
Pushdown Multi-Agent System Verification

Aniello Murano1∗ and Giuseppe Perelli1,2 ∗

1Università degli studi di Napoli “Federico II”, 2University of Oxford

Abstract

In this paper we investigate the model-checking
problem of pushdown multi-agent systems for
ATL? specifications. To this aim, we introduce
pushdown game structures over which ATL?

formulas are interpreted. We show an algo-
rithm that solves the addressed model-checking
problem in 3ExpTime. We also provide a
2ExpSpace lower bound by showing a reduc-
tion from the word acceptance problem for de-
terministic Turing machines with doubly expo-
nential space.

1 Introduction
Model Checking is a well-established method widely used
to verify hardware and software systems [Clarke et al.,
2002]. The idea is simple and appealing: we use a math-
ematical model of the system we want to validate and
check it over a formal specification of its desired behav-
ior [Clarke and Emerson, 1981,Queille and Sifakis, 1981].

In the eighties, early use of model checking mainly
considered finite-state closed systems, modeled as Kripke
structures, and specifications given in terms of temporal-
logic formulas [Pnueli, 1977]. The conceived algorithms,
however, turn less appropriate in open-system verification
as one has to take into account also the uncertainty
about the agents’ behavior. As a first solution, module
checking [Kupferman et al., 2001] came out with its ability
of handling the interaction between the system and an
external unpredicted environment. Precisely it takes as
inputs a graph partitioned in two sets (called a module)
M and a formula ϕ, and checks whether M reactively
satisfies ϕ, i.e., no matter how the environment behaves.

Starting from the works on module checking, two sig-
nificant directions have been taken in open-system verifi-
cation. One concerns extending the framework to more
sophisticated systems while maintaining the dichotomy
system-environment states in modeling. In this context,
worthy of mention is the work on pushdown module check-
ing [Bozzelli et al., 2010]. This has the merit of having

∗This work has been partially supported by the ERC
Advanced Grant “RACE” (291528) at Oxford and the FP7
EU project 600958-SHERPA.

handled the verification of infinite-state open systems
and, thanks to the fact that the infinite number of states
is induced by a recursive structure of finite size, the prob-
lem turns out to be decidable and precisely 3ExpTime-
complete for specifications in CTL?. Another direction
has instead completely redesigned the module checking
approach in order to handle the more involved scenario
of multi-agent (concurrent) systems. To let the temporal-
logic framework working within this setting, Alternating-
Time Temporal Logic (ATL?, for short) [Alur et al., 2002]
has been introduced. This logic generalizes CTL? by
means of strategic quantifiers. ATL? formulas are inter-
preted over concurrent game structures (CGS, for short).
Given an ATL? formula 〈〈A〉〉ψ, with A set of agents, it
is satisfied over a CGS G if there exists a strategy for
the agents in A such that, no matter which strategy is
executed by agents not in A, the resulting outcome in
G satisfies ψ. As for finite-state CTL? module checking,
the model-checking problem for specifications in ATL?

turns out to be 2ExpTime-complete. However, the
two approaches are incomparable as in module checking
it is possible to use nondeterministic strategies.

Despite the undoubted utility of considering, from
one hand, infinite-state open-system models induced by
finite-size recursive structures and, from the other hand,
multi-agent specifications, to the best of our knowledge
no work has been devoted to the combination of the two.

In this paper, we consider multi-agent pushdown sys-
tems and address the related model checking problem for
specifications expressed in ATL?. To this aim, we first
introduce pushdown game structures to properly model
the infinite-state multi-agent system and formalize the
model checking question. Then, by means of an automata-
theoretic approach, we provide a 3ExpTime solution to
the addressed problem. Precisely, we construct a doubly-
exponential size pushdown parity tree automaton that
collects all execution trees satisfying the ATL? formula.
Then by using the fact that the emptiness of this au-
tomaton can be checked in exponential time [Kupferman
et al., 2002], we get the desired result. We also provide
a 2ExpSpace lower bound by showing a reduction from
the word acceptance problem for a deterministic Turing
machine with doubly exponential space.

Related works. In recent years, model checking of
pushdown systems has received a lot of attention, largely
due to the ability of these systems to capture the flow
of procedure of calls and returns in programs [Alur
et al., 2005]. The work in this area started with Muller
and Schupp, who showed that the monadic second-
order theory of graphs induced by pushdown systems
is decidable [Muller and Schupp, 1985]. Walukiewicz
in [Walukiewicz, 1996] showed that the model check-
ing for pushdown systems with respect to modal µ-
calculus is ExpTime-complete. The problem remains
ExpTime-complete also for CTL and LTL, while it
becomes 2ExpTime-complete for CTL? [Walukiewicz,
2000, Bouajjani et al., 1997]. In [Bozzelli et al., 2010],
open pushdown systems along with the module check-
ing paradigm have been considered. This setting has
been investigated under several restrictions including the
imperfect-information case [Aminof et al., 2013].

