
Pushdown Module Checking with
Imperfect Information�

Benjamin Aminof1, Aniello Murano2, and Moshe Y. Vardi3

1 Hebrew University, Jerusalem 91904, Israel
2 Università degli Studi di Napoli “Federico II”, 80126 Napoli, Italy

3 Rice University, Houston, TX 77251-1892, U.S.A

Abstract. The model checking problem for finite-state open systems
(module checking) has been extensively studied in the literature, both
in the context of environments with perfect and imperfect information
about the system. Recently, the perfect information case has been ex-
tended to infinite-state systems (pushdown module checking). In this pa-
per, we extend pushdown module checking to the imperfect information
setting; i.e., the environment has only a partial view of the system’s
control states and pushdown store content. We study the complexity of
this problem with respect to the branching-time temporal logic CTL,
and show that pushdown module checking, which is by itself harder than
pushdown model checking, becomes undecidable when the environment
has imperfect information. We also show that undecidability relies on
hiding information about the pushdown store. Indeed, we prove that
with imperfect information about the control states, but a visible push-
down store, the problem is decidable and its complexity is the same as
that of (perfect information) pushdown module checking.

1 Introduction

In system modeling we distinguish between closed and open systems [HP85]. In
a closed system all the nondeterministic choices are internal, and resolved by
the system. In an open system there are also external nondeterministic choices,
which are resolved by the environment [Hoa85]. In order to check whether a
closed system satisfies a required property, we translate the system into some
formal model, specify the property with a temporal-logic formula, and check
formally that the model satisfies the formula. Hence, the name model checking
for the verification methods derived from this viewpoint ([CE81, QS81]).

In [KV96, KVW01], Kupferman, Vardi, and Wolper studied open finite-state
systems. In their framework, the open finite-state system is described by a la-
beled state-transition graph called module, whose set of states is partitioned into
a set of system states (where the system makes a transition) and a set of envi-
ronment states (where the environment makes a transition). Given a module M
� Work supported in part by MIUR FIRB Project no. RBAU1P5SS, NSF grants CCR-

9988322, CCR-0124077, CCR-0311326, CCF-0613889, and ANI-0216467, by BSF
grant 9800096, and by gift from Intel.

L. Caires and V.T. Vasconcelos (Eds.): CONCUR 2007, LNCS 4703, pp. 461–476, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

462 B. Aminof, A. Murano, and M.Y. Vardi

describing the system to be verified, and a temporal logic formula ϕ specifying
the desired behavior of the system, the problem of model checking a module,
called module checking, asks whether for all possible environments M satisfies
ϕ. In particular, it might be that the environment does not enable all the exter-
nal nondeterministic choices. Module checking thus involves not only checking
that the full computation tree 〈TM , VM 〉 obtained by unwinding M (which cor-
responds to the interaction of M with a maximal environment) satisfies the
specification ϕ, but also that every tree obtained from it by pruning children of
environment nodes (this corresponds to the different choices of different environ-
ments) satisfy ϕ. For example, consider an ATM machine that allows customers
to deposit money, withdraw money, check balance, etc. The machine is an open
system and an environment for it is a subset of the set of all possible infinite
lines of customers, each with its own plans. Accordingly, there are many differ-
ent possible environments to consider. It is shown in [KV96, KVW01] that for
formulas in branching time temporal logics, module checking open finite-state
systems is exponentially harder than model checking closed finite-state systems.

In [KV97] module checking has been extended to a setting where the en-
vironment has imperfect information1 about the state of the system (see also
[CH05, CDHR06], for related work regarding imperfect information). In this
setting, every state of the module is a composition of visible and invisible vari-
ables, where the latter are hidden from the environment. While a composition
of a module M with an environment with perfect information corresponds to
arbitrary disabling of transitions in M, the composition of M with an environ-
ment with imperfect information is such that whenever two computations of the
system differ only in the values of internal variables along them, the disabling
of transitions along them coincide. For example, in the above ATM machine,
a person does not know, before he asks for money, whether or not the ATM
has run out of paper for printing receipts. Thus, the possible behaviors of the
environment are independent of this missing information. Given an open system
M with a partition of M’s variables into visible and invisible, and a tempo-
ral logic formula ϕ, the module-checking problem with imperfect information
asks whether ϕ is satisfied by all trees obtained by pruning children of environ-
ment nodes from 〈TM , VM 〉, according to environments whose nondeterministic
choices are independent of the invisible variables. One of the results shown in
[KV97] is that CTL module checking with imperfect information is Exptime-
complete.

In recent years, model checking of pushdown systems has received a lot of
attention (see for example [Wal96, Wal00, BEM97, EKS03]), largely due to the
ability of pushdown systems to capture the flow of procedure calls and returns
in programs [ABE+05]. Recently, [BMP05] extended these techniques by intro-
ducing open pushdown systems (with perfect information) that interact with
their environment. It is shown in [BMP05] thatCTL pushdown module checking
is 2Exptime-complete and thus much harder than pushdown model checking.

1 In the literature, the term incomplete information is sometimes used to refer to what
we call imperfect information.

Pushdown Module Checking with Imperfect Information 463

Consider again the example of the ATM machine, where the information re-
garding the presence of printing paper is invisible to the customers. Suppose
also that the ATM machine shows advertisements, and that it works under the
constraint that the number of advertisements the customer must view, before
the card can be taken out of the machine, is equal to the number of operations
the customer performed. The described machine can be modeled as an open
pushdown system M where control states take care of the operation performed
by the ATM (interacting with customers), and the pushdown store is used to
keep track of the advertisements that remain to be shown. Now, suppose that we
want to verify that in all possible environments, it is always possible for an in-
serted card to be ejected. This requirement can be modeled by theCTL formula
ϕ = AG(insert-card → EFeject-card). Since the presence of printing paper
is invisible to the customers, we have imperfect information about the control
states of the module. If we allow the ATM to push, after each operation the
customer makes, an invisible number (possibly zero) of pending advertisements,
then we also have invisible information in the pushdown store.

