
Pushdown Module Checking∗

Laura Bozzelli† Aniello Murano‡ Adriano Peron§

June 12, 2006

Abstract

Model checking is a useful method to verify automatically the correctness
of a system with respect to a desired behavior, by checking whether a math-
ematical model of the system satisfies a formal specification of this behavior.
Many systems of interest are open, in the sense that their behavior depends on
the interaction with their environment. The model checking problem for finite–
state open systems (called module checking) has been intensively studied in the
literature. In this paper, we focus on open pushdown systems and we study the
related model–checking problem (pushdown module checking, for short) with
respect to properties expressed by CTL and CTL∗ formulas. We show that
pushdown module checking against CTL (resp., CTL∗) is 2Exptime-complete
(resp., 3Exptime-complete). Moreover, we prove that for a fixed CTL (resp.,
CTL∗) formula, the problem is Exptime-complete.

1 Introduction

In the last decades significant results have been achieved in the area of formal design
verification of reactive systems. In particular, a meaningful contribution has been
given by algorithmic methods developed in the context of model-checking ([5, 17,
18]). In this verification method, the behaviour of a system, formally described by
a mathematical model, is checked against a behavioural constraint specified by a
formula in a suitable temporal logic, which enforces either a linear model of time
(formulas are interpreted over linear sequences corresponding to single computations
of the system) or a branching model of time (formulas are interpreted over infinite
trees, which describe all the possible computations of the system). Traditionally,
model checking is applied to finite-state systems, typically modelled by labelled
state-transition graphs.

∗A preliminary version of this paper appears in the Proceedings of the 12th International Con-
ference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR’05, LNCS 3835,
Springer-Verlag, 2005, pages 504-518.

†Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Via Cintia,
80126 Napoli, Italy. E-mail address: laura.bozzelli@dma.unina.it.

‡Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Via Cintia, 80126 Napoli,
Italy. E-mail address: murano@na.infn.it.

§Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Via Cintia, 80126 Napoli,
Italy. E-mail address: peron@na.infn.it.

1

http://www.editorialmanager.com/form/download.aspx?id=312&guid=c8e17d67-7f02-470b-8ed6-622e05b6b9c2&scheme=1

In system modelling, we distinguish between closed and open systems. For a
closed system, the behavior is completely determined by the state of the system.
For an open system, the behaviour is affected both by its internal state and by
the ongoing interaction with its environment. Thus, while in a closed system all
the nondeterministic choices are internal, and resolved by the system, in an open
system there are also external nondeterministic choices, which are resolved by the
environment [9]. Model checking algorithms used for the verification of closed sys-
tems are not appropriate for the verification of open systems. In the latter case,
we should check the system with respect to arbitrary environments and should take
into account uncertainty regarding the environment.

In [14], Kupferman, Vardi, and Wolper extend model checking from closed finite–
state systems to open finite-state systems. In such a framework, the open finite-state
system is described by a labelled state-transition graph called module whose set of
states is partitioned into a set of system states (where the system makes a transition)
and a set of environment states (where the environment makes a transition). The
problem of model checking a module (called module checking) has two inputs: a
module M and a temporal formula ψ. The idea is that an open system should
satisfy a specification ψ no matter how the environment behaves. Let us consider
the unwinding of M into an infinite tree, say TM . Checking whether TM satisfies
ψ is the usual model-checking problem [5, 17]. On the other hand, for an open
system, TM describes the interaction of the system with a maximal environment,
i.e. an environment that enables all the external nondeterministic choices. In order
to take into account all the possible behaviours of the environment, we have to
consider all the trees T obtained from TM by pruning subtrees whose root is a
successor of an environment state (pruning these subtrees correspond to disable
possible environment choices). Therefore, a module M satisfies ψ if all these trees
T satisfy ψ.

Note that for the linear-time paradigm, module checking coincides with the usual
model checking, since for linear temporal formulas ψ we require that all the possible
interactions of the system with its environment (corresponding to all computations
of M , i.e. to all possible full-paths in TM) have to satisfy ψ. Therefore, while the
complexity of model checking for closed and open finite–state systems coincide using
linear time logics, when using branching time logics, model checking for open finite–
state systems is much harder than model checking for closed finite–state systems.
In particular, it is proved in [14], that the problem is Exptime–complete for specifi-
cations in CTL and 2Exptime–complete for specifications in CTL∗. Moreover, the
complexity of this problem in terms of the size of the module is Ptime-complete.

Recently, the investigation of model-checking techniques has been extended to
infinite-state systems. An active field of research is model-checking of closed infinite-
state sequential systems. These are systems in which each state carries a finite,
but unbounded, amount of information e.g. a pushdown store. The origin of this
research is the result of Muller and Schupp that the monadic second-order theory
of context-free graphs is decidable [16]. Concerning pushdown systems, Walukiewicz
[20] has shown that model checking these systems with respect to modal µ-calculus
is Exptime-complete. Even for a fixed formula in the alternation-free modal µ-

2

calculus, the problem is Exptime-hard in the size of the pushdown system. The
problem remains Exptime-complete also for the logic CTL [21], which corresponds
to a fragment of the alternation-free modal µ-calculus. Recently, in [2], it is showed
that even for a fixed CTL formula, the problem remains Exptime-hard. For the
logic CTL∗ (which subsumes both LTL and CTL), the problem is still harder, since
it is 2Exptime-complete [2]. The situation is quite different for linear-time logics.
Model-checking with LTL and the linear-time µ-calculus is Exptime-complete [1].
However, the problem is polynomial in the size of the pushdown system.

In the literature, verification of open systems has been also formulated as two-
players games. For pushdown systems, games with parity winning conditions are
known to be decidable [20]. More recently, in [15], it is shown that pushdown games
against LTL specifications are 3Exptime-complete.

This paper contributes to the investigation of model checking of open infinite-
state systems by introducing Open Pushdown systems (OPD, for short) and con-
sidering model checking with respect to CTL and CTL∗. An OPD is a pushdown
system in which the set of configurations is partitioned (in accordance with the con-
trol state and the symbol on the top of the stack) into a set of system configurations
and a set of environment configurations.

As an example of closed and open pushdown systems, we can consider two drink-
dispensing machines (obtained as an extension of the machines defined in [9]). The
first machine repeatedly boils water for a while, makes an internal nondeterministic
choice and serves either tea or coffee, with the additional constraint that coffee can
be served only if the number of coffees served up to that time is smaller than that
of teas served. Such a machine can be modelled as a closed pushdown system (the
stack is used to guarantee the inequality between served coffees and teas). The
second machine repeatedly boils water for a while, asks the environment to make a
choice between coffee and tea, and deterministically serves a drink according to the
external choice, with the additional constraint that coffee can be served only if the
number of coffees served up to that time is smaller than that of teas served. Such
a machine can be modelled as an open pushdown system. Both machines can be
represented by a pushdown system that induces the same infinite tree of possible
executions, nevertheless, while the behavior of the first machine depends on internal
choices solely, the behavior of the second machine depends also on the interaction
with its environment. Thus, for instance, for the first machine, it is always possible
to eventually serve coffee. On the contrary, for the second machine, this does not
hold. Indeed, if the environment always chooses tea, the second machine will never
serve coffee.

We study module checking of (infinite–state) modules induced by OPD w.r.t.
the branching-time logics CTL and CTL∗. As in the case of finite-state systems,
pushdown module checking is much harder than pushdown model checking for both
CTL and CTL∗. Indeed, we show that pushdown module checking is 2Exptime-
complete for CTL and 3Exptime-complete for CTL∗. We also show that for both
CTL and CTL∗, the complexity of pushdown module checking in terms of the size
of the given OPD is Exptime-complete. For the upper bounds of the complexity
results, we exploit the standard automata-theoretic approach. In particular, for CTL

3

(resp., CTL∗) we propose an exponential time (resp., a double-exponential time)
reduction to the emptiness problem of nondeterministic pushdown tree automata
with parity acceptance conditions. The latter problem is known to be decidable in
exponential time [11]. Finally, the lower bound for CTL (resp., CTL∗) is shown by
a technically non-trivial reduction from the word problem for Expspace–bounded
(resp., 2Expspace–bounded) alternating Turing Machines.

Outline of the paper. In Section 2, we recall the module checking problem as
defined in [14] for both CTL and CTL∗ and define open pushdown systems. In
Section 3, we recall the framework of nondeterministic (finite-state) tree automata
and nondeterministic pushdown tree automata, which are exploited in Section 4 to
solve the pushdown module checking problem against CTL and CTL∗. In Section 4,
we describe algorithms to solve the above mentioned problems and give lower bounds
that match the upper bounds of the proposed algorithms. We conclude in Section 5.