Literature on model checking of ATL? is also wide.
This problem has been investigated under different set-
tings and inspired powerful formalisms for the strate-
gic reasoning (see [Bulling, 2014], for a recent survey).
Model checkers for ATL and ATL? also exist, such as
MCMAS [Lomuscio and Raimondi, 2006,Cermák et al.,
2014,Cermák et al., 2015].

Outline The rest of the paper is organized as follows.
In Section 2 we introduce PGSs and provide an example
to help clarifying the setting. There, we also show how
a PGS can be embedded into an infinite-state CGS.
In Section 3 we recall the syntax and the semantics of
ATL? over CGSs and define the model-checking problem
of ATL? over PGSs. In Section 4 we show that the latter
can be solved in 3ExpTime by means of an automata-
theoretic approach. There, we also show a 2ExpSpace-
hard lower bound. Finally, in Section 5 we summarize
the achieved results and discuss some future work.

2 Pushdown Game Structures
Classically, ATL? formulas are interpreted over Concur-
rent Game Structures [Alur et al., 2002]. In this paper,
we instead interpret ATL? formulas over a new semantic
framework, which we call Pushdown Game Structure. In-
tuitively, this new formalism provides a concurrent game
structure in which a stack is added and the labeling and
transition functions depend on its content. In this section,
we also show that every pushdown game structure can be
transformed into a suitable concurrent game structure, so
providing the required interpretation of ATL? formulas
over the former. However, note that the latter requires a
infinite number of states, used to represent all the possi-
ble configurations the pushdown system can enter. We
start with the definition of pushdown game structures.

Definition 2.1 (Pushdown Game Structure) A
Pushdown Game Structure (PGS, for short) is a tuple
P = 〈AP,Ag,Ac,Loc,Γ, tr, ap, l〉, where AP, Ag, Ac,
Loc and Γ are finite sets of atomic propositions, agents,
actions, locations, and stack alphabet, respectively,

l ∈ Loc is an initial location, and ap : Loc× Γ⊥ → 2AP

is a labeling function, where Γ⊥ = Γ ∪ {⊥} and ⊥ is
the special bottom stack symbol not contained in Γ. Let
Dc , AcAg be the set of decisions, i.e., functions from
Ag to Ac representing the action choices for each agent.
Then, tr : Loc × Γ⊥ × Dc → Loc × Γ∗⊥ is a transition
function mapping a location, a stack symbol, and a
decision to a location and a word in the stack alphabet.

A pair s = (l, α) ∈ St , Loc × (Γ∗ · {⊥}) is called
state or configuration. We write top(α) for the left most
symbol of α and call it the top of the stack content α.
The PGS moves according to the transition function.
This means that, if it is in the location l, the top of the
stack content is γ, and the agents make a decision d, then
tr(l, γ, d) = (l′, α) means that the execution moves to the
location l′ and the symbol γ is replaced with α on the
top of the stack content. We assume that, if ⊥ is popped,
then it is pushed right back, and that is the only case
in which it is pushed. This means that ⊥ is always on
the bottom of the stack and nowhere else. The stack
containing only the symbol ⊥ is said to be empty.

As the stack has no a priori bound on its size, the set
St is assumed to be possibly infinite. Saying this, it turns
out that PGSs are infinite-state multi-agent systems.

The notion of labeling and transition can be lifted
to states, as follows. For a state s = (l, α), we define
ap(s) = ap(l, top(α)). Moreover, for a decision d ∈ Dc, we
define tr((l, γ · α), d) = (l′, β · α), with (l′, β) = tr(l, γ, d).

Note that for a classical pop we write the empty word
ε on the stack. To make a classical push one has to first
put back the read top symbol and then push the required
word. The transition function also allows to perform in
one step a pop-push operation that replaces the top stack
symbol with the required word.

For our convenience, we consider also two-player turn-
based one-symbol stack games of the form P = 〈AP,
{E, A},Loc,LocE,LocA,R, ap, l〉 where LocE and LocA are
the sets of locations belonging to players E and A, respec-
tively, and R ⊆ (Loc × {γ,⊥}) × (Loc × {push, , pop}),
where γ is the only alphabet symbol of the stack, and
push, pop, and are the push, pop, and null operation on
the stack. If (l, x, l′, op) ∈ R, then, for each configuration
(l, α) with top(α) = x we can move to the configuration
(l′, α′) with α′ being the string obtained from α by apply-
ing the stack operation op. At each configuration (l, α) of
the game, the owner of the location l can pick a successor,
according to the relation R. It is not hard to see that
two-player turn-based one-symbol stack games are special
cases of PGSs

To get familiar with PGSs, we give an example.

Example 2.1 (Pushdown scheduler) Take a system
consisting of two processes a and b that may access to
a common resource via the respective requests ra and
rb and a scheduler s that can grant in a LIFO order
the processes requests, all memorized into a stack. As
model we use a PGS P =〈AP,Ag,Ac,Loc,Γ, tr, ap, l〉,
with AP = {ra, rb, ga, gb, a, b, e}, Ag = {s, a, b}, Ac =
{a, b, un, 0, 1}, Loc = {l, la, lb, lun}, and Γ = {ra, rb}.

