
descriptor element droot = (vin,S, vfin), and a Kripke
structure K, we can check whether CD is compatible with K,
namely, if there exists a track ρ in K starting from vin and
ending at vfin such that CD is the compact representation
of a descriptor DB for ρ, that is, cmpct(DB)).

Proposition IV.2. Let K = 〈AP,W, δ, µ, w0〉 be a Kripke
structure, CD = 〈DElm, droot,�, Bmap〉 be a compact
Bk-descriptor over the set of symbol states W, and d0 . . . dn
be the above-defined total ordering of the elements of DElm,
with descr(di) = (vini

,Si, vfini
). If the conditions

1) for all 0 ≤ i < n, if vfini+1
6∈ Si, then there is an

edge (vfini
, vfini+1

) ∈ δ,
2) for all 0 ≤ i < n, if vfini+1 ∈ Si, diRtdi+1, and

di+1Rtdi, then there is a path in δ from vfini to vfini+1

involving only states in Si, and
3) if di, . . . di+v is a maximal sequence of (adja-

cent) descriptor elements such that di+jRtdi+j+1,
di+j+1Rtdi+j , for 0 ≤ j < v, then there is a track
ρ = s0..sm in K and indexes j0, .., jv such that
ρ(jh) = vfini+h

, with 0 ≤ h ≤ v, state(ρ(0, j0 −
1)) = Si, state(ρ(0, j0 − 2)) ⊂ Si, the sub-track
ρ(j0, jh − 1) has no occurrences of vfini+t

, with
0 ≤ h ≤ t ≤ v,

are satisfied, then there is a track ρ in K such that DB is a
descriptor for ρ and cmpct(DB) = CD.

Proposition IV.2 gives a sufficient condition for a compact
descriptor to be witnessed in a given Kripke structure. Notice

Algorithm 1: Model-checking algorithm
ModCheck(K, s, ϕ):
k := NestB(ϕ);
ans := 1
CD is the first compact descriptor of depth k
while ans = 1 Or CD is the last compact descriptor do

ans := Chk(K, CD,ϕ)
CD is replaced with the next compact descriptor

return ans

Figure 7: The model-checking algorithm.

also that checking requirements 1–3 can be done in time
polynomial in the size of the Kripke structure.

The operation of generating a compact descriptor CD and
checking whether it is witnessed by a track ρ of a given
Kripke structure can thus be executed in polynomial time.
Moreover, the k − 1 compact descriptors for all the possible
prefixes of ρ are given by subB(CD, d), with d ∈ DElm a
descriptor element in CD. This implies that enumerating the
k − 1 compact descriptors corresponding to prefixes of the
track ρ takes time linear in the size of the compact descriptor
CD. Hence, we can devise a PSPACE algorithm that solves
the model checking problem for the fragment AABB in
polynomial space. In a symmetrical way, the analogue of
Proposition IV.2 can be given for the compact descriptors for
descriptors DEk

, and a PSPACE algorithm can be obtained
for the fragment AAEE.

Let K = 〈AP,W, δ, µ, w0〉 be a Kripke structure and ϕ be
an AABB formula. The model checking procedure depicted
in Figure 7 exploits an auxiliary function Chk(K, CD,ϕ),
checking whether an input compact descriptor CD satisfies
ϕ. Assuming without loss of generality that the descriptors
can be ordered exploiting a suitable encoding, the algorithm
sequentially enumerates all the possible compact descriptors
CD witnessed by K having the root of the form (vin,S, vfin),
with vin an initial state of K. The auxiliary function
Chk(K, CD,ϕ) is sequentially invoked for each of them.

The most significant cases of the auxiliary function
Chk(K, CD,ϕ) are reported in Figure 8. In the case of
atomic formulas (i.e., ϕ ∈ AP), it returns true (1) or false (0)
according to the labeling of states in the root of CD. If ϕ is
not an atomic formula, it makes a recursive call according
to the structure of ϕ. If ϕ = 〈R〉ψ (resp., ϕ = [R]ψ),
for R ∈ {A,A}, the function generates sequentially (ex-
ploiting the encoding order) all the possible descriptors
CD′ that are in the relation R with CD. The function
Chk(K, CD′, ψ) is then sequentially (recursively) invoked
recording the maximal (resp., minimal) value returned by all
the invocations. If ϕ = 〈B〉ψ (resp., ϕ = [B]ψ), the function
sequentially invokes itself over all the compact descriptors
subB(CD, d) with d chosen among the elements of CD
recording the maximal (resp., minimal) value returned by
all the invocations. If ϕ = 〈B〉ψ (resp., ϕ = [B]ψ), the
function sequentially generates all the descriptors CD′ such



Algorithm 2: Model-checking function
Function Chk(K, CD,ϕ):
if ϕ = 〈A〉ψ then

ans := 0
CD′ is the first compact descriptor of depth k
while ans = 0 Or CD′ is the last compact
descriptor do

if CD′ ∈ A(CD) then
ans := Chk(K, CD′, ψ)

CD′ is replaced with the next compact
descriptor

return ans

if ϕ = 〈B〉ψ then
ans := 0
d is the first element in DElm
while ans = 0 Or d is the last element in DElm
do

CD′ := subB(CD, d)
ans := Chk(K, CD′, ψ)
d is replaced with the next element in DElm
w.r.t. the relation �

return ans

Figure 8: The model-checking function.

that CD = subB(CD′, droot), where droot is the root of
CD, and invokes itself on CD′ recording the maximal (resp.,
minimal) value returned by all the invocations.

Clearly, the number of descriptors to be kept in memory
at each time is bounded by the number of recursive calls
of the function, which is in turn bounded by the nesting
depth of interval operators. Thus, the space complexity of
the function is given by |ϕ| × |CD|, which is polynomial in
the size of both the Kripke structure and the formula.

V. CONCLUSION

In this paper, we studied the model checking problem for
Halpern and Shoham logic of time intervals HS interpreted
over finite Kripke structures. Given a finite Kripke structure
modeling the system of interest, we first build an Abstract
Interval Model (AIM) that allows us to deal with intervals as
abstract objects. Then, by proving a small model theorem for
HS over a Kripke structure mapped into an AIM, we obtain a
decidability result for the considered model checking problem.
In such a way, we strengthen a new point of view in formal
verification that shifts the attention from a classical point-
wise approach to an interval-based framework. In addition,
we provide a PSPACE upper-bound to the model checking
problem for two meaningful fragments of HS, namely, AABB
and AAEE. The proof is based on the definition of a compact
representation of descriptors associated with traces of the
Kripke structure, which is an important contribution by its
own. We believe that this PSPACE upper bound can be lifted
to the whole logic by finding the proper interplay between
B and E descriptors, and we leave this as a future work.
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