In this paper, we extend pushdown module checking by considering environ-
ments with imperfect information about the system’s state and pushdown store
content. To this aim, we first have to define how a pushdown system keeps part of
its internal configuration invisible to the environment and another part visible.
In [PR79], a private pushdown store automata is defined to be a Turing machine
with two tapes: a read only public (visible) one-way input tape, and a possi-
bly private (invisible) work tape, simulating a pushdown store. Unfortunately,
their definition is not suitable for our purpose as it allows for only two levels of
information hiding: either the pushdown store and control state are completely
visible, or completely invisible. The definition we use instead is an extension
of the idea used for finite-state systems. Like in the finite case, we assume the
control states are assignments to boolean control variables, some of which are
visible and some of which are invisible. Similarly, symbols of the pushdown store
are assignments to boolean visible and invisible pushdown store variables.

In [KV97], each state is partitioned into input, output, and invisible variables,
where the environment supplies the input variables, and the system supplies the
output and invisible variables. This idea works well for finite state-systems but
not when we have to deal with imperfect information about the pushdown store.
Note that a symbol pushed now, influences the computation much later, when it
becomes the top of the pushdown store. Indeed, asking the environment to supply
as input part of each symbol in the pushdown, is asking it to intimately partic-
ipate in the internals of the computation, which is less natural. We find it more
natural to think of the environment as choosing the possible transitions at certain
points of the computation. For example, if the environment supplies the current
reading of a physical sensor, we think of it as disabling all the transitions that are
irrelevant for this reading. Thus, we model an open pushdown system with im-
perfect information by partitioning configurations into system and environment
configurations, and also partitioning states and pushdown store symbols into vis-
ible and invisible variables, combining features from both [KV96] and [KV97].

464 B. Aminof, A. Murano, and M.Y. Vardi

We study the complexity of the pushdown module-checking problem with
imperfect information, with respect to the branching-time logic CTL. We show
that the problem is undecidable in the general case. We also show that un-
decidability relies on hiding information about the pushdown store. Indeed, we
prove thatCTL pushdown module checking with imperfect information about the
internal control states, but a visible pushdown store, is decidable and 2Exptime-
complete. Hence, it is not harder than perfect informationCTL pushdown mod-
ule checking. For the upper bound we use an automata-theoretic approach and
introduce a new automata model, namely semi-alternating pushdown Büchi tree
automata (PD-SBT). These are alternating pushdown Büchi tree automata
[KPV02] where the universality is not allowed on the pushdown store content.
That is, two copies of the automaton that read the same input, from two config-
urations that have the same top of pushdown store, must push the same value
into the pushdown store. Our algorithm reduces the addressed problem to the
emptiness problem of PD-SBT. We show that PD-SBT are equivalent to non-
deterministic pushdown Büchi tree automata, for which the emptiness problem
can be solved in Exptime [KPV02]. Note that alternating pushdown automata,
in contrast to the semi-alternating ones, are not equivalent to nondeterministic
pushdown automata. Indeed, since the emptiness problem of the intersection of
two context free languages is undecidable [HU79], the emptiness problem of al-
ternating pushdown automata is undecidable already in the case of finite words.

2 Preliminaries

Let Υ be a set. An Υ -tree is a prefix closed subset T ⊆ Υ ∗. The elements of
T are called nodes and the empty word ε is the root of T . For v ∈ T , the set
of children of v (in T) is child(T, v) = {v · x ∈ T | x ∈ Υ}. Given a node
v = u · x, with u ∈ Υ ∗ and x ∈ Υ , we define last(v) to be x. We also say that v
corresponds to x. The complete Υ -tree is the tree Υ ∗. For v ∈ T , a (full) path π
of T from v is a minimal set π ⊆ T such that v ∈ π and for each v′ ∈ π such that
child(T, v′) �= ∅, there is exactly one node in child(T, v′) belonging to π. Note
that every infinite word w ∈ Υω can be thought of as an infinite path in the tree
Υ ∗, namely the path containing all the finite prefixes of w. For an alphabet Σ,
a Σ-labeled Υ -tree is a pair 〈T, V 〉 where T is an Υ−tree and V : T → Σ maps
each node of T to a symbol in Σ.

An open system is a system that interacts with its environment and whose be-
havior depends on this interaction. We consider the case where the environment
has imperfect information about the system, i.e., when the system has internal
variables that are not visible to its environment. We describe such a system by
a module M = 〈AP, Ws, We, w0, R, L, ∼=〉, where AP is a finite set of atomic
propositions, Ws is a set of system states, and We is a set of environment states.
We assume Ws ∩ We = ∅, and call W = Ws ∪ We the set of M’s states. w0 ∈ W
is the initial state, R ⊆ W × W is a total transition relation, L : W → 2AP is
a labeling function that maps each state of M to the set of atomic propositions
that hold in it, and ∼= is an equivalence relation on W .

Pushdown Module Checking with Imperfect Information 465

In order to present a unified definition that is general enough to handle both
finite-state and infinite-state systems, we model the fact that the environment
has imperfect information about the states of the system by an equivalence
relation ∼=. States that are indistinguishable by the environment, because the
difference between them is kept invisible by the system, are equivalent according
to ∼=. We write [W] for the set of equivalence classes of W under ∼=. Since states
in the same equivalence class are indistinguishable by the environment, from the
environment’s point of view, the states of the system are actually the equivalence
classes themselves. The equivalence class [w] of w ∈ W , is called the visible part
of w, since it is in a sense what the environment “sees” of w. We write vis(w)
instead of [w], to emphasize this. Note that we can also do the converse. That is,
given a function vis, whose domain is W , we can define the equivalence relation
∼= by letting w ∼= w′ iff vis(w) = vis(w′). We can then think of the range of
vis as the set of the equivalence classes [W] and associate [w] with the value
vis(w).