2 Preliminaries

2.1 Module checking for Branching Temporal Logics

In this subsection we define the module checking problem for CTL and CTL∗ [14].
First, we recall syntax and semantics of CTL and CTL∗.

Let N be the set of positive integers. A tree T is a prefix closed subset of N
∗. The

elements of T are called nodes and the empty word ε is the root of T . For x ∈ T ,
the set of children of x (in T) is children(T, x) = {x · i ∈ T | i ∈ N}. For k ≥ 1, the
(complete) k-ary tree is the tree {1, . . . , k}∗. For x, y ∈ N

∗, we write x ≺ y to mean
that x is a proper prefix of y. For x ∈ T , a (full) path π of T from x is a minimal
set π ⊆ T such that x ∈ π and for each y ∈ π such that children(T, y) 6= ∅, there is
exactly one node in children(T, y) belonging to π. For y ∈ π, we denote by πy the
(suffix) path of T from y given by {z ∈ π | y � z}. For an alphabet Σ, a Σ-labelled
tree is a pair 〈T, V 〉 where T is a tree and V : T → Σ maps each node of T to a
symbol in Σ.

The logic CTL∗ is a branching–time temporal logic [6], where a path quantifier, E
(“for some path”) or A (“for all paths”), can be followed by an arbitrary linear-time
formula, allowing boolean combinations and nesting, over the usual linear temporal
operators X (“next”), U (“until”), F (“eventually”), and G (“always”). There are
two types of formulas in CTL∗: state formulas, whose satisfaction is related to a
specific state (or node of a labelled tree), and path formulas, whose satisfaction is
related to a specific path. Formally, for a finite set AP of proposition names, the
class of state formulas ϕ and the class of path formulas θ are defined by the following
syntax:

ϕ := prop | ¬ϕ | ϕ ∧ ϕ | A θ | E θ
θ := ϕ | ¬ θ | θ ∧ θ | Xθ | θ U θ

where prop ∈ AP . The set of state formulas ϕ forms the language CTL∗. The other
operators can be introduced as abbreviations in the usual way: for instance, Fθ
abbreviates true U θ and Gθ abbreviates ¬F¬θ.

4

The Computation Tree Logic CTL [5] is a restricted subset of CTL∗, obtained
restricting the syntax of path formulas θ as follows: θ := Xϕ |ϕ U ϕ. This means
that X and U must be immediately preceded by a path quantifier.

We define the semantics of CTL∗ (and its fragment CTL) with respect to 2AP -
labelled trees 〈T, V 〉. Let x ∈ T and π ⊆ T be a path from x. For a state (resp., path)
formula ϕ (resp. θ), the satisfaction relation (〈T, V 〉, x) |= ϕ (resp., (〈T, V 〉, π) |= θ),
meaning that ϕ (resp., θ) holds at node x (resp., holds along path π) in 〈T, V 〉, is
defined by induction. The clauses for proposition letters, negation, and conjunction
are standard. For the other constructs we have:

• (〈T, V 〉, x) |= A θ iff for each path π in T from x, (〈T, V 〉, π) |= θ;

• (〈T, V 〉, x) |= E θ iff there exists a path π from x such that (〈T, V 〉, π) |= θ;

• (〈T, V 〉, π) |= ϕ (where π is a path from x) iff (〈T, V 〉, x) |= ϕ;

• (〈T, V 〉, π) |= Xθ iff π \ {x} 6= ∅ and (〈T, V 〉, π \ {x}) |= θ;1

• (〈T, V 〉, π) |= θ1 U θ2 iff there exists y ∈ π such that (〈T, V 〉, πy) |= θ2 and
(〈T, V 〉, πz) |= θ1 for all z ∈ π such that z ≺ y.

Given a CTL∗ (state) formula ϕ, we say that 〈T, V 〉 satisfies ϕ if (〈T, V 〉, ε) |= ϕ.
In this paper we consider open systems, i.e. systems that interact with their

environment and whose behavior depends on this interaction. The (global) behavior
of such a system is described by an open Kripke structure (called also module [14])
M = 〈AP,Ws,We,→, w0, µ〉, where AP is a finite set of atomic propositions,Ws∪We

is a countable set of (global) states partitioned into a set Ws of system states and
a set We of environment states (we use W to denote Ws ∪We), →⊆ W ×W is a
(global) transition relation, w0 ∈ W is an initial state, and µ : W → 2AP maps
each state w to the set of atomic propositions that hold in w. For w → w′, we say
that w′ is a successor of w. We assume that the states in M are ordered and the
number of successors of each state w, denoted by bd(w), is finite. For each state
w ∈ W , we denote by succ(w) the ordered tuple (possibly empty) of w’s successors.
We say that a state w is terminal if it has no successor. When the module M is
in a non-terminal system state ws, then all the states in succ(ws) are possible next
states. On the other hand, when M is in a non-terminal environment state we, then
the possible next states (that are in succ(we)) depend on the current environment.
Since the behavior of the environment is not predictable, we have to consider all the
possible sub-tuples of succ(we). The only constraint, since we consider environments
that cannot block the system, is that not all the transitions from we are disabled.

The set of all (maximal) computations of M starting from the initial state w0

is described by a W -labelled tree 〈TM , VM 〉, called computation tree, which is ob-
tained by unwinding M in the usual way. The problem of deciding, for a given
branching-time formula ψ over AP , whether 〈TM , µ ◦ VM 〉 satisfies ψ, denoted
M |= ψ, is the usual model-checking problem [5, 17]. On the other hand, for an
open system, 〈TM , VM 〉 corresponds to a very specific environment, i.e. a maxi-
mal environment that never restricts the set of its next states. Therefore, when

1note that π \ {x} is a path starting from the unique child of x in π.

5

we examine a branching-time specification ψ w.r.t. a module M , ψ should hold not
only in 〈TM , VM 〉, but in all the trees obtained by pruning from 〈TM , VM 〉 subtrees
whose root is a child (successor) of a node corresponding to an environment state.
The set of these trees is denoted by exec(M), and is formally defined as follows.
〈T, V 〉 ∈ exec(M) iff T ⊆ TM , V is the restriction of VM to the tree T , and for all
x ∈ T the following holds:

• if VM (x) = w ∈ Ws and succ(w) = 〈w1, . . . , wn〉, then children(T, x) = {x ·
1, . . . , x · n} (note that for 1 ≤ i ≤ n, V (x · i) = VM (x · i) = wi);

• if VM (x) = w ∈ We and succ(w) = 〈w1, . . . , wn〉, then there is a sub-tuple
〈wi1 , . . . , wip〉 of succ(w) such that children(T, x) = {x · i1, . . . , x · ip} (note
that for 1 ≤ j ≤ p, V (x · ij) = VM (x · ij) = wij), and p ≥ 1 if succ(w) is not
empty.

Intuitively, each tree in exec(M) corresponds to a different behavior of the envi-
ronment. In the following, we consider the trees in exec(M) as 2AP -labelled trees,
i.e. taking the label of a node x to be µ(V (x)).

For a module M and a CTL∗ (resp., CTL) formula ψ, we say that M satisfies
ψ, denoted M |=r ψ, if all the trees in exec(M) satisfy ψ. The problem of deciding
whether M satisfies ψ is called module checking [14]. Note that M |=r ψ implies
M |= ψ (since 〈TM , VM 〉 ∈ exec(M)), but the converse in general does not hold.
Also, note that M 6|=r ψ is not equivalent to M |=r ¬ψ. Indeed, M 6|=r ψ just
states that there is some tree 〈T, V 〉 ∈ exec(M) satisfying ¬ψ.

2.2 Pushdown Module Checking

In this paper we consider Modules induced by Open Pushdown Systems (OPD, for
short), i.e., Pushdown systems where the set of configurations is partitioned (in
accordance with the control state and the symbol on the top of the stack) in a set
of environment configurations and a set of system configurations.

An OPD is a tuple S = 〈AP,Γ, P, p0, α0,∆, L, Env〉, where AP is a finite set of
propositions, Γ is a finite stack alphabet, P is a finite set of (control) states, p0 ∈ P
is an initial state, α0 ∈ Γ∗ · γ0 is an initial stack content (where γ0 6∈ Γ is the stack
bottom symbol), ∆ ⊆ (P × (Γ ∪ {γ0})) × (P × Γ∗) is a finite set of transition rules,
L : P ×(Γ∪{γ0}) → 2AP is a labelling function, and Env ⊆ P ×(Γ∪{γ0}) is used to
specify the set of environment configurations. A configuration is a pair (p, α) where
p ∈ P is a control state and α ∈ Γ∗ · γ0 is a stack content. We assume that the set
P × Γ∗ is ordered and for each (p,A) ∈ P × (Γ ∪ {γ0}), we denote by nextS(p,A)
the ordered tuple (possibly empty) of the pairs (q, β) such that 〈(p,A), (q, β)〉 ∈ ∆.