The scheduler s controls the location l by means of the
actions a, b, and un, standing for “a can make a request”,

“b can make a request”, and “the system can unload the
stack requests”, respectively. Accordingly, they lead to
the locations la, lb, and lun. On la and lb, the agents a
and b, respectively, can either make a request via action
1 or skip it with action 0. In the former case, the request
is recorded into the stack by writing the symbol rx, for
x ∈ {a, b}; otherwise, in the latter case there is no opera-
tion over the stack. Finally, the location lun triggers the
granting phase by emptying the stack. During this phase,
neither a nor b can make any further request. This can be
seen as a legitimate constraint by thinking how classical
synchronizing and backup systems are designed.

The labeling function, for all γ ∈ Γ⊥ and x ∈ {a, b}, is
defined as follows: ap(l,⊥) = ∅, ap(l, rx) = {x},
ap(lx, γ) = {x}, ap(lun, rx) = {gx}, and ap(lun,⊥) = {e}.
Intuitively, propositions a and b means that agents a and
b are authorized to make a request, respectively. The
proposition rx, instead, occurs when the corresponding
request has been just made by agent x. On the other
hand, the proposition gx occurs when the request rx has
been just granted. Finally, e indicates that the unloading
phase is terminated and so the stack is empty.

The transition function tr is described directly in Fig-
ure 1. The labeling of the edges have the following mean-
ing. First, note that it is composed of two parts separated
by a semi-column. The left part represents the decision
of the agents, given in the order s < a < b. The right
part represents the stack operation. As an example, the
label ∗1∗; push(ra) says that agent a is making a request
ra and the symbol ra is pushed on the stack, where the
symbol ∗ denotes any possible action for the other agents.

The nodes represent all possible states. Note that, for
the locations la and lb we have collapsed the two possible
configurations with β = ⊥ and β 6= ⊥ since the transition
over them does not depend on the stack content.

Finally, observe that the stack is unbounded and so an
execution might generate an infinite number of distin-
guished states. Also, observe that the stack is fundamental
to keep track of the order in which the requests appear.

l, β

lun, β

lun,⊥

l,⊥

la, α lb, α

a ∗ ∗; ε b ∗ ∗; ε

a ∗ ∗; ε b ∗ ∗; εun ∗ ∗; ε

∗1∗; push(ra)
∗0∗; ε

∗ ∗ 1; push(rb)
∗ ∗ 0; ε

∗∗∗; pop

∗∗∗; pop

∗ ∗ ∗; ε

Figure 1: A Pushdown system scheduler.

To correctly interpret ATL? formulas over PGSs, we
show that a PGS can be represented as an infinite-state
concurrent game structure, whose definition follows. Note

that we use the one reported in [Mogavero et al., 2014].

Definition 2.2 (Concurrent Game Structures) A
concurrent game structure (CGS, for short) is a tuple

G , 〈AP,Ag,Ac,St, tr, ap, s〉, where AP, Ag, and Ac
are as in PGS. St is an enumerable non-empty set of
states, s ∈ St is an initial state, and ap : St→ 2AP is a
labeling function mapping each state to a set of atomic
propositions true in that state. Finally, tr : St×Dc→ St
is a transition function mapping pairs of states and
decisions to states, where the set Dc is as in PGS.

Clearly, a PGS P =〈AP,Ag,Ac,Loc,Γ, tr, ap, l〉 can
be suitably turned into a CGS GP = 〈AP,Ag,Ac,St,
tr, ap, s〉, where St = Loc × Γ∗⊥, s = (l,⊥), and the
functions ap and tr are the lifting on states of the cor-
responding functions in P. Intuitively, the states of G
are used to implicitly represent both the current location
and store the stack content. Despite this, it is important
to observe that, while a PGS has a finite number of
control locations, the corresponding CGS necessarily has
an infinite number of control states, as the number of
different stack contents is unbounded.

We conclude this section by briefly recalling the clas-
sical notions of track, path, strategies and assignments,
which are required for the semantics of ATL? (see [Mo-
gavero et al., 2014], for more). Intuitively, tracks and
paths are legal sequences of reachable states, respec-
tively seen as partial and complete descriptions of pos-
sible outcomes over a CGS. Formally, a track (resp.,
path) in a CGS is a finite (resp., an infinite) sequence
of states ρ ∈ St∗ (resp., π ∈ Stω) such that, for all
i ∈ [0, |ρ| − 1[(resp., i ∈ N), there is a decision d ∈ Dc
with (ρ)i+1 = tr((ρ)i, d) (resp., (π)i+1 = tr((π)i, d)). The
set Trk ⊆ St+ (resp., Pth ⊆ Stω) contains all non-empty

tracks (resp., paths). Moreover, Trk(s) , {ρ ∈ Trk :

(ρ)0 = s} (resp., Pth(s) , {π ∈ Pth : (π)0 = s}) denotes
the subsets of tracks (resp., paths) starting at a state s.