A module M is closed if We = ∅ (meaning that M does not interact with
any environment) and open otherwise. Since the designation of a state as an
environment state is obviously known to the environment, we require that for
every w, w′ ∈ W such that w ∼= w′, we have that w ∈ We iff w′ ∈ We. Also
note that if w ∼= w′, from the environment’s point of view, the set of atomic
propositions that currently hold in w may just as well be L(w′). We therefore
define the labeling, as seen by the environment, as a function visL : [W] →
22AP

that maps the visible part of a state to a set of possible sets of atomic
propositions: visL([u]) = {L(w) | w ∈ W ∧ w ∼= u}. If it is always the case that
w ∼= w′ =⇒ L(w) = L(w′), we say that the atomic propositions are visible.

For 〈w, w′〉 ∈ R, we say that w′ is a successor of w. The requirement that R be
total means that every state w has at least one successor. A computation of M is
a sequence w0 ·w1 · · · of states, such that for all i ≥ 0 we have 〈wi, wi+1〉 ∈ R. For
each w ∈ W , we denote by succ(w) the set (possibly empty) of w’s successors.
When the module M is in a system state ws, then all successor states are possible
next states. On the other hand, when M is in an environment state we, the
environment decides, based on the visible parts of each successor of we, and
of the history of the computation so far, to which of the successor states the
computation can proceed, and to which it can not.

The set of all (maximal) computations of M starting from the initial state w0
can be described by an AP -labeled W -tree 〈TM, VM〉 called a computation tree,
which is obtained by unwinding M in the usual way. Each node v = v1 · · · vk

of 〈TM, VM〉 describes the (partial) computation w0 · v1 · · · vk of M, with the
root ε corresponding to w0. The children of v are exactly all nodes of the form
v1 · · · vk · w, where w ranges over all the successors of vk in M. We extend the
definition of the vis function to nodes in the natural way. Thus, the visible
part of a node v is vis(v) = vis(v1) · · · vis(vk). The labeling VM of a node v
depends on the state it corresponds to (its last state), i.e., VM(v) = L(last(v)).
Also, if v corresponds to an environment state, we say that v is an environment
node.

466 B. Aminof, A. Murano, and M.Y. Vardi

The problem of deciding, for a given CTL formula2 ϕ over the set AP of
atomic propositions, whether 〈TM, VM〉 satisfies ϕ is the usual model checking
problem (formally denoted M |= ϕ) [CE81, QS81]. In model checking, we only
have to consider the computation tree 〈TM, VM〉, since the module we want to
check is closed and thus its behavior is not affected by the environment. On
the other hand, whenever we consider an open module, 〈TM, VM〉 corresponds
to a very specific environment: a maximal environment that never restricts the
set of next states. Therefore, when we examine a branching-time specification
ϕ w.r.t. an open module M, the formula ϕ should hold not only in 〈TM, VM〉,
but in all the trees obtained by pruning from 〈TM, VM〉 subtrees whose roots
are children (successors) of environment nodes, in accordance with all possible
environments. It is important to note that in the case of perfect information (i.e.,
∼= is actually the equality relation), every such pruning corresponds to some en-
vironment; however, in the case of imperfect information, only if the pruning
is consistent with the partial information available to the environment, will the
tree correspond to an actual environment. Formally, if two nodes v and v′ are
indistinguishable, i.e., if vis(v) = vis(v′), then a tree in which the subtree rooted
at v is pruned, but the one rooted at v′ is not pruned, does not correspond to any
environment, and should not be considered. As noted in [KV97], the fact that
given a pruning of 〈TM, VM〉, a finite automaton cannot decide if that pruning
corresponds to an actual environment or not, is the main source of difficulty in
dealing with module checking with imperfect information. Also note that the
knowledge-based subset construction that is used to transform games of imper-
fect information into ones of perfect information (see for example [CDHR06]),
is not applicable in this context, since in general there is no connection between
the satisfiability of a branching time formula on the original structure and its
satisfiability on the one obtained by the knowledge-based subset construction.

Recall that whenever M interacts with an environment ξ, its possible moves
from environment states depends on the behavior of ξ. We can think of an
environment to M as a strategy ξ : [W]∗ → {�, ⊥} that maps a finite history
s of a computation, as seen by the environment, to either � or ⊥, meaning
that the environment respectively allows or disallows M to trace s. We say that
the tree 〈[W]∗, ξ〉 maintains the strategy applied by ξ, and we call it a strategy
tree. We denote by M � ξ the AP -labeled W -tree induced by the composition
of 〈TM, VM〉 with ξ; that is, the AP -labeled W -tree obtained by pruning from
〈TM, VM〉 subtrees according to ξ. Note that by the definition above, ξ may
disable all the children of a node v. Since we usually do not want the environment
to completely block the system, we require that at least one child of each node
is enabled. In this case, we say that the composition M � ξ is deadlock free.

To see the interaction of M with ξ, let v ∈ TM be an environment node,
and v′ ∈ TM be one of its children. The subtree rooted in v′ is pruned iff
ξ(vis(v′)) = ⊥. Every two nodes v1 and v2 that are indistinguishable according
to ξ’s imperfect information have vis(v1) = vis(v2). Also, recall that the des-
ignation of a state as an environment state is based only on the visible part of

2 For a definition of the syntax and semantics of CTL see for example [KV96].

Pushdown Module Checking with Imperfect Information 467

that state. Thus, if v1 is a child of an environment node then so is v2, and either
both subtrees with roots v1 and v2 are pruned, or both are not. Note that once
ξ(v) = ⊥ for some v ∈ [W]∗, we can ignore ξ(v · t), for all t ∈ [W]∗. Indeed, once
the environment disables the transition to a certain node v, it actually disables
the transitions to all the nodes in the subtree with root v. We can now formally
define the interaction of an open module with an environment with imperfect
information. From now on, unless stated differently, we always refer to modules
that are open, and environments with imperfect information. Given a module
M, and a strategy tree 〈[W]∗, ξ〉 for an environment ξ, an AP -labeled W -tree
〈T, V 〉 corresponds to M � ξ iff the following hold:

– The root of T corresponds to w0.
– For v ∈ T with last(v) ∈ Ws, we have child(T, v) = {v · w1, . . . , v · wn},

where succ(last(v)) = {w1, . . . , wn}.
– For v ∈ T with last(v) ∈ We, there exists a nonempty subset {w1, . . . , wk}

of succ(last(v)) such that child(T, v) = {v · w1, . . . , v · wk}. Furthermore,
for all w in {w1, . . . , wk} we have that ξ(vis(v · w)) = �, while for all w in
succ(last(v)) \ {w1, . . . , wk} we have that ξ(vis(x · w)) = ⊥.