The size |S| of S is |P | + |Γ| + |α0| + |∆|, with |∆| =
∑

〈(p,A),(q,β)〉∈∆ |β|.

An OPD S induces a module MS = 〈AP,Ws,We,→, w0, µ〉, where:

• Ws ∪We = P × Γ∗ · γ0 is the set of pushdown configurations;

• We is the set of configurations (p,A · α) such that (p,A) ∈ Env;

• w0 = (p0, α0);

6

• (p,A · α) → (q, β) iff there is 〈(p,A), (q, β′)〉 ∈ ∆ such that either A ∈ Γ and
β = β′ · α, or A = γ0 (in this case α = ε) and β = β′ · γ0 (note that every
transition that removes the bottom symbol γ0 also pushes it back);

• For all (p,A · β) ∈ Ws ∪We, µ(p,A · β) = L(p,A).

The pushdown module checking problem for CTL (resp., CTL∗) is to decide, for
a given OPD S and a CTL (resp., CTL∗) formula ψ, whether MS |=r ψ.

3 Tree Automata

In order to solve the pushdown module checking problem for CTL and CTL∗, we use
an automata theoretic approach; in particular, we exploit the formalisms of Nonde-
terministic (finite–state) Tree Automata (NTA, for short) [3] and Nondeterministic
Pushdown Tree Automata (PD-NTA, for short) [11].
Nondeterministic (finite–state) Tree Automata (NTA). Here we describe
NTA over (complete) k-ary trees for a given k ≥ 1. Formally, an NTA is a tuple
A = 〈Σ, Q, q0, δ, F 〉, where Σ is a finite input alphabet, Q is a finite set of states,

q0 ∈ Q is an initial state, δ : Q × Σ → 2Q
k

is a transition function, and F is an
acceptance condition. We consider here Büchi and parity acceptance conditions
[3, 8]. In the case of a parity condition, F = {F1, . . . , Fm} is a finite sequence of
subsets of Q, where F1 ⊆ F2 ⊆ . . . ⊆ Fm = Q (m is called the index of A). In the
case of a Büchi condition, F ⊆ Q.

A run of A on a Σ-labelled k-ary tree 〈T, V 〉 (where T = {1, . . . , k}∗) is a Q-
labelled tree 〈T, r〉 such that r(ε) = q0 and for each x ∈ T , we have that 〈r(x ·
1), . . . , r(x · k)〉 ∈ δ(r(x), V (x)). For a path π ⊆ T , let infr(π) ⊆ Q be the set of
states that appear as the labels of infinitely many nodes in π. For a parity acceptance
condition F = {F1, . . . , Fm}, π is accepting if there is an even 1 ≤ i ≤ m such that
infr(π)∩Fi 6= ∅ and for all j < i, infr(π)∩Fj = ∅. For a Büchi condition F ⊆ Q, π
is accepting if infr(π)∩F 6= ∅. A run 〈T, r〉 is accepting if all its paths are accepting.
The automaton A accepts an input tree 〈T, V 〉 iff there is an accepting run of A
over 〈T, V 〉. The language of A, denoted L(A), is the set of Σ-labelled (complete)
k-ary trees accepted by A.

The size|A| of an NTA A is |Q| + |δ| + |F | with |δ| =
∑

(q,σ)∈Q×Σ |δ(q, σ)|.
It is well-known that formulas of CTL and CTL∗ can be translated to tree au-

tomata (accepting the models of the given formula). In particular, we are interested
in optimal translations to parity NTA. Concerning a CTL (resp., CTL∗) formula
ψ, given k ≥ 1, first we build according to [13] a Büchi (resp., parity2) alternating
tree automata A with O(|ψ|) (resp., O(2|ψ|)) states and size O(k · |ψ|) (resp., size
O(k · 2|ψ|) and index O(|ψ|)) accepting exactly the complete k-ary trees satisfying
ψ. Then, according to [19], we can translate A into an equivalent parity NTA whose

size is O(k · 2O(|ψ| log |ψ|)) (resp., O(k · 22O(|ψ|)

)) and whose index is O(|ψ|) (resp.,
O(2|ψ|)).

2[13] gives a translation from CTL∗ to Hesitant alternating tree automata which are a special
case of parity alternating tree automata.

7

Lemma 1 ([13, 19]). Given a CTL (resp., CTL∗) formula ψ over AP and k ≥ 1,

we can construct a parity NTA of size O(k · 2O(|ψ| log |ψ|)) (resp., O(k · 22O(|ψ|)

)) and
index O(|ψ|) (resp., O(2|ψ|)) that accepts exactly the set of 2AP -labelled complete
k-ary trees that satisfy ψ.

Remark 1. Vardi in [19] gives a translation from (two-way) alternating parity tree
automata A to parity NTA A′. Note that the size of the parity NTA A′ is exponential
in k. This depends on the fact that Vardi considers arbitrary memoryless strategies
of the form τ : {1, . . . , k}∗ → 2Q×{1,...,k}×Q where Q is the set of states of A. On
the other hand, if A corresponds to a CTL or CTL∗ formula, then any formula of
B+({1, . . . , k} × Q) occurring in the transition function of A (see [13, 19] for the
definition of the transition function of an alternating tree automata) is a positive

boolean combination of sub-formulas either of the form
∧i=k
i=1(i, q) or of the form∨i=k

i=1(i, q) for some q ∈ Q. This means that we can limit ourselves to consider
strategies τ such that the following holds for each x ∈ {1, . . . , k}∗ and (q, i, p) ∈ τ(x):
either (q, j, p) /∈ τ(x) for each j 6= i or (q, j, p) ∈ τ(x) for each 1 ≤ j ≤ k. This
simple observation applied to the algorithm in [19] provides the desired complexity
linear in k. This is important, since, as we will see in the next section, k depends
on the size of the given pushdown system. Moreover, note that classical translations
[18, 7] from CTL and CTL∗ to NTA lead to NTA whose sizes are exponential in k.

Nondeterministic Pushdown Tree Automata (PD-NTA). Here we describe
PD-NTA (without ε-transitions) over complete k-ary labelled trees. Formally, an
PD-NTA is a tuple P = 〈Σ,Γ, P, p0, α0, ρ, F 〉, where Σ is a finite input alphabet, Γ
is a finite stack alphabet, P is a finite set of (control) states, p0 ∈ P is an initial state,

α0 ∈ Γ∗ ·γ0 is an initial stack content, ρ : P×Σ×(Γ∪{γ0}) → 2(P×Γ∗)k is a transition
function, and F is an acceptance condition over P . Intuitively, when the automaton
is in state p, reading an input node x labelled by σ ∈ Σ, and the stack contains a word
A ·α in Γ∗.γ0, then the automaton chooses a tuple 〈(p1, β1), . . . , (pk, βk)〉 ∈ ρ(p, σ,A)
and splits in k copies such that for each 1 ≤ i ≤ k, a copy in state pi, and stack
content obtained by removing A and pushing βi, is sent to the node x · i in the input
tree.

A run of the PD-NTA P on a Σ-labelled k-ary tree 〈T, V 〉 (with T = {1, . . . , k}∗)
is a (P × Γ∗.γ0)-labelled tree 〈T, r〉 such that r(ε) = (p0, α0) and for each x ∈ T
with r(x) = (p,A · α), there is 〈(p1, β1), . . . , (pk, βk)〉 ∈ ρ(p, V (x), A) such that for
all 1 ≤ i ≤ k, r(x · i) = (pi, βi · α) if A 6= γ0, and r(x · i) = (pi, βi · γ0) otherwise
(note that in this case α = ε).

As with NTA, we consider Büchi and parity acceptance conditions over P . The
notion of accepting path π is defined as for NTA with infr(π) defined as follows:
infr(π) ⊆ P is the set such that p ∈ infr(π) iff there are infinitely many x ∈ π
for which r(x) ∈ {p} × Γ∗ · γ0. A run 〈T, r〉 is accepting if every path π ⊆ T is
accepting. The PD-NTA P accepts an input tree 〈T, V 〉 iff there is an accepting
run of P over 〈T, V 〉. The language of P , denoted L(P), contains all trees accepted
by P . The emptiness problem for PD-NTA is to decide, for a given PD-NTA P ,
whether L(P) = ∅.