A strategy for an agent is a scheme containing all
choices of actions, depending on the current outcome.
Formally, a strategy in a CGS is a function f : Trk→ Ac
that maps each non-empty track to an action. The set
Str contains all strategies. For a given subset A ⊆ Ag
of agents, an assignment over A is a partial function
χA : Ag ⇀ Str, mapping each agent in A to a strategy.
By Asg we denote the set of assignments. A path is
compatible with an assignment χA if it is obtained by
agents in A using strategies in χA. More formally, for
a given set A ⊆ Ag and an assignment χA over A, we
say that a path π is compatible with χA if, for all i ∈ N
it holds that (π)i+1 = tr((π)i, d), for some d ∈ Dc with

d(a) , χAsg(a)((π)≤i), for each a ∈ A. By play(χA, s) we
denote the set of paths starting from s that are compatible
with χA. Note that, for an assignment χAg over the full
set Ag of agents, there exists only one compatible path.
In this case, by abuse of notation, we denote it with
play(χAg, s).

3 ATL*
In this section, we recall the syntax of ATL? and intro-
duce its semantics over PGS via its representation in
terms of CGS (with infinite states). We start with the
definition of ATL? syntax.

Definition 3.1 (ATL? Syntax) ATL? formulas are
built inductively from the set of atomic propositions AP
and agents Ag, by using the following grammar, where
p ∈ AP and A ⊆ Ag:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | 〈〈A〉〉ϕ.

As syntactic sugar we also use ϕ1∨ϕ2 , ¬(¬ϕ1∧¬ϕ2),

ϕ1 → ϕ2 , ¬ϕ1∨ϕ2, ϕ1 ↔ ϕ2 , (ϕ1 → ϕ2)∧(ϕ2 → ϕ1),

[[A]]ϕ , ¬〈〈A〉〉¬ϕ, Fϕ , tUϕ, and Gϕ , ¬F¬ϕ.
A sentence is a Boolean combination of ATL? formulas

of the form 〈〈A〉〉ψ. Intuitively, 〈〈A〉〉ψ means that each
agent in A has a strategy such that, whatever the other
agents do, the resulting play satisfies ψ.

We now provide some examples of ATL? formulas
that will be useful in the sequel. Precisely, we consider
ϕ1 = 〈〈{s}〉〉(GFa∧GFb∧GFe), ϕ2 = 〈〈∅〉〉(GFa∧GFb∧GFe)
and ϕ3 = 〈〈∅〉〉((ra ∧ X(¬eUrb)) → (Fgb → XFga)) over
the sets AP and Ag given in Example 2.1. The formula
ϕ1 states that agent s has a way to let propositions a,
b, and e to occur infinitely often. The formula ϕ2 states
that, no matters how the agents behave, propositions
a, b, and e occur infinitely often. Finally, the formula
ϕ3 states that, whenever a request rb occurs after an ra
one in the same loading phase, then, if rb is eventually
granted, then ra is granted later on as well.

We now provide the semantics of ATL?.

Definition 3.2 (ATL? Semantics) For a CGS G =
〈AP,Ag,Ac,St, tr, ap, s〉 and a path π ∈ Pth, the mod-
eling relation G, π |= ϕ is inductively defined as follows:

• The atomic and boolean cases are defined as usual;

• G, π |= 〈〈A〉〉ϕ if there is an assignment χA such that
G, π′ |= ϕ, for all π′ ∈ play(χA, (π)0);

• G, π |= Xϕ if G, (π)≥1 |= ϕ;

• G, π |= ϕ1Uϕ2 if there exists j ∈ N such that
G, (π)≥i |= ϕ1, for all i < j, and G, (π)≥j |= ϕ2.

For a sentence ϕ and two paths π, π with (π)0 =
(π)0, it holds that G, π |= ϕ iff G, π |= ϕ. Indeed,
according to the semantics of the existential quantification
〈〈A〉〉ψ, the only element of the path to take into account
is the first one. For this reason, for a sentence ϕ we write
G, s |= ϕ if G, π |= ϕ for some π ∈ Pth(s). Finally, we
say that G satisfies ϕ, and write G |= ϕ, if G, s |= ϕ.

To get familiar with the semantics, consider the PGS
P given in Example 2.1 and the formulas ϕ1, ϕ2, and
ϕ3 given above. It is easy to see that GP |= ϕ1. Indeed,
the strategy f that allows the scheduler to pick infinitely
often the actions a, b, and un, makes all the generated
paths to satisfy GFa ∧ GFb ∧ GFe. On the other hand, it
is easy to see that GP 6|= ϕ2. Indeed, the strategy f for
s such that f(ρ) = a, for all ρ ∈ Trk, never makes b and
e to occur in the generated paths. Finally, we have that
GP |= ϕ3.

Definition 3.3 (Model-checking) For a given PGS
P and an ATL? formula ϕ, the model-checking problem
is to decide whether GP |= ϕ.

4 Model Checking

In this section, we provide a 3ExpTime upper-bound
and a 2ExpSpace lower-bound for the model-checking
problem of ATL? over PGS.

4.1 Upper-bound Complexity

For the upper bound we use an automata-theoretic ap-
proach. We start with some notation and the definition of
nondeterministic pushdown automata. See [Kupferman
et al., 2002,Kupferman et al., 2000b] for more.