– For every node v ∈ T , we have that V (v) = L(last(v)).

For a module M and a temporal logic formula over the set AP , we say that M
reactively satisfies ϕ, denoted M |=r ϕ, if M�ξ satisfy ϕ, for every environment
ξ for which M� ξ is deadlock free. The problem of deciding whether M |=r ϕ is
called module checking, and was first introduced and studied in [KV96, KVW01]
for finite-state systems with perfect information. The problem was successively
extended to imperfect information in [KV97]. For CTL formulas it has been
shown that the complexity of both problems is Exptime-complete3.

3 Imperfect Information Pushdown Module Checking

In this section, we extend the notion of module checking with imperfect infor-
mation to infinite-state systems induced by Open Pushdown Systems (OPD).

Definition 1. An OPD is a tuple S = 〈AP, Q, q0, Γ, 	, δ, μ, Env〉, where AP is
a finite set of atomic propositions, Q is the set of (control) states, and q0 ∈ Q
is an initial state. We assume that Q ⊆ 2I∪H where I and H are disjoint
finite sets of visible and invisible control variables, respectively. Γ is a finite
pushdown store alphabet, 	 �∈ Γ is the pushdown store bottom symbol, and we
use Γ� to denote Γ ∪ {	}. We assume that Γ ⊆ 2I

Γ
∪H

Γ where I
Γ

and H
Γ

are
disjoint finite sets of visible and invisible pushdown store variables, respectively.
δ ⊆ (Q × Γ�) × (Q × Γ ∗

�) is a finite transition relation, and μ : Q × Γ� → 2AP

is a labeling function. Env ⊆ Q × Γ� is used to specify the set of environment
configurations. The size |S| of S is |Q| + |Γ | + |δ|, with |δ| =

∑
((p,γ),(q,β))∈δ |β|.

3 Although the complexity of the perfect and imperfect information cases coincide
in the general case, [KVW01, KV97] show that when the formula is constant the
imperfect information case is exponentially harder.

468 B. Aminof, A. Murano, and M.Y. Vardi

A configuration of S is a pair (q, α) where q is a control state and α ∈ Γ ∗ · 	 is a
pushdown store content. We write top(α) for the leftmost symbol of α and call
it the top of the pushdown store α. The OPD moves according to the transition
relation. Thus, ((p, γ), (q, β)) ∈ δ implies that if the OPD is in state p and the
top of the pushdown store is γ, it can move to state q, pop γ and push β.
We assume that if 	 is popped it gets pushed right back, and that it only gets
pushed in such cases. Thus, 	 is always present at the bottom of the pushdown
store, and nowhere else. Note that we make this assumption also about the
various pushdown automata we use later. Also note that the possible moves
of the system, the labeling function, and the designation of configurations as
environment configurations, are all dependent only on the current control state
and the top of the pushdown store.

For a control state q ∈ Q, the visible part of q is vis(q) = q ∩ I. For a push-
down store symbol γ ∈ Γ , if γ ⊆ HΓ and γ �= ∅ we set vis(γ) = ε, otherwise
we set vis(γ) = γ ∩ I

Γ
. By setting vis(γ) = ε whenever γ consists entirely of

invisible variables, we allow the system to completely hide a push operation (ob-
viously a corresponding pop will also be invisible). When such a push occurs,
the environment does not see the symbol ∅ being pushed, rather, it sees no push
at all. This is necessary since in many applications what is actually pushed is
immaterial, and the information to be revealed or hidden is only the depth of the
pushdown store. The visible part of a pushdown store content s = γ0 · · · γn · 	
is defined in the natural way: vis(s) = vis(γ0) · · · vis(γn) · 	. The visible part
of a configuration (q, α), is thus vis((q, α)) = (vis(q), vis(α)). As for modules,
the designation of a configuration of an OPD as an environment configuration
is known to the environment. Thus, we require that for every two configura-
tions (q, α) and (q′, α′) such that vis(q, top(α)) = vis(q′, top(α′)), it holds that
(q, top(α)) ∈ Env iff (q′, top(α′)) ∈ Env.

Definition 2. An OPD S = 〈AP, Q, q0, Γ, 	, δ, μ, Env〉 induces an infinite-state
module MS = 〈AP, Ws, We, w0, R, L, ∼=〉, where:

– AP is a set of atomic propositions;
– Ws ∪ We = Q × Γ ∗ · 	 is the set of configurations;
– We is the set of configurations (q, α) such that (q, top(α)) ∈ Env;
– w0 = (q0,) is the initial configuration;
– R is a transition relation, where ((q, γ · α), (q′, β)) ∈ R iff there exist ((q, γ),

(q′, β′)) ∈ δ such that β = β′ · α;
– L((q, α)) = μ(q, top(α)) for all (q, α) ∈ W ;
– For every w, w′ ∈ W , we have that w ∼= w′ iff vis(w) = vis(w′).

To describe the interaction of an OPD S with its environment, we consider
the interaction of the environment with the induced module MS. Indeed, every
environment ξ of S, can be represented by a strategy tree 〈[W]∗, ξ〉, and the
composition MS�ξ of 〈[W]∗, ξ〉 with 〈TMS , VMS 〉 describes all the computations
of S allowed by the environment ξ. We can thus define the following problem.