8

Proposition 1 ([11]). The emptiness problem for a parity PD-NTA of index m
with n states, and transition function ρ can be solved in time exponential in n ·m · |ρ|
with |ρ| =

∑
〈(p1,β1),...,(pk,βk)〉∈ρ(p,σ,A) |β1| + . . .+ |βk|.

PD-NTA are closed under intersection with NTA.

Proposition 2. For a Büchi PD-NTA P = 〈Σ,Γ, P, p0, α0, ρ, F 〉 with F = P and
a parity NTA A = 〈Σ, Q, q0, δ, F ′〉, there is a parity PD-NTA P ′ such that L(P ′) =
L(P) ∩ L(A). Moreover, P ′ has |P | · |Q| states, the same index as A, and the size
of the transition relation is bounded by |ρ| · |δ|.

Proof. The PD-NTA P ′ is defined as P ′ = 〈Σ,Γ, Q × P, (q0, p0), α0, ρ
′, F ′′〉 such

that 〈((q1, p1), β1), . . . , ((qk, pk), βk)〉 ∈ ρ′((q, p), σ, A) iff 〈(p1, β1), . . . , (pk, βk)〉 ∈
ρ(p, σ,A) and 〈q1, . . . , qk〉 ∈ δ(q, σ). Moreover, if F ′ = {F1, . . . , Fm}, then F ′′ =
{F1 × P, . . . , Fm × P}.

4 Deciding Pushdown Module Checking

In this section we solve the pushdown module checking for both CTL and CTL∗.
First, in subsection 4.1 we give an algorithm based on an automata-theoretic ap-
proach. Then, in subsection 4.2 we give lower bounds that match the upper bounds
provided by our algorithm.

4.1 Upper Bounds

We fix an OPD S = 〈AP,Γ, P, p0, α0,∆, L, Env〉 and a CTL (resp., CTL∗) formula ψ.
We solve the pushdown module-checking problem for S against ψ using an automata-
theoretic approach: we construct a parity PD-NTA PS×¬ψ as the intersection of two
tree automata. Essentially, the first automaton, denoted by PS , is a Büchi PD-NTA
that accepts the trees in exec(MS), and the second automaton is a parity NTA that
accepts the set of trees that do not satisfy ψ. Thus, MS |=r ψ iff L(PS×¬ψ) is empty.
The construction proposed here follows (and extends) that given in [14] for solving
the module-checking problem for finite-state open systems. The extensions concern
the handling of terminal states and the use of pushdown tree automata.

In order to define PS , we consider an equivalent representation of exec(MS) by
complete k-ary trees with k = max{bd(w) | w ∈Ws∪We} (note that for a pushdown
system S, k is finite and can be trivially computed from the transition relation ∆
of S). Recall that each tree in exec(MS) is a 2AP -labelled tree that is obtained
from 〈TMS , VMS 〉 by suitably pruning some of its subtrees. We can encode the
tree 〈TMS , VMS 〉 as a 2AP∪{t}∪{⊥}-labelled complete k-ary tree (where ⊥ and t are
fresh proposition names not belonging to AP) in the following way: first, we add the
proposition t to the label of all leaf nodes (corresponding to terminal global states)
of the tree TMS ; second, for each node x ∈ TMS with p children x · 1, . . . , x · p (note
that 0 ≤ p ≤ k), we add the children x · (p+ 1), . . . , x · k and label these new nodes
with ⊥; finally, for each node x labelled by ⊥ we add recursively k-children labelled
by ⊥. Let 〈{1, . . . , k}∗, V ′〉 be the tree thus obtained. Then, we can encode a tree

9

〈T, V 〉 ∈ exec(MS) as the 2AP∪{t} ∪{⊥}-labelled complete k-ary tree obtained from
〈{1, . . . , k}∗, V ′〉 preserving all the labels of nodes of 〈{1, . . . , k}∗, V ′〉 that either
are labelled by ⊥ or belong to T , and replacing all the labels of nodes (together
with the labels of the corresponding subtrees) pruned in 〈T, V 〉 with the label ⊥.
In this way, all the trees in exec(MS) have the same structure (they all coincide
with {1, . . . , k}∗), and they differ only in their labelling. Thus, the proposition ⊥ is
used to denote both “disabled” states and “completion” states. Moreover, since we
consider environments that do not block the system, for each node associated with
an enabled non-terminal environment state, at least one successor is not labelled
by ⊥. Let us denote by êxec(MS) the set of all 2AP∪{t} ∪ {⊥}-labelled k-ary trees
obtained from 〈{1, . . . , k}∗, V ′〉 in the above described manner. The Büchi PD-NTA
PS = 〈Σ,Γ, P ′, (p0,⊤), α0, ρ, P

′〉, which accepts all and only the trees in êxec(MS),
is defined as follows:

• Σ = 2AP∪{t} ∪ {⊥};

• P ′ = P ×{⊥,⊤,⊢}. From (control) states of the form (p,⊥), PS can read only
the letter ⊥, from states of the form (p,⊤), it can read only letters in 2AP∪{t}.
Finally, when PS is in state (p,⊢), then it can read both letters in 2AP∪{t}

and the letter ⊥. In this last case, it is left to the environment to decide
whether the transition to a configuration of the form ((p,⊢), α) is enabled.
The three types of (control) states are used to ensure that the environment
enables all transitions from enabled system configurations, enables at least
one transition from each enabled non-terminal environment configuration, and
disables transitions from disabled configurations.

• The transition function ρ : P ′×Σ×(Γ∪{γ0}) → 2(P ′×Γ)k is defined as follows.
Let p ∈ P and A ∈ Γ ∪ {γ0} with nextS(p,A) = 〈(p1, β1), . . . , (pd, βd)〉 (where
0 ≤ d ≤ k). Then, for m ∈ {⊤,⊢,⊥} and σ ∈ Σ, ρ((p,m), σ, A) 6= ∅ iff one of
the following holds (where α = A if A ∈ Γ, and α = ε otherwise):

– σ = ⊥ and m ∈ {⊢,⊥}. In this case we have

ρ((p,m),⊥, A) = {〈 ((p,⊥), α), . . . , ((p,⊥), α)︸ ︷︷ ︸
k pairs

〉}

That is, ρ((p,m),⊥, A) contains exactly one k-tuple. In this case all the
successors of the current configuration are disabled.

– σ 6= ⊥, m ∈ {⊢,⊤}, and nextS(p,A) is empty (i.e., d = 0). In this case
σ = L(p,A) ∪ {t} (i.e., the current configuration is terminal) and

ρ((p,m), L(p,A) ∪ {t}, A) = {〈((p,⊥), α), . . . , ((p,⊥), α) 〉}

– σ 6= ⊥, (p,A) /∈ Env, m ∈ {⊢,⊤}, and nextS(p,A) is not empty (i.e.,
d ≥ 1). In this case σ = L(p,A) and ρ((p,m), L(p,A), A) is given by

{〈((p1,⊤), β1), . . . , ((pd,⊤), βd), ((p,⊥), α), . . . , ((p,⊥), α)︸ ︷︷ ︸
k−d pairs

〉}

10

– σ 6= ⊥, (p,A) ∈ Env, m ∈ {⊢,⊤}, and nextS(p,A) is not empty (i.e.,
d ≥ 1). In this case σ = L(p,A) and ρ((p,m), L(p,A), A) is given by

{ 〈((p1,⊤), β1), ((p2,⊢), β1), . . . , ((pd,⊢), βd), ((p,⊥), α), . . . , ((p,⊥), α)〉,
〈((p1,⊢), β1), ((p2,⊤), β1), . . . , ((pd,⊢), βd), ((p,⊥), α), . . . , ((p,⊥), α)〉,

...
〈((p1,⊢), β1), ((p2,⊢), β1), . . . , ((pd,⊤), βd), ((p,⊥), α), . . . , ((p,⊥), α) 〉}.

That is, ρ((p,m), L(p,A), A) contains d k-tuples. When the automaton
proceeds according to the ith tuple, the environment can disable the tran-
sitions to all successors of the current configuration, except the transition
associated with the pair (pi, βi), which must be enabled.

Note that PS has 3 · |P | states, and |ρ| is bounded by k(|P | · |Γ| + |∆|). Assuming
that |P | · |Γ| ≤ |∆|, we have that |ρ| ≤ k · |∆|.