For a given set D ⊆ N, a D-tree T is a prefix closed
subset of D∗, i.e., a set in which, if x · d ∈ T then x ∈ T.
The elements of T are called nodes and the empty word
ε is called the root of T. For x ∈ T, the set of children
of x is children(T, x) , {x · i ∈ T : i ∈ D}. For x, y ∈ T,
we write x ≺ y to mean that x is a proper prefix of y,
i.e., there exists z ∈ D∗ such that x · z = y. For x ∈ T, a
path in T from x is a minimal set π ⊆ T such that x ∈ π
and for each y ∈ π such that children(T, y) 6= ∅, there
exist exactly one node in children(T, y) belonging to π.
For an alphabet Σ, a Σ-labeled tree is a pair T =〈T,V〉
where T is a tree and V : T→ Σ maps each node in T to
an element in Σ. In the following, we mainly consider Σ
to be the set power set 2AP of atomic propositions AP.

A Nondeteriministic Pushdown Tree Automata
(PD-NTA, for short), over Σ-labeled trees, is a tuple
A =〈Σ,Γ,Q, q, α0, δ,F〉, where Σ and Γ are finite input
and stack alphabet sets, Q is a finite set of states, q is
an initial state, α0 ∈ Γ∗ · ⊥ is an initial stack content,

δ : Q× Σ× Γ⊥ → 22(Q×Γ∗)

is a transition function such
that, for all (q, σ, γ) ∈ Q × Σ × Γ⊥, δ(q, σ, γ) is a finite
set, and F is an acceptance condition over Q.

When the automaton is in a state q, reading an input
node x labeled with σ ∈ Σ, and the stack contains a
word γ · α in Γ∗⊥, it chooses, for some k ∈ N, a tuple
〈(q, β1), . . . , (qk, βk)〉 ∈ δ(q, σ, γ) and splits in k copies
such that, for each 1 ≤ i ≤ k, the i-th copy is in the state
qi and the stack content is updated by removing γ and
pushing βi. Then, it reads the node x · i of the tree.

A run of a PD-NTA on a Σ-labeled tree T = 〈T,V〉
is a (Q× Γ∗⊥)-labeled tree 〈T, r〉 such that r(ε) = (q, α0)
and for each x ∈ T with r(x) = (q, γ · α), there is a tuple
〈(q, β1), . . . , (qk, βk)〉 ∈ δ(q,V(x), γ) for some k ∈ N,
such that, for all 1 ≤ i ≤ k, r(x · i) = (qi, βi · α) if γ 6= ⊥,
and r(x · i) = (qi, βi · ⊥), otherwise.

Given a path π starting from ε, by inf r(π) we denote
the subset of states q such that there are infinitely many
x ∈ π such that r(x) ∈ {q}×Γ∗⊥. A path satisfies a parity
condition F = {F1, . . . ,Fk}, with Fi ⊆ Fi+, for all i < k,
and Fk = Q, if the minimum index 1 ≤ i ≤ k such that
inf r(π) ∩ Fi 6= ∅ is even. A run 〈T, r〉 is accepting if every
path satisfies the acceptance condition. The PD-NTA A
accepts an input tree〈T,V〉 iff there is an accepting run of
A over it. The language of A, denoted by L(A), contains

all the trees accepted by A. The emptiness problem for
PD-NTA is to decide, for a given A, whether L(A) = ∅.
In [Kupferman et al., 2002] it is reported the following.

Theorem 4.1 The emptiness problem for a parity
PD-NTA is ExpTime-complete.

In several branching-time temporal-logic verification
settings, the automata-theoretic approach has been fruit-
fully applied. Very close to our case are the procedures de-
ployed for model checking pushdown systems over CTL?

specifications [Bouajjani et al., 1997,Bozzelli et al., 2010]
and finite-state CGSs over ATL? specifications [Alur
et al., 2002]. The former is a top-down procedure that
first builds an automaton accepting all the trees that
satisfy the formula and then checks for the membership
problem of the tree unwinding of the pushdown model.
Precisely, to get a tight complexity, it starts with a single-
exponential alternating 1 parity tree automaton and the
membership problem results in a special alternating push-
down tree automaton named one-letter, with no blow-up
in size, whose emptiness can be checked in exponential-
time2 resulting in an overall doubly-exponential time
solution. The procedure for ATL?, instead, uses a doubly-
exponential bottom-up approach based on the idea of
labeling each state of the structure with subformulas true
in that state. In our setting we can neither proceed with
the membership problem nor use a bottom-up procedure.
Indeed, because of ATL?, we need to consider not just
the unwinding of the model but the tree execution in-
duced by the player existentially quantified in the formula.
Moreover, because of the possible infinite number of con-
figurations induced by the PGS, a bottom-up procedure
could never terminate. For this reason, we use a top-down
approach that constructs a doubly exponential PD-NTA
that simultaneously checks whether a tree is an execution
of the structure and a model of the formula. As far as
we know, this is the first top-down automata-theoretic
approach exploited for ATL?. Some details about this
automata construction are reported in the following.