Pushdown Module Checking with Imperfect Information 469

Pushdown module checking problem with imperfect information: Given an OPD
S and aCTL formula4 ϕ, decide whether MS |=r ϕ, i.e., whether MS �ξ satisfy
ϕ, for every environment ξ for which MS � ξ is deadlock free.

Note that starting with an OPD S having Env = ∅ (that is, the behavior
of S is not affected by any environment) the induced module is closed. In this
case, the problem we address becomes the classical pushdown model checking
problem, and forCTL specifications it has been studied in [Wal96, Wal00]. Also,
if the OPD is open (Env �= ∅) but there is no invisible information (both H and
H

Γ
are empty), the addressed problem is called pushdown module checking with

perfect information, and it has been studied in [BMP05].
In the remaining part of this section, we study the pushdown module checking

problem with imperfect information and show that it is undecidable for CTL
specifications. In the next section, we show that undecidability relies on the
system’s ability to hide information about the pushdown store. Namely, we prove
that if we start with an OPD with H

Γ
= ∅, the problem becomes decidable (even

if H �= ∅), and its complexity is the same as that of pushdown module checking
with perfect information.

Undecidability of the pushdown module checking problem with imperfect in-
formation is obtained by a reduction from the universality problem of nonde-
terministic pushdown automata on finite words (PDA), which is undecidable
[HU79]. That is, given a PDA P , we build an OPD S and aCTL formula ϕ, such
that the module induced by S reactively satisfies ϕ iff P is universal.

Our choice to do a reduction from the universality problem of PDA is not at
all arbitrary5. It is well known that checking for the universality of a nondeter-
ministic automaton can be thought of as a game between a protagonist trying
to prove that the automaton is not universal, and an antagonist claiming that it
is universal. The universality game is played as follows. The protagonist chooses
the first symbol, the antagonist responds with the first part of the run, the pro-
tagonist chooses the next symbol, the antagonist extends the run, and so on.
The protagonist wins if the resulting run is rejecting, and the antagonist wins
if it is accepting. Note that if the automaton is not universal the protagonist
has a winning strategy, namely, choosing the letters of a word not accepted by
the automaton. However, since the automaton is nondeterministic, the converse
is not true. That is, even if the automaton is universal, the antagonist may not
have a winning strategy. Also note that (again due to nondeterminism) if the
protagonist can see the moves of the antagonist, it may force the run to be reject-
ing even though the word it supplies can be accepted by the automaton. Hence,
the game is sound but not complete. However, if the protagonist cannot see the
moves of the antagonist the game becomes sound and complete. Deciding if the

4 The semantics ofCTL is usually defined with respect to infinite paths, so we assume
MS has no configurations without successors. However, using a similar technique to
the one used in [BMP05] our results can be adapted to the situation where terminal
configurations are also allowed.

5 We thank Martin Lange for a useful discussion on the connection between the proof
of Theorem 1 and the game interpretation of the universality problem.

470 B. Aminof, A. Murano, and M.Y. Vardi

automaton is not universal can be reduced to deciding whether the antagonist
has a winning strategy in the corresponding universality game with imperfect
information. By casting the universality game of PDA to a special instance of
the pushdown module checking problem with imperfect information, the latter
is shown to be undecidable. The complete proof can be found in the full version.

Theorem 1. The pushdown module-checking problem with imperfect informa-
tion for CTL specifications is undecidable.

It turns out that even if the environment has full information about the control
states and (surprisingly enough) about which atomic propositions hold at each
configuration the problem remains undecidable. Thus, we have.

Theorem 2. The imperfect information pushdown module checking problem for
CTL, with visible control states and atomic propositions, is undecidable.

4 Module Checking with Visible Pushdown Store

In this section, we show that pushdown module checking forCTL with full infor-
mation about the pushdown store content (H

Γ
= ∅), but not about the control

states (when H �= ∅), is decidable and 2Exptime-complete, matching the com-
plexity of pushdown module checking with complete information. For the upper
bound we use an automata-theoretic approach and introduce a new automata
model, namely semi-alternating pushdown Büchi tree automata (PD-SBT). Our
algorithm reduces the addressed problem to the emptiness problem of PD-SBT.
We show that PD-SBT are equivalent to nondeterministic pushdown Büchi tree
automata, for which emptiness can be decided in Exptime[KPV02]. The formal
definition of semi-alternating pushdown tree automata follows.

Semi-alternating Pushdown Tree Automata. A PD-SBT is a tuple A =
〈Σ, D, Γ, Q, q0, 	, δ, F 〉 where Σ is a finite input alphabet, D is a finite set of
directions, Γ is a finite pushdown store alphabet, Q is a finite set of states, q0 ∈ Q
is the initial state, 	 �∈ Γ is the pushdown store bottom symbol, and F ⊆ Q is a
Büchi acceptance condition. Moreover, δ is a finite transition relation defined as
a function δ : Q × Σ × Γ� → B+(D × Q × Γ ∗

�), where Γ� = Γ ∪ {	} as usual, and
B+(D × Q × Γ ∗

�) is the set of all finite positive boolean combinations of triples
(d, q, β), where d is a direction, q is a state, and β is a string of pushdown store
symbols. We also allow the formulas true and false. We write S ∈ δ(p, σ, γ) to
denote that S is a set of tuples (d, q, β) that satisfy δ(p, σ, γ).

What makes the automaton semi-alternating is the requirement that for every
d ∈ D, σ ∈ Σ, p, p′ ∈ Q (possibly the same state), and γ ∈ Γ , if (d, q, β) appears
in δ(p, σ, γ), and (d, q′, β′) appears in δ(p′, σ, γ), then β = β′. That is, two copies
of the automaton that read the same input, from two configurations that have
the same top symbol of the pushdown store and proceed in the same direction,
must push the same value into the pushdown store. In particular, it follows that
in every run, two copies of the automaton that are reading the same node of

Pushdown Module Checking with Imperfect Information 471

an input tree have the same pushdown store content. Note that if we remove
the semi-alternation requirement, the resulting automaton is called alternating
pushdown Büchi tree automaton (PD-ABT).