We recall that a node labelled by ⊥ stands for a node that actually does not
exist. Thus, we have to take this into account when we interpret CTL∗ or CTL
formulas over trees 〈T, V 〉 ∈ êxec(MS) (where T = {1, . . . , k}∗). This means that
we have to consider only the paths in 〈T, V 〉 (that we call “legal” paths) that either
never visit a node labelled by ⊥ or contain a terminal node (i.e. a node labelled by
t). Note that a path is not “legal” iff it satisfies the formula ¬t U ⊥. In order to
achieve this, as in [14] we define a function f : CTL∗ formulas → CTL∗ formulas
such that f(ϕ) restricts path quantification to only “legal” paths (the function f we
consider extends that given in [14], since we have to consider also paths that lead to
terminal configurations). The function f is inductively defined as follows:

• f(prop) = prop for any proposition prop ∈ AP ;

• f(¬ϕ) = ¬f(ϕ); • f(ϕ1 ∧ ϕ2) = f(ϕ1) ∧ f(ϕ2);

• f(Eθ) = E((G¬⊥) ∧ f(θ)) ∨ E((F t) ∧ f(θ));

• f(Aθ) = A((¬t U ⊥) ∨ f(θ));

• f(Xθ) = X(f(θ) ∧ ¬⊥); • f(θ1 U θ2) = (f(θ1) ∧ ¬⊥) U (f(θ2) ∧ ¬⊥).

When ϕ is a CTL formula, the formula f(ϕ) is not necessarily a CTL formula,
but it has a restricted syntax: its path formulas have either a single linear-time
operator or two linear-time operators connected by a Boolean operator. By [10],
such formulas have a linear translation to CTL.

By definition of f , it follows that for each formula ϕ and 〈T, V 〉 ∈ êxec(MS),
〈T, V 〉 satisfies f(ϕ) iff the 2AP -labelled tree obtained from 〈T, V 〉 removing all
the nodes labelled by ⊥ (and removing the label t) satisfies ϕ. Therefore, module–
checking S against formula ψ is reduced to check the existence of a tree 〈T, V 〉 ∈
êxec(MS) = L(PS) satisfying f(¬ψ) (note that |f(¬ψ)| = O(|¬ψ|)). We reduce
the latter to check the emptiness of a parity PD-NTA PS×¬ψ that is defined as the
intersection of the Büchi PD-NTA PS with a parity NTA A¬ψ = 〈Σ, Q, q0, δ, F 〉
accepting exactly the Σ-labelled complete k-ary trees that are models of f(¬ψ)

11

(recall that Σ = 2AP∪{t}∪{⊥}). By Lemma 1, if ψ is a CTL (resp., CTL∗) formula,

then A¬ψ has size O(k · 2O(|ψ| log |ψ|)) (resp., O(k · 22O(|ψ|)

)) and index O(|ψ|) (resp.,
O(2|ψ|)). Therefore, by Proposition 2 the following holds:

• If ψ is a CTL formula, then PS×¬ψ has O(k · |P | · 2O(|ψ| log |ψ|)) states, index
O(|ψ|), and transition relation bounded by O(k2 · |∆| · 2O(|ψ| log |ψ|)).

• If ψ is a CTL∗ formula, then PS×¬ψ has O(k·|P |·22O(|ψ|)

) states, index O(2|ψ|),

and transition relation bounded by O(k2 · |∆| · 22O(|ψ|)

).

Therefore, by Proposition 1 we obtain the main result of this subsection.

Theorem 1.

(1) The pushdown module-checking problem for CTL is in 2Exptime.

(2) The pushdown module-checking problem for CTL∗ is in 3Exptime.

(3) For a fixed CTL or CTL∗ formula, the pushdown module-checking problem is
in Exptime.

4.2 Lower Bounds

In this section we give lower bounds for the considered problems that match the
upper bounds of the algorithm proposed in the previous subsection. The lower
bound for CTL (resp., CTL∗) is shown by a reduction from the word problem
for Expspace–bounded (resp., 2Expspace–bounded) alternating Turing Machines.
Without loss of generality, we consider a model of alternation with a binary branch-
ing degree. Formally, an alternating Turing Machine (TM, for short) is a tuple
M = 〈Σ, Q,Q∀, Q∃, q0, δ, F 〉, where Σ is the input alphabet, which contains the
blank symbol #, Q is the finite set of states, which is partitioned into Q = Q∀ ∪Q∃,
Q∃ (resp., Q∀) is the set of existential (resp., universal) states, q0 is the initial state,
F ⊆ Q is the set of accepting states, and the transition function δ is a mapping
δ : Q× Σ → (Q× Σ × {L,R})2.

Configurations of M are words in Σ∗ · (Q×Σ) ·Σ∗. A configuration η · (q, σ) · η′

denotes that the tape content is ηση′, the current state is q, and the reading head
is at position |η| + 1. When M is in state q and reads an input σ ∈ Σ in the
current tape cell, then it nondeterministically chooses a triple (q′, σ′, dir) in δ(q, σ) =
〈(ql, σl, dirl), (qr , σr, dirr)〉, and then moves to state q′, writes σ′ in the current tape
cell, and its reading head moves one cell to the left or to the right, according to dir.
For a configuration c, we denote by succl(c) and succr(c) the successors of c obtained
choosing respectively the left and the right triple in 〈(ql, σl, dirl), (qr, σr, dirr)〉. The
configuration c is accepting if the associated state q belongs to F . Given an input
x ∈ Σ∗, a computation tree of M on x is a tree in which each node corresponds to a
configuration. The root of the tree corresponds to the initial configuration associated
with x3. A node that corresponds to a universal configuration c (i.e. the associated

3We assume that initially M’s reading head is scanning the first cell of the tape

12

state is in Q∀) has two successors, corresponding to succl(c) and succr(c), while a
node that corresponds to an existential configuration c (i.e. the associated state is in
Q∃) has a single successor, corresponding to either succl(c) or succr(c). The tree is
accepting iff all its paths (from the root) reach an accepting configuration. An input
x ∈ Σ∗ is accepted by M iff there exists an accepting computation tree of M on x.

If M is Expspace–bounded (resp., 2Expspace–bounded), then there is a con-
stant k ≥ 1 such that for each x ∈ Σ∗, the space needed by M on input x is bounded

by 2k·|x| (resp., 22k·|x|). It is well-known [4] that 2Exptime (resp., 3Exptime)
coincides with the class of all languages accepted by Expspace–bounded (resp.,
2Expspace–bounded) alternating Turing Machines.

In the following we fix an input word x and let n = k · |x|.

Theorem 2.

(1) The pushdown module checking problem for CTL is 2Exptime–hard.

(2) The pushdown module checking problem for CTL∗ is 3Exptime–hard.

Proof. Here we give the proof for CTL. The proof for CTL∗ is reported in Appendix.
For the Expspace–bounded alternating Turing Machine M = 〈Σ, Q,Q∀, Q∃, q0, δ, F 〉
and the input x, we build an OPD S and a CTL formula ϕ whose sizes are polyno-
mial in n and in |M| such that M accepts x iff there is a tree 〈T, V 〉 ∈ exec(MS)
such that 〈T, V 〉 satisfies ϕ, i.e. iff MS 6|=r ¬ϕ. Some ideas in the proposed reduc-
tion are taken from [12], where there are given lower bounds for the satisfiability of
extensions of CTL and CTL∗.

Note that any reachable configuration of M over x can be seen as a word in
Σ∗ · (Q × Σ) · Σ∗ of length exactly 2n. If x = σ1 . . . σr (where r = |x|), then the
initial configuration is given by (q0, σ1)σ2 . . . σr ## . . .#︸ ︷︷ ︸

2n−r

.

Each cell of a TM configuration is coded using a block of n symbols of the stack
alphabet of S. The whole block is used to encode both the content of the cell and
the location (the number of cell) on the TM tape (note that the number of cell is in
the range [0, 2n − 1] and can be encoded using n bits). The stack alphabet is given
by (Σ ∪ (Q × Σ)) × 2{b,fc,e,cn,l} where b is used to mark the first element of a TM
block, fc to mark the initial TM configuration, e to mark the first element of the
first block of a TM configuration, cn to encode the number of cell, and l to mark a
left TM successor. The pushdown system S proceeds in two phases.

Phase 1 Starting from the initial configuration (with empty stack content), S gen-
erates nondeterministically by push transitions a sequence of TM configurations on
the stack. S ensures that the first TM configuration is the initial TM configuration
(corresponding to the input x). Moreover, the following conditions are satisfied for
any generated TM configuration c:

• S ensures that the symbols b, fc, and e are used properly. Moreover, S ensures
that the last block of c is the unique block in c that has number of cell 2n − 1
(i.e, all its elements are marked by symbol cn).