Theorem 4.2 The model-checking problem for ATL?

on PGS can be solved in 3ExpTime.

Proof sketch: We give an intuition behind the au-
tomata construction by providing some details on how to
extend the one introduced in [Bouajjani et al., 1997] used
to solve the model-checking problem for branching-time
specifications over pushdown systems. The mentioned
approach starts with a tree automaton accepting all tree
models of a formula ϕ, namely the formula automaton
Aϕ, over which one can build a PD-NTA AP,ϕ accepting
the unwinding of the pushdown structure P iff it is con-
tained in the language of the formula automaton Aϕ. To
handle ATL?, one can start with a doubly-exponential

1Automata having as transition relation a positive Boolean
combination of states and directions [Kupferman et al., 2000b].

2Recall that in general the emptiness check for alternating
pushdown automata is undecidable [Kupferman et al., 2002].

parity tree automaton as an adaptation of the one pro-
vided in [Schewe, 2008]3. Moreover, in order to correctly
evaluate the formula over a PGS we need not just to
consider the unwinding of the structure but rather the ex-
ecution trees induced by the formula and precisely from
the players existentially quantified in it. This results
in selecting at each node subsets of children upon the
choices of the players. As the number of these subsets
is linear in the number of the decisions of the structure,
the overall size of the PD-NTA we construct remains
doubly-exponential. Thus, from Theorem 4.1 we derive
a 3ExpTime procedure. �

4.2 A Lower-bound Complexity
In this section, we show that the model-checking problem
for ATL? over PGSs is 2ExpSpace-hard by means of
a reduction from the word acceptance problem for a
deterministic Turing machine with doubly exponential
space. Such reduction is inspired by the one provided
in [Vester, 2014] for one-counter games.

Let T =〈Q, q,Σ, δ, qF 〉 be a Turing machine that uses
at most 22

n

cells on an input w of length n where, Q is
the set of control states, q and qF are the initial and
final states, respectively, Σ = {0, 1, a, r,]} is the finite
alphabet set, and δ : Q×Σ→ Q×Σ×{−1, 0,+1} is the
(deterministic) transition function. For our convenience,
if δ(q, a) = (q′, a′, x) we write δ1(q, a) = q′, δ2(q, a) = a′,
and δ3(q, a) = x, respectively. The input set of T is given
by ΣI = Σ \ {]}. From this, we can construct a PGS
PT ,w and an ATL? formula ϕ such that T accepts w iff
PT ,w |= ϕ. To do this, we need some auxiliary notation.
First, w.l.o.g., we can assume that T always accepts
when the symbol a is read, and always reject when the
symbol r is read. Moreover, we can assume that T always
halts in the position 1 of the tape and that there are
two additional cells at the ends, numbered with 0 and
22n + 1 containing the symbol a. Let ∆ = Σ ∪ (Q× Σ).

Then a configuration is a sequence in ∆22n+2 containing
exactly one element in Q× Σ. Since T is deterministic,
then there is a unique run Cw · Cw · . . . of computations
starting from Cw = a · (q, w) · . . . wn ·] · . . . ·] · a. Cwi (j)
denotes the j-th symbol of the i-th configuration in the
computation. Observe that, given the three elements
Cwi (j− 1), Cwi (j), and Cwi (j+ 1), then the symbol Cwi+(j)
is uniquely determined, according to the definition of
transition function. Then, for d ∈ ∆, by Pre(d) we
denote the set of triples (d, d, d) such that d = Cwi (j−
1), d = Cwi (j), d = Cwi (j + 1), and d = Cwi+(j).

At this point, we consider the auxiliary two-player
turn-based one-symbol stack game RT ,w = 〈AP, {E, A},
Loc,LocE,LocA,R, ap, l〉 where:

• Loc = ([0, 22
n

+ 1]× (∆ ∪∆3)) ∪ {l, lz, lr, lF };
• LocE = ([0, 22

n

+ 1]×∆) ∪ {l};
• LocA = ([0, 22

n

+ 1]×∆3) ∪ {lz, lr, lF };
3In [Schewe, 2008] it is given a single-exponential alter-

nating automaton that can be easily translated into a non-
deterministic one with a single exponential-time blowup.

• R is the smallest relation such that:

– (l, x, l, push), for x ∈ {⊥, γ};
– (l, x, (1, (qF , a)), null) for x ∈ {⊥, γ};
– ((j, d), γ, (j, (d, d, d)), null) for all (d, d, d) ∈
Pre(d) and j ∈ [1, 22

n

];

– ((j, a), x, lF , null) for all j ∈ [1, 22
n

];

– ((j, d), x, lr, null) if j = 0 or j = 22
n

+ 1;

– ((j, d), x, lz, null) if Cw (j) = d;

– (lz, γ, lF , null);

– (lz, γ, lr, pop);

– ((j, (d, d, d)), γ, (j−1, d), pop), for all j ∈ [0, 22
n

]
and d, d, d ∈ ∆;

– ((j, (d, d, d)), γ, (j, d), pop), for all j ∈ [0, 22
n

]
and d, d, d ∈ ∆;

– ((j, (d, d, d)), γ, (j+1, d), pop), for all j ∈ [0, 22
n

]
and d, d, d ∈ ∆.