As an example, for D = {0, 1}, having δ(q, σ, γ) = ((0, q1, β1) ∨ (1, q2, β2)) ∧
(1, q1, β2) means that when a copy of the automaton that is in a configuration
where the current state is q, and the top of pushdown store is γ, reads a node
in the input tree whose label is σ, it can proceed in one of two ways. In the
first case, one copy proceeds in direction 0 to state q1, by replacing γ with β1,
and one copy proceeds in direction 1 to state q1, by replacing γ with β2. In the
second case, two copies proceed in direction 1, one to state q1 and the other to
state q2, and in both copies γ is replaced with β2. Hence, ∨ and ∧ in δ(q, σ, γ)
represent, respectively, choice and concurrency. As a special case of PD-ABT, we
consider nondeterministic pushdown Büchi tree automata (PD-NBT) where the
concurrency feature is not allowed. That is, whenever a PD-NBT visits a node
x of the input tree, it sends to each successor (direction) of x at most one copy
of itself. More formally, a PD-NBT is a PD-ABT in which δ is in disjunctive
normal form, and in each conjunct each direction appears at most once.

A run of a PD-SBT A on a Σ-labeled tree 〈T, V 〉, with T = D∗, is a (D∗×Q×
Γ ∗ ·)-labeled N-tree 〈Tr, r〉 such that the root is labeled with (ε, q0,) and the
labels of each node and its successors satisfy the transition relation. Formally, a
(D∗× Q × Γ ∗ ·)-labeled tree 〈Tr, r〉 is a run of A on 〈T, V 〉 iff

– r(ε) = (ε, q0,), and
– for all x ∈ Tr such that r(x) = (y, p, γ · α), there is an n ∈ N such that the

successors of x are exactly x·1, . . . x·n, and for all 1 ≤ i ≤ n we have r(x·i) =
(y · di, pi, βi · α) for some {(d1, p1, β1), . . . , (dn, pn, βn)} ∈ δ(p, V (y), γ).

For a path π ⊆ Tr, let infr(π) ⊆ Q be the set of states that appear in the
labels of infinitely many nodes in π. For a Büchi condition F ⊆ Q, we have that
π is accepting iff infr(π) ∩ F �= ∅. A run 〈Tr, r〉 is accepting iff all its paths are
accepting. The automaton A accepts an input tree 〈T, V 〉 iff there is an accepting
run of A over 〈T, V 〉. The language of A, denoted L(A), is the set of Σ-labeled
trees accepted by A. We say that an automaton A is nonempty iff L(A) �= ∅.

Given a PD-SBT A = 〈Σ, D, Γ, Q, q0, 	, δ, F 〉, we define the size of A as |A| =
|Q| + |δ|, where |δ| is the sum of the lengths of the satisfiable (i.e., not false)
formulas that appear in δ(q, σ, γ) for some q, σ, and γ.

In [MH84], Miyano and Hayashi describe a translation of alternating Büchi
automata on words to nondeterministic ones. We now present an extension of
their translation to show the equivalence of PD-SBT and PD-NBT.

Lemma 1. Let A be a PD-SBT with n states. There is a PD-NBT A′ with
2O(n) states, such that L(A′) = L(A).

Proof. The automaton A′ guesses a subset construction applied to a run of A.
At a given node x of a run of A′, it keeps in its memory the set of configurations
in which the various copies of A visit node x in the guessed run. Since A is semi-
alternating, all copies of A that visit the same node x have the same pushdown

472 B. Aminof, A. Murano, and M.Y. Vardi

store content, and thus can all be remembered using one pushdown store and
a set of states of A. In order to make sure that every infinite path visits states
in F infinitely often, A′ keeps track of states that “owe” a visit to F . Let A =
〈Σ, D, Γ, Q, q0, 	, δ, F 〉. Then A′ = 〈Σ, D, Γ, 2Q × 2Q, 〈{q0}, ∅〉, 	, δ′, 2Q × {∅}〉,
where δ′ is defined as follows. We first need the following notation. For a set
S ⊆ Q, a letter σ ∈ Σ, and a top of pushdown store symbol γ ∈ Γ , let
sat(S, σ, γ) be the set of subsets of D × Q × Γ ∗

� that satisfy
∧

q∈S δ(q, σ, γ).
Also, for two sets O ⊆ S ⊆ Q, a letter σ ∈ Σ, and a top of pushdown store
symbol γ ∈ Γ , let pair sat(S, O, σ, γ) be such that 〈S′, O′〉 ∈ pair sat(S, O, σ, γ)
iff S′ ∈ sat(S, σ, γ), O′ ⊆ S′, and O′ ∈ sat(O, σ, γ). Finally, for a direction
d ∈ D, we have S′

d = {s | (d, s, β) ∈ S′ for some β} and O′
d = {o | (d, o, β) ∈

O′ for some β}. Thus, S′
d and O′

d are, respectively, the collections of all states
that appear in S′ and O′ along with the direction d. Since A is semi-alternating,
for every two triplets (d, q, β) and (d, q′, β′) in sat(S, σ, γ) having the same di-
rection d, we have that β = β′. Thus, we can define store(d, σ, γ) = β.

Now, δ′ is defined, for all 〈S, O〉 ∈ 2Q × 2Q, σ ∈ Σ, and γ ∈ Γ , as follows.