13

• All global states of S associated with all elements of c except4 the last element
are environment states. S keeps track of the TM state q associated with c by
its finite control. If c is not accepting (i.e., q /∈ F), then the global state s
associated with the last element of c is a system state if c is a TM universal
configuration (i.e., q ∈ Q∀), and it is an environment state otherwise. In such
a state s, S without modifying the stack content chooses a letter 0/1 to encode
the choice of the transition in M. According to such a choice all elements of
the next TM configuration will be marked by the corresponding choice symbol.
In particular, we use the symbol l to mark all elements of a TM left successor.

Note that S does not ensure that the number of blocks of any generated TM config-
uration is exactly 2n (i.e., the cell numbers are updated correctly) and the generated
TM configuration sequence is consistent with the transition function of M. In par-
ticular, concerning the initial TM configuration, S ensures that it has the form
(q0, σ1)σ2 . . . σr## . . ., but S does not ensure that the number of blanks to the right
of σr is exactly 2n − r.

Phase 2 After having generated an accepting configuration, S reaches a system
global state in which chooses between two possible options opt1 and opt2 (without
changing the stack content).

By selecting opt1, S simply empties deterministically the stack by a sequence
of pop transitions. The corresponding subtree of the computation tree of MS re-
duces to a finite linear path π that corresponds to the sequence ν of “pseudo” TM
configurations generated in the first phase in reversed order. We use this subtree
together with a CTL formula ϕopt1 to check that the cell numbers of the sequence
ν are encoded correctly (this implies that each configuration of ν has exactly length
2n). For each node u, let cn(u) be the truth value (1 for true and 0 for false) of the
proposition cn in u. Let us consider two consecutive blocks un . . . u1u

′
n . . . u

′
1 along

π (note that these two blocks appear in reversed order w.r.t. the corresponding
blocks in ν), and let k (resp., k′) be the number of cell of the first block (resp.,
the second block), i.e., the integer whose binary code is given by cn(un) . . . cn(u1)
(resp., cn(u′n) . . . cn(u′1)). We have to require that k = (k′ + 1) mod 2n, and k = 0
iff un . . . u1 is the first block of a TM configuration (i.e. u1 is labelled by proposition
e). Therefore, formula ϕopt1 is defined as follows:

AG
(

(AX)n−1(b ∧ ¬(e ∧ fc)) −→[∨n−1
j=0 [(AX)j(cn ∧ (AX)n¬cn) ∧

∧
i>j(AX)i(¬cn ∧ (AX)ncn) ∧∧

i<j(AX)i(cn ↔ (AX)ncn)] ∧ (AX)n−1¬e
] ∨

[∧n−1
j=0 [(AX)j(¬cn ∧ (AX)ncn)] ∧ (AX)n−1e

])

By selecting opt2, S empties the stack by a sequence of pop transitions with
the additional ability to generate exactly at one block (corresponding to a TM
cell) the symbol check1 and successively5 exactly at one block the symbol check2.
Therefore, a computation in this phase corresponds to the sequence ν of “pseudo”

4for elements of c, we mean the stack symbol occurrences associated with the encoding of c
5if the check1-block does not correspond to the first block of ν

14

TM configurations generated in the first phase in reversed order with exactly one
block marked by check1 and exactly one block marked by check2. Let 〈T, V 〉 be the
corresponding subtree of the computation tree of MS . By construction of S, the
following holds:

1. Each node of T has at most two successors. For each path π of T (from the
root), the nodes that precede the check1-block correspond to system states,
while the nodes that follow the check1-block correspond to environment states.
Moreover, if a node has two successors, then it is labelled by b (i.e., it corre-
sponds to the first element of a TM block). Also, each b-node following the
check1-block and preceding the check2-block (if any) has two successors and
exactly one of these two successors is labelled by check2.

We use the subtree 〈T, V 〉 together with a CTL formula ϕopt2 in order to check that
ν is faithful to the evolution of M.
In order to understand how this can be done, let c = a1 . . . a2n be a TM configuration.
For any 1 ≤ i ≤ 2n, the value a′i of the i-th cell of succl(c) (resp., succr(c)) is
completely determined by the values ai−1, ai and ai+1 (taking a2n+1 for i = 2n and
a0 for i = 1 to be some special symbol). As in [12], we denote by nextl(ai−1, ai, ai+1)
(resp., nextr(ai−1, ai, ai+1)) our expectation for a′i (these functions can be trivially
obtained from the transition function of M).

Let exec(〈T, V 〉) be the set of the trees obtained by pruning from 〈T, V 〉 subtrees
whose root is a child of a node corresponding to an environment state. Note that
by Property 1, each tree 〈T ′, V ′〉 ∈ exec(〈T, V 〉) satisfies the following:

• For each block bl of ν, there is a path in T ′ (from the root) such that the
sequence of nodes associated with bl is labelled by check1.

Formula ϕopt2 will capture all trees 〈T ′, V ′〉 ∈ exec(〈T, V 〉) satisfying the follow-
ing:

A. For each u ∈ T ′ labelled by check1, there is exactly one path in T ′ from u. By
Property 1, we can express this requirement as follows:

ϕA := AG
(
¬(EX check2 ∧ EX ¬check2)

)

B. Let u ∈ T ′ be a b-node labelled by check1 and associated with a block bl1 that
does not belong to the first TM configuration. Then, each path π of T ′ from
u (note that by Property A above such a path is uniquely determined) visits
a b-node u′ associated with a block bl2 marked by check2 such that bl1 and bl2
belong to two consecutive TM configurations along ν and have the same cell
number. Concerning the first requirement, it suffices to specify that there is
exactly a node between u and u′ (excluding u′) in which proposition e holds (we
recall that e marks the first element of the first block of a TM configuration).
Therefore, this requirement can be expressed as follows:

ϕB.1 := AG
(

(b ∧ check1 ∧ ¬fc) −→
A (¬e) U

(
e ∧AX A ((¬e) U (b ∧ check2))

))

15

The second requirement can be expressed as follows:

ϕB.2 := AG
(

(check1 ∧ (AX)n−1 (b ∧ check1 ∧ ¬fc)) −→
[ψ1 ∧ AX(ψ2 ∧ AX(ψ3 ∧ . . . AX(ψn) . . .))]

)

where for any 1 ≤ j ≤ n, the formula ψj is defined as follows

ψj ::=
(
cn → AF (check2 ∧ cn ∧ (AX)n−j(b ∧ check2)

) ∧
(
¬cn → AF (check2 ∧ ¬cn ∧ (AX)n−j(b ∧ check2)

)

C. Let Σ̃ := Σ∪(Q×Σ). Let u ∈ T ′ be a b-node labelled by check1 and with Σ̃-label
σ (and which does not belong to the first TM configuration), and let u′ with

Σ̃-label σ′ be the b-node labelled by check2 belonging to the unique path π
from u (according to property A). Finally, let σp and σs be the Σ̃-labels of the
b-nodes following u′ and preceding u′ along π respectively. By Property B u′

corresponds to a TM block with the same number of cell as u and belonging
to the precedent TM configuration w.r.t. ν. Thus, we have to require that
σ = nextl(σp, σ

′, σs) if u corresponds to a block of the left successor of the
configuration associated with u′ (i.e., u is labelled by proposition l), and σ =
nextr(σp, σ

′, σs) otherwise. This requirement is expressed by the following
CTL formula ϕC . We distinguish three cases depending on whether u belongs
to the first block, to the last block or to a non-extremal block of the associated
TM configuration. For simplicity, we consider only the case in which u belongs
to a non-extremal block. The other cases can be handled similarly.

ϕC := AG
([

(b ∧ check1 ∧ ¬fc ∧ ¬e ∧ ¬AF (e ∧AX check2)) −→(∨
σ1,σ2,σ3∈Σ̃ AF (σ1 ∧ (AX)n(σ2 ∧ b ∧ check2 ∧ (AX)nσ3)∧

(l → nextl(σ3, σ2, σ1))
∧

(¬l → nextr(σ3, σ2, σ1))
)])

Therefore, ϕopt2 is given by ϕA ∧ ϕB.1 ∧ϕB.2 ∧ ϕC . It is clear that assuming that
the cell numbers of ν are encoded correctly (this is guaranteed by formula ϕopt1),
then ν is a legal sequence of TM configurations iff there is 〈T ′, V ′〉 ∈ exec(〈T, V 〉)
satisfying ϕopt2 .

By considerations above, we deduce that M accepts x iff there is 〈T, V 〉 ∈
exec(MS) such that each path of T (from the root) reaches a node u corresponding
to the last element of an accepting TM configuration and the following holds: the
subtree associated with the opt1-child (resp., opt2-child) of u satisfies formula ϕopt1
(resp., ϕopt2). Therefore, formula ϕ is defined as follows:

AF
(
EX(opt1 ∧ ϕopt1) ∧ EX(opt2 ∧ ϕopt2)

)

The construction of the OPD S is simple. Thus, we omit the details.