Intuitively, player E pushes the symbol γ into the stack
a number of times that corresponds to the length of the
computation accepting w. After this, the game starts
from the configuration (1, (qF , a), γ) and proceeds back-
way along the computation of T over w. In the configu-
rations with locations of the form (j, d), player E selects
a possible predecessor triple (d, d, d) of d. At this
point, player A selects one of the elements in (d, d, d),
while a pop operation is performed on the stack. Fi-
nally, if the stack is empty and the location (j, d) is such
that Cw (j) = d, then player E can move to configuration
(lz,⊥), from which player A is forced to move in location
lF , since the transition (lz, γ, lr, pop) on empty stacks is
deactivated. It is not hard to see that w is accepted by
T iff player E can force the game RT ,w to reach lF .

This reasoning allows us to reduce the accepting prob-
lem to a reachability game played on RT ,w, which is of
size doubly exponential w.r.t. to T , that can be specified
by the ATL? formula 〈〈E〉〉Fp, where p is the proposition
labeling all the configurations having lF as location. Now,
having RT ,w in mind, we can build a PGS PT ,w and an
ATL? formula ϕ such that PT ,w |= ϕ iff T accept w.

The construction of PT ,w is essentially a modification
of RT ,w in which the position of the head on the tape
is encoded by a suitable LTL formula ψ, rather than
the set of states. This allows such a model to have
polynomial size w.r.t. T and w. The way the formula ψ
works is folklore and completely described in [Bozzelli
et al., 2005, Kupferman et al., 2000a]. We omit it here
due to the lack of space.

Finally, we can prove that PT ,w |= 〈〈E〉〉(ψ ∧ Fp) iff T
accepts w, from which we derive the following theorem.

Theorem 4.3 The model-checking problem for ATL?

over PGS is in 2ExpSpace-hard.

5 Conclusion
In the last years, open pushdown models have received a
lot of attention from the formal verification community,
largely due to their ability to capture the control-flow of

procedure calls and returns in reactive systems [Alur et al.,
2005]. In several settings, the use of pushdown models
allows to verify the correctness of infinite-state systems
with a decidable complexity [Piterman and Vardi, 2004,
Kupferman et al., 2002,Song and Touili, 2014]. As far as
we know, all the work so far has concentrated on models
with at most two-agents and with respect to specifications
given in terms of classic temporal logics [Abdulla et al.,
,Chatterjee and Velner, 2012,Bozzelli et al., 2010].

In this paper, we have introduced multi-agent pushdown
game structures to model more involved infinite-state sce-
narios (as induced by a recursive structure) in which
several agents can cooperate or act in an adversarial
way in order to achieve a certain goal. As main contri-
bution related to these structures we have introduced
and studied the model checking problem with respect to
the logic ATL? and showed that this problem can be
solved in 3ExpTime. We recall that the same complexity
holds also for pushdown module checking with respect to
specifications given in CTL?. The latter is a special two-
player setting, where one of the player, the environment,
can also use nondeterministic strategies. We also provide
a non tight 2ExpSpace lower bound. Our conjecture is
that the investigated problem is 3ExpTime-complete.
We leave this as future work.

On some extent, the high complexity of the addressed
problem relies on the fact that the rich formalisms of
pushdown models and ATL? specification we combine
are complex by themselves. While this allowed us to
provide a result for a very general framework, the overall
complexity can be easily reduced by considering oppor-
tune restrictions on both sides. Indeed, regarding the
specification, by using ATL, the procedure easily reduces
to 2ExpTime. This is due the fact that it suffices to build
a Büchi PD-NTA of single exponential size [Alur et al.,
2002]. Further, one can restrict to pushdown models with
bounded-stack. In several settings, it has been shown
that under such a restriction the problem has the same or
slightly higher complexity than the corresponding one for
finite-state systems [Alur and Yannakakis, 2001,Aminof
et al., 2012]. By employing techniques similar to the ones
reported in [Alur and Yannakakis, 2001], we are confident
that the model-checking problem of ATL specifications
over bounded-stack PGS is PTime-complete as it is
for the case for CGS. If so, one can think of implement-
ing an efficient model checker, as it has been done with
MCMAS [Lomuscio and Raimondi, 2006,Cermák et al.,
2014]. This will be addressed as future work.

Another interesting setting to investigate is that of
imperfect information under memoryless strategies. We
recall that this setting is decidable in the finite-state case
[Alur et al., 2002]. However, moving to pushdown systems
one has to distinguish whether the missing information
relies in the locations, in the pushdown store, or both.
We recall that in pushdown module checking only the
former case is decidable for specification given in CTL
and CTL? [Aminof et al., 2007,Aminof et al., 2013].

References
[Abdulla et al.,] Abdulla, P. A., Atig, M. F., Hofman,

P., Mayr, R., Kumar, K. N., and Totzke, P. Infinite-
state energy games. In CSL-LICS’14.