– if O �= ∅, then
δ′(〈S, O〉, σ, γ) =

∨

〈S′, O′〉 ∈
pair sat(S, O, σ, γ)

∧

d∈D

(d, 〈S′
d, O′

d \ F 〉, store(d, σ, γ))

Thus, when reading σ, from a configuration with a top of pushdown store
symbol γ, the automaton A′ sends to a direction d ∈ D the set S′

d of states
that the different copies of A send to direction d in the guessed run. Each
such S′

d is paired with a subset O′
d of S′

d of the states that still “owe” a
visit to F . The key observation is that since A is semi-alternating, all the
copies that A sends to direction d replace γ with exactly the same pushdown
store string, namely, with store(d, σ, γ). Hence, the pushdown stores of all
the copies that A sends to direction d are identical, and A′ can keep track
of them all using the single stack of the copy it send to direction d.

– if O = ∅, then
δ′(〈S, O〉, σ, γ) =

∨

〈S′, O′〉 ∈
pair sat(S, O, σ, γ)

∧

d∈D

(d, 〈S′
d, S

′
d \ F 〉, store(d, σ, γ))

Thus, when no state “owes” a visit to F we know that every path in the
guessed run of A visited F one more time, and the requirement to visit F is
reinforced. ��

We can now show decidability for pushdown module checking for CTL with
visible pushdown store. The decidability follows from Lemma 1, the fact that
emptiness of PD-NBT is decidable, and the following theorem.

Theorem 3. For an OPD S with H
Γ

= ∅ and a CTL formula ϕ over S’s ato-
mic propositions, there is a PD-SBT AS,ϕ of size O(|S|∗ |ϕ|), such that L(AS,ϕ)
is the set of strategies ξ such that MS � ξ is deadlock free and satisfies ϕ.

Pushdown Module Checking with Imperfect Information 473

Proof (Sketch). Essentially, the automaton AS,ϕ we build is an extension of the
product automaton obtained in the alternating-automata theoretic approach
forCTL module checking with imperfect information [KV97]. The extension we
consider here concerns the simulation of the pushdown store of the OPD.

Let S = 〈AP, Q, q0, Γ, 	, δ, μ, Env〉 be an OPD, let ϕ be a CTL formula in
positive normal form, and let MS = 〈AP, Ws, We, w0, R, L, ∼=〉 be the module
induced by S. We build an automaton AS,ϕ that accepts {�, ⊥}-labeled trees
corresponding to strategies ξ, whose composition with MS is deadlock free and
satisfy ϕ. Intuitively, a run of AS,ϕ on an input strategy tree ξ, proceeds by
simulating an unwinding of the module MS , pruned at each step according to the
strategy ξ. Copies of the automaton simulating nodes in the computation tree of
MS that are indistinguishable by the environment are sent to the same direction
in the input tree. The resulting run tree of AS,ϕ on ξ is basically a replica of the
composition MS � ξ, and the fact that it satisfies the formula ϕ is checked on
the fly, by employing in AS,ϕ the usual alternating-automata approach forCTL
model checking. In the full computation tree of MS , the set of directions is G =
{(q, β) | ((p, α), (q, β)) ∈ R for some p, α and β}. Since in S the pushdown store
is completely visible to the environment, the set of directions of the input strategy
trees is D = {(vis(q), β) | ((p, α), (q, β)) ∈ R for some p, α and β}. Finally, due
to the fact that all copies of the automaton sent to direction (vis(q), β) push β
into the pushdown store, the resulting automaton AS,ϕ is semi-alternating.

We formally define AS,ϕ = 〈{�, ⊥}, D, Γ, Q′, q′0, 	, δ′, F 〉, where

– Q′ = (Q × (cl(ϕ) ∪ {p�})× {∀, ∃} × {pe, ps}) ∪ {q′0}. States with the compo-
nent p� are used to check that the composition of MS with the strategy is
deadlock free, while states with a component in cl(ϕ) check that this compo-
sition satisfies ϕ. The components pe and ps are used to flag that a currently
simulated node, of the computation tree of MS , is a child of an environment
or a system node, respectively. Clearly, the simulation should respect the
strategy pruning specifications only if they correspond to children of envi-
ronment nodes; that is, only if the current state q contains pe. Every state
is either in an existential or a universal mode, as specified by the ∀ and ∃
components. When the automaton is in a universal state (q, ϕ, ∀, pe) with a
pushdown store content α, it accepts all strategies for which (q, α) in MS is
either pruned or satisfies ϕ (where p� is satisfied iff the root of the strategy
is labeled �). When the automaton is in an existential state (q, ϕ, ∃, pe) with
a pushdown store content α, it accepts all strategies for which (q, α) in MS

is not pruned and satisfies ϕ.
– The formal definition of δ′ : Q′×Σ×Γ� → B+(D×Q′×Γ ∗

�) is reported in the
full version. Here, we just give an example of a transition rule. Consider, a
transition from the configuration (〈p, ∀Xψ, ∃, pe〉, γ ·α), where (p, γ) ∈ Env.
First, if the transition to (p, γ·α) is disabled (that is, the automaton reads ⊥),
then, as the current mode is existential, the run is rejecting. If the transition
to (p, γ ·α) is enabled, then the successors of (p, γ ·α) that are enabled should
satisfy ψ. Note that all the successors of (p, γ · α) that are indistinguishable
by the environment are sent by the automaton to the same direction v. This

474 B. Aminof, A. Murano, and M.Y. Vardi

guarantees that either all these successors are enabled by the strategy (in
case the letter to be read in direction v is �) or all are disabled (in case the
letter in direction v is ⊥). In addition, since the requirement to satisfy ψ
concerns only successors of (p, γ · α) that are enabled, the mode of the new
states is universal. The copies of AS,ϕ that check the composition with the
strategy to be deadlock free guarantee that at least one successor of (p, γ ·α)
is enabled. As noted earlier, the enable/disable instructions of the strategy
are ignored in every configuration (p, γ · α) that is a successor of a system
configuration. Also note that since we assume that no configuration in MS

has no successors, the conjunctions and disjunctions in δ′ cannot be empty.
– F = Q × Ũ(ϕ) × {∃, ∀} × {pe, ps}, where Ũ(ϕ) is the set of all formulas of

the form ∀ψ1Ũψ2 or ∃ψ1Ũψ2 in cl(ϕ).