Now, we can prove the main result of this paper.

16

Theorem 3.

(1) The pushdown module-checking problem for CTL is 2Exptime-complete.

(2) The pushdown module-checking problem for CTL∗ is 3Exptime-complete.

(3) The pushdown module-checking problem for both CTL and CTL∗ is Exptime-
complete in the size of the given OPD.

Proof. Claims 1 and 2 directly follow from Theorems 1 and 2. Now, let us consider
Claim 3. First, we note that model checking pushdown systems corresponds to
module checking the class of OPD in which there are not environment configurations.
Moreover, pushdown model checking against CTL is known to be Exptime-complete
also for a fixed formula [2]. Thus, Claim 3 follows from Theorem 1.

5 Conclusion

In [14], module checking has been introduced as a useful framework for the verifi-
cation of open finite–state systems. There, it has been shown that while for LTL
the complexity of the model checking problem coincides with that of module check-
ing (i.e., it is Pspace-complete), for the branching time paradigm the problem of
module checking is much harder. In fact, CTL (resp., CTL∗) module checking of
finite-state systems is Exptime-complete (resp. 2Exptime-complete).

In this paper, we have extended the framework of module checking problem to
pushdown systems. Figure 1 below summarizes our results on pushdown module
checking and compares them with those known on pushdown model checking. All
the complexities in the figure denote tight bounds (except for the system complexity
of the pushdown model checking against LTL). Our complexities results provide an
additional evidence that for pushdown systems, checking CTL or CTL∗ properties
is actually harder than checking LTL properties.

Model Checking System complexity Module Checking System complexity

of Model Checking of Module Checking

LTL Exptime ∈ Ptime Exptime ∈ Ptime

[1] [1]

CTL Exptime Exptime 2Exptime Exptime

[21] [2]
CTL∗

2Exptime Exptime 3Exptime Exptime

[2] [2]

Figure 1: Complexity results on pushdown module checking and pushdown model
checking

17

A Appendix

A.1 Lower bound for CTL∗

Let M = 〈Σ, Q,Q∀, Q∃, q0, δ, F 〉 be a 2Expspace–bounded alternating Turing Ma-
chine, and let k be a constant such that for each input x ∈ Σ∗, the space needed

by M on input x is bounded by 22k·|x| . Given an input x ∈ Σ∗, we build an OPD
S and a CTL∗ formula ϕ whose sizes are polynomial in n = k · |x| and in |M| such
that M accepts x iff there is a tree 〈T, V 〉 ∈ exec(MS) such that 〈T, V 〉 satisfies ϕ,
i.e. iff MS 6|=r ¬ϕ.

Note that any reachable configuration of M over x can be seen as a word in
Σ∗ · (Q × Σ) · Σ∗ of length exactly 22n . If x = σ1 . . . σr (where r = |x|), then the
initial configuration is given by (q0, σ1)σ2 . . . σr ## . . .#︸ ︷︷ ︸

22n−r

.

As in [12] we use two counters to encode the number of a TM cell. Since the
number of cell is in the range [0, 22n − 1], it can be encoded using a 2n-bit counter.
Moreover, we also use an n-bit counter in order to keep track of the position (index)
of each bit of our 2n-bit counter. Therefore, each cell of a TM configuration is coded
using a block of n · 2n symbols of the stack alphabet of S. This means that each
block is a sequence of 2n sub-blocks of length n, where for each 1 ≤ i ≤ 2n, the i-th
sub-block is used to encode the value (which is maintained in the first element of
the sub-block) and the position (which is given by i− 1) of the i-th bit of the 2n-bit
counter. Moreover, the content of the cell (a symbol in Σ ∪ (Q× Σ)) is maintained
in the first element of the block. We use the proposition cn1 (resp., cn2) to encode
the value of each bit of the 2n-bit (resp., n-bit) counter. For instance, a sub-block in
which each element is marked by cn2 corresponds to the last sub-block of the given
block.

As the OPD for the CTL case, S proceeds in two phases. The first phase, in
which S generates nondeterministically a sequence of “pseudo” TM configurations
on the stack, is identical to that for the CTL case, with the only difference that S,
in addition, uses the proposition sb to mark the first element of a TM sub-block,
and the proposition cn2 to encode the n-bit counter. Note that in this phase S does
not ensure that the number of blocks of any generated TM configuration is exactly
22n , the number of sub-blocks of each TM block is exactly 2n, and the generated
configuration sequence is consistent with the transition function of M.

After having generated an accepting configuration, S reaches a system global
state in which chooses between two possible options opt1 and opt2. Let ν be the
sequence of TM configurations generated in the first phase. We use the subtree
rooted at opt1 together with a suitable CTL∗ formula ϕopt1 to check that the cell
numbers of the sequence ν have been encoded correctly (i.e., the 2n-bit and n-bit
counters have been encoded properly). This part of the construction is not very
difficult, and therefore, we omit it. Finally, we use the subtree rooted at opt2, say
〈T2, V2〉, together with a CTL∗ formula ϕopt2 in order to check that ν is faithful to
the evolution of M. Since this part of the construction is not trivial, we describe it
in detail.

By selecting opt2, S empties the stack by a sequence of pop transitions and at

18

the same time, it performs the following operations:

1. S generates nondeterministically exactly at one TM block bl of ν the symbol
check1. All the global states associated with TM blocks that precede bl are
system states.

2. After having generated at a TM block the symbol check1, S eventually and
nondeterministically selects an option, opt3, at the end of a TM block bl (con-
sidering ν in reversed order) without changing the stack content. The cor-
responding pushdown configuration is a system state. In such a state s, S
chooses, without changing the stack content, two possible sub-options: opt13
and opt23. Let bl1 be the TM block (if any) following bl (considering ν in
reversed order), and let bl2 be the TM block (if any) following bl1. Then:

2.1. By choosing opt13, S empties the stack deterministically and generates at
TM block bl1 (resp., bl2) the symbol curBlock (resp., precBlock).

2.2. Choosing opt23, S empties the stack with the additional ability to gen-
erate nondeterministically at most at one sub-block of bl1 the symbol
curSubBlock. All global states of S in this phase are system states.

3. All global states that precede opt3 and follow check1 are environment states.

Figure 2 (resp., 3) shows the structure of a subtree rooted at opt2 (resp., opt3).

opt2

�r @r

�
�

�

@
@

@System State r

check1

r ?

6
TM Block

�r @r rXXXX
opt3

?

6
TM Block

�
�

�

@
@

@System State r

check1

r r

�r @r r r

XXX
opt3

XXXX
opt3
.
.
.

.

.

..
.
.

.

.

.

�
�

�

@
@

@r

check1

r r r

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r

Environment State

.

.

.

.

.

.

.

.

.

.

.

.

XXX
opt3
.
.
.

.

.

..
.
.

.

.

.
r

r

XXX
opt3
.
.
.

.

.

..
.
.

.

.

.
r

.

.

.

.

.

..
.
.

.

.

.

Figure 2: Structure of a subtree rooted at a opt2 node.

Formula ϕopt2 captures all 〈T, V 〉 ∈ exec(〈T2, V2〉) satisfying the following:

19

opt3

�
�

�

@
@

@

opt13 opt23.
.
..
.
.

.

.

..

.

.r

r

currBlock

r

r

prevBlock

r

.

.

..

.

.

.

.

..

.

.

opt23

�@r r

r r

curSubBlock
�

�
�

@
@

@

?

6
TM subBlock

r r r�@

�
�

�

@
@

@
curSubBlock

System State

r r r

@�r r

�
�

�

@
@

@

System State

curSubBlock
r...
......
...

r

r r r

6

?

TM Block

Figure 3: Structure of a subtree rooted at an opt3 node.

A. For each TM block bl of ν, there is a path π in 〈T, V 〉 such that the sequence
of nodes associated with bl is labelled by check1. By Property 1 above, each
〈T, V 〉 ∈ exec(〈T2, V2〉) satisfies this requirement.