[Alur et al., 2005] Alur, R., Benedikt, M., Etessami, K.,
Godefroid, P., Reps, T. W., and Yannakakis, M. (2005).
Analysis of Recursive State Machines. ACM Trans.
Program. Lang. Syst., 27(4):786–818.

[Alur et al., 2002] Alur, R., Henzinger, T., and Kupfer-
man, O. (2002). Alternating-Time Temporal Logic.
JACM, 49(5):672–713.

[Alur and Yannakakis, 2001] Alur, R. and Yannakakis,
M. (2001). Model Checking of Hierarchical State Ma-
chines. ACM Trans. Program. Lang. Syst., 23(3):273–
303.

[Aminof et al., 2012] Aminof, B., Kupferman, O., and
Murano, A. (2012). Improved Model Checking of Hier-
archical Systems. Inf. Comput., 210:68–86.

[Aminof et al., 2013] Aminof, B., Legay, A., Murano, A.,
Serre, O., and Vardi, M. Y. (2013). Pushdown Module
Checking with Imperfect Information. Inf. Comput.,
213:1–17.

[Aminof et al., 2007] Aminof, B., Murano, A., and Vardi,
M. (2007). Pushdown Module Checking with Imperfect
Information. In CONCUR ’07, LNCS 4703, pages 461–
476. Springer-Verlag.

[Bouajjani et al., 1997] Bouajjani, A., Esparza, J., and
Maler, O. (1997). Reachability Analysis of Pushdown
Automata: Application to Model-Checking. In CON-
CUR’97, pages 135–150.

[Bozzelli et al., 2005] Bozzelli, L., Murano, A., and
Peron, A. (2005). Pushdown Module Checking. In
LPAR’05, LNCS 3835, pages 504–518. Springer-Verlag.

[Bozzelli et al., 2010] Bozzelli, L., Murano, A., and
Peron, A. (2010). Pushdown Module Checking. FMSD,
36(1):65–95.

[Bulling, 2014] Bulling, N. (2014). A Survey of Multi-
Agent Decision Making. KI, 28(3):147–158.

[Cermák et al., 2014] Cermák, P., Lomuscio, A., Mo-
gavero, F., and Murano, A. (2014). MCMAS-SLK:
A Model Checker for the Verification of Strategy Logic
Specifications. In CAV, pages 525–532.

[Cermák et al., 2015] Cermák, P., Lomuscio, A., and Mu-
rano, A. (2015). Verifying and Synthesising Multi-
Agent Systems against One-Goal Strategy Logic Spec-
ifications. In AAAI’15, pages 2038–2044.

[Chatterjee and Velner, 2012] Chatterjee, K. and Velner,
Y. (2012). Mean-Payoff Pushdown Games. In LICS’12,
pages 195–204.

[Clarke and Emerson, 1981] Clarke, E. and Emerson, E.
(1981). Design and Synthesis of Synchronization Skele-
tons Using Branching-Time Temporal Logic. In LP’81,
LNCS 131, pages 52–71. Springer.

[Clarke et al., 2002] Clarke, E., Grumberg, O., and
Peled, D. (2002). Model Checking. MIT Press.

[Kupferman et al., 2000a] Kupferman, O., M., P., T.,
P. S., and Vardi, M. Y. (2000a). Open Systems in
Reactive Environments: Control and Synthesis. In
CONCUR’00, pages 92–107.

[Kupferman et al., 2002] Kupferman, O., Piterman, N.,
and Vardi, M. Y. (2002). Pushdown Specifications. In
LPAR’02, pages 262–277.

[Kupferman et al., 2000b] Kupferman, O., Vardi, M.,
and Wolper, P. (2000b). An Automata Theoretic Ap-
proach to Branching-Time Model Checking. JACM,
47(2):312–360.

[Kupferman et al., 2001] Kupferman, O., Vardi, M., and
Wolper, P. (2001). Module Checking. IC, 164(2):322–
344.

[Lomuscio and Raimondi, 2006] Lomuscio, A. and Rai-
mondi, F. (2006). MCMAS: A Model Checker for
Multi-agent Systems. In TACAS’06, pages 450–454.

[Mogavero et al., 2014] Mogavero, F., Murano, A.,
Perelli, G., and Vardi, M. (2014). Reasoning About
Strategies: On the Model-Checking Problem. vol-
ume 15. doi:10.1145/2631917.

[Muller and Schupp, 1985] Muller, D. E. and Schupp,
P. E. (1985). The Theory of Ends, Pushdown Au-
tomata, and Second-Order Logic. Theor. Comput. Sci.,
37:51–75.

[Piterman and Vardi, 2004] Piterman, N. and Vardi,
M. Y. (2004). Global Model-Checking of Infinite-State
Systems. In CAV’04, pages 387–400.

[Pnueli, 1977] Pnueli, A. (1977). The Temporal Logic of
Programs. In FOCS’77, pages 46–57. IEEE Computer
Society.

[Queille and Sifakis, 1981] Queille, J. and Sifakis, J.
(1981). Specification and Verification of Concurrent
Programs in Cesar. In SP’81, LNCS 137, pages 337–
351. Springer.

[Schewe, 2008] Schewe, S. (