In the full version we prove that AS,ϕ is semi-alternating and that the size of
δ′ is O(|δ| ∗ |ϕ|). Since |Q′| = O(|Q| ∗ |ϕ|), the size of AS,ϕ is O(|S| ∗ |ϕ|). ��

We now consider the complexity bounds that follow from our algorithm.

Theorem 4. CTL pushdown module checking with imperfect information about
the control states but a visible pushdown store is 2Exptime-complete.

Proof. The lower bound follows from the known bound forCTL pushdown mod-
ule checking with perfect information [BMP05]. For the upper bound, Theorem
3 implies that MS |=r ϕ iff the language of the automaton AS,¬ϕ is empty. We
recall that AS,¬ϕ is a PD-SBT of size O(|S| ∗ |ϕ|). By Lemma 1, we can obtain a
PD-NBT A equivalent to AS,ϕ, with an exponential blow-up. By [KPV02], the
emptiness of A can be checked in exponential time. Thus, checking the emptiness
of A is double-exponential in the sizes of |S| and |ϕ|. ��

5 Discussion

We have shown that the pushdown module checking problem with imperfect
information is undecidable for specifications given in CTL. Moreover, since the
formula used in the proof of Theorems 1 and 2 is an existential formula, the
problem is already undecidable for the existential fragmentECTL ofCTL. This
obviously implies the undecidability of the problem with respect to more expres-
sive logics such asCTL∗ and μ-calculus. Recall that in our setting, whenever we
push a symbol consisting entirely of invisible variables, the environment does
not see the push at all. One can think of a variant of the problem where the
environment does see that a push occurred, but not what was pushed. Thus,
the depth of the stack is always known to the environment. It is an open ques-
tion whether this variant of the problem is decidable or not. As good news, we
also showed that if the pushdown store is visible, the problem is decidable, and
not harder than perfect information pushdown module checking. An interest-
ing question is whether this variant of the problem remains decidable also for
more expressive logics likeCTL∗. By using an approach similar to the one used

Pushdown Module Checking with Imperfect Information 475

for CTL, we can reduce the problem for CTL∗ to the emptiness problem of a
semi-alternating pushdown tree automaton, but with a stronger acceptance con-
dition, such as the parity condition. We do not know, however, if the emptiness
problem for such automata is decidable or not. The main source of difficulty is
that all known methods to remove alternation from parity finite tree automata
involve a co-determinization step, and thus can not be easily adapted to push-
down automata. Even in [KV05] where the emptiness problem of alternating
parity tree automata is reduced to that of nondeterministic automata, without
a co-determinization step, the correctness proof of the construction does contain
such a step. Nevertheless, it is our conjecture that despite these difficulties,CTL∗

pushdown module checking with visible pushdown store is decidable.

References

[ABE+05] Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.W., Yan-
nakakis, M.: Analysis of recursive state machines. ACM Trans. Program.
Lang. Syst. 27(4), 786–818 (2005)

[BEM97] Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Push-
down Automata: Application to Model-Checking. In: Mazurkiewicz, A.,
Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150.
Springer, Heidelberg (1997)

[BMP05] Bozzelli, L., Murano, A., Peron, A.: Pushdown module checking. In: Sut-
cliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp.
504–518. Springer, Heidelberg (2005)

[CDHR06] Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.: Algorithms for
omega-regular games with imperfect information. In: Ésik, Z. (ed.) CSL
2006. LNCS, vol. 4207, pp. 287–302. Springer, Heidelberg (2006)

[CE81] Clarke, E.M., Emerson, E.A.: Design and verification of synchronization
skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logics
of Programs. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

[CH05] Chatterjee, K., Henzinger, T.A.: Semiperfect-information games. In: Ra-
manujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 1–18.
Springer, Heidelberg (2005)

[EKS03] Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular
valuations for pushdown systems. Inf. Comput. 186(2), 355–376 (2003)

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, En-
glewood Cliffs (1985)

[HP85] Harel, D., Pnueli, A.: On the development of reactive systems. In: Logics
and Models of Concurrent Systems. NATO Advanced Summer Institutes,
vol. F-13, pp. 477–498. Springer, Heidelberg (1985)

[HU79] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading (1979)

[KPV02] Kupferman, O., Piterman, N., Vardi, M.Y.: Pushdown specifications. In:
Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp.
262–277. Springer, Heidelberg (2002)

[KV96] Kupferman, O., Vardi, M.Y.: Module checking. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 75–86. Springer, Heidelberg
(1996)

476 B. Aminof, A. Murano, and M.Y. Vardi

[KV97] Kupferman, O., Vardi, M.Y.: Module checking revisited. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 36–47. Springer, Hei-
delberg (1996)

[KV05] Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: IEEE
FOCS’05, Pittsburgh, pp. 531–540. IEEE Computer Society Press, Los
Alamitos (2005)

[KVW01] Kupferman, O., Vardi, M.Y., Wolper, P.: Module Checking. Information
and Computation 164(2), 322–344 (2001)

[PR79] Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: FOCS’79, pp.
348–363. IEEE Computer Society Press, Los Alamitos (1979)

[QS81] Queille, J.P., Sifakis, J.: Specification and verification of concurrent pro-
grams in Cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) In-
ternational Symposium on Programming. LNCS, vol. 137, pp. 337–351.
Springer, Heidelberg (1982)

[Wal96] Walukiewicz, I.: Pushdown processes: Games and Model Checking. In:
Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74.
Springer, Heidelberg (1996)

[Wal00] Walukiewicz, I.: Model checking CTL properties of pushdown systems.
In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000: Foundations of Soft-
ware Technology and Theoretical Science. LNCS, vol. 1974, pp. 127–138.
Springer, Heidelberg (2000)

	Introduction
	Preliminaries
	Imperfect Information Pushdown Module Checking
	Module Checking with Visible Pushdown Store
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