B. Let u ∈ T be a b-node labelled by check1 and associated with a TM block bl, and
let Tu be the subtree of T rooted at u. Moreover, let T2,u be the subtree of T2

rooted at u. By Property 2 above, for each TM block bl′ that precedes bl w.r.t.
ν, there is a path π of T2,u such that all and only the nodes of π corresponding
to block bl′ are labelled by proposition curBlock. Since we have to check
consistency of ν with respect to functions nextl and nextr, for the given block
bl (assuming that it does not belong to the initial TM configuration) we want
to be able to select the TM block having the same number of cell as bl and
belonging to the previous TM configuration w.r.t. ν. In order to achieve this,
first we have to allow the selection of at most one TM block bl′ labelled by
curBlock in the tree Tu. By construction (see Figures 2 and 3) this requirement
can be specified as

ϕB := AG
(
¬(EX opt3 ∧ EX ¬opt3)

)

C. For each b-node u ∈ T labelled by check1 (and which does not belong to the
first TM configuration of ν), there is a path π from u that visits a b-node u′

labelled by currBlock (note that by Property B above there is at most one
path from u satisfying this requirement). Moreover, the TM blocks bl and bl′

associated with u and u′, respectively, have the same cell number and belong
to successive configurations w.r.t. ν. Concerning the second requirement, this
can be expressed as follows:

ϕC.1 := AG
(

(b ∧ check1 ∧ ¬fc) −→
E

(
¬e U (e ∧X (¬e U (b ∧ currBlock)))

))

20

Formula ϕC.1 asserts that there is exactly a node between u and u′ (excluding
u′) in which e holds (we recall that proposition e marks the first element of
the first block of a TM configuration).
Now, let us consider the first requirement. Formulas ϕB and ϕC.1 ensure that
there is exactly one node labelled by opt3 in the subtree of T rooted at u. Let v
be the successor of such a node labelled by opt23 (according to Property 2 above)
and let Tv be the subtree of T rooted at v. By Property 2.2 above, for each
sub-block of bl′ there is exactly one path in Tv such that all and only the nodes
corresponding to such sub-block are labelled by the proposition curSubBlock.
Therefore, it suffices to require that for each sb-node w corresponding to the
first element of some sub-block sbl of bl there is a path π from w that visits
a sub-block sbl′ labelled by curSubBlock such that (i) the value of the n-bit
counter at two sub-blocks sbl1 and sbl2 is the same (i.e., sbl1 and sbl2 have
the same position w.r.t. the associated TM block) and (ii) the bit value of the
2n-bit counter at sbl1 and sbl2 is the same. This requirement can be expressed
by the following CTL∗ formula

ϕC.2 := AG
(

(check1 ∧ (EX)n−1 (sb ∧ check1 ∧ ¬fc)) −→
E[ψ1 ∧ X(ψ2 ∧ X(ψ3 ∧ . . . ∧X(ψn ∧ φ) . . .))]

)

where for any 1 ≤ j ≤ n, the path formula ψj is defined as follows:

(
cn2 → F (curSubBlock ∧ cn2 ∧ (X)n−j(sb ∧ curSubBlock)

) ∧
(
¬cn2 → F (curSubBlock ∧ ¬cn2 ∧ (X)n−j(sb ∧ curSubBlock)

)

end the path formula φ is defined as follows:

cn1 → F (curSubBlock ∧ sb ∧ cn1)
∧

¬cn1 → F (curSubBlock ∧ sb ∧ ¬cn1)

We recall that proposition cn1 (resp., cn2) is used to encode the value of each
bit of the 2n-bit (resp., n-bit) counter.

D. Let Σ̃ = Σ ∪ (Q × Σ). Let u ∈ T be a b-node labelled by check1, with Σ̃-
label σ, and associated with a TM block bl that does not belong to the first
TM configuration. By Properties B and C above, there is exactly one path
π from u that visits a node u′ labelled by opt3. Moreover, u′ is followed
(along π) from a sequence of nodes labelled by currBlock associated with a
TM block bl′ with the same cell number as bl and belonging to the precedent
TM configuration w.r.t. ν. Also, by Property 2.1 above, the TM block blp (if

any) following bl′ (along π) is labelled by precBlock. Let σs be the Σ̃-value

of node u′, and σ′ (resp., σp) be the Σ̃-value of the TM block bl′ (blp). We
have to require that σ = nextl(σp, σ

′, σs) if u corresponds to a block of the
left successor of the configuration associated with u′ (i.e., u is labelled by l),
and σ = nextr(σp, σ

′, σs) otherwise. This requirement can be expressed by the
following CTL∗ formula ϕD. We distinguish three cases depending on whether
u belongs to the first block, to the last block or to a non-extremal block of

21

the associated TM configuration. For simplicity, we consider only the case
in which u belongs to a non-extremal block. The other cases can be handled
similarly.

AG
[(
b ∧ check1 ∧ ¬fc ∧ ¬e ∧ ¬EF (e ∧ opt3)

)
−→(∨

σ1,σ2,σ3∈Σ̃ E(F (σ1 ∧ opt3 ∧ F (σ2 ∧ b ∧ currBlock ∧
F (σ3 ∧ b ∧ precBlock))))

∧

(l → nextl(σ3, σ2, σ1))
∧

(¬l → nextr(σ3, σ2, σ1))
)]

Therefore, ϕopt2 is given by ϕB ∧ ϕC.1 ∧ϕC.2 ∧ ϕD. Finally, formula ϕ is defined
in terms of ϕopt1 and ϕopt2 exactly as for the CTL case.

References

[1] A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown
Automata: Application to Model-Checking. In Proc. 8th International Con-
ference on Concurrency Theory (CONCUR’97), LNCS 1243, pages 135–150.
Springer-Verlag, 1997.

[2] L. Bozzelli. Complexity Results on Branching-Time Pushdown Model Check-
ing. In Proc. 7th Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’06), LNCS 3855, pages 65–79. Springer-Verlag, 2006.

[3] J.R. Buchi. On a decision method in restricted second order arithmetic. In Proc.
Internat. Congr. Logic, Method. and Philos. Sci. 1960, pages 1–12, Stanford,
1962.

[4] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981.

[5] E.M. Clarke and E.A. Emerson. Design and verification of synchronization
skeletons using branching time temporal logic. In Proceedings of Workshop on
Logic of Programs, LNCS 131, pages 52–71. Springer-Verlag, 1981.

[6] E.A. Emerson and J.Y. Halpern. Sometimes and not never revisited: On branch-
ing versus linear time. Journal of the ACM, 33(1):151–178, 1986.

[7] E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics
of programs. In 29th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’88), pages 328–337, 1988.

[8] E.A. Emerson and C.S. Jutla. Tree automata, µ-calculus and determinacy.
In 32nd Annual IEEE Symposium on the Foundations of Computer Science
(FOCS’91), pages 368–377, 1991.

[9] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

22

[10] O. Kupferman and O. Grumberg. Buy one, get one free!!! Journal of Logic and
Computation, 6(4):523–539, 1996.

[11] O. Kupferman, N. Piterman, and M.Y. Vardi. Pushdown specifications. In
9th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’02), LNAI 2514, pages 262–277. Springer-Verlag, 2002.

[12] O. Kupferman, P.S. Thiagarajan, P. Madhusudan, and M.Y. Vardi. Open sys-
tems in reactive environments: Control and Synthesis. In Proc. 11th Interna-
tional Conference on Concurrency Theory (CONCUR’00), LNCS 1877, pages
92–107. Springer-Verlag, 2000.

[13] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata-Theoretic Approach
to Branching-Time Model Checking. Journal of the ACM, 47(2):312–360, 2000.

[14] O. Kupferman, M.Y. Vardi, and P. Wolper. Module Checking. Information and
Computation, 164(2):322–344, 2001.

[15] C. Loding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proc.
24th Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FST&TCS’04), pages 408–420. Springer-Verlag, 2004.

[16] D.E. Muller and P.E. Shupp. The theory of ends, pushdown automata, and
second-order logic. Theoretical Computer Science, 37:51–75, 1985.

[17] J.P. Queille and J. Sifakis. Specification and verification of concurrent programs
in Cesar. In Proceedings of the Fifth International Symposium on Programming,
LNCS 137, pages 337–351. Springer-Verlag, 1981.

[18] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. J. of Computer and System Sciences, 32(2):182–221, 1986.

[19] M.Y. Vardi. Reasoning about the past with two-way automata. In Proc.
25th International Colloquium on Automata, Languages and Programming
(ICALP’98), LNCS 1443, pages 628–641. Springer-Verlag, 1998.

[20] I. Walukiewicz. Pushdown processes: Games and Model Checking. In Proc.
8th International Conference on Computer Aided Verification (CAV’96), LNCS
1102, pages 62–74. Springer-Verlag, 1996.

[21] I. Walukiewicz. Model checking CTL properties of pushdown systems. In Proc.
20th Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FST&TCS’00), LNCS 1974, pages 127–138. Springer-Verlag,
2000.

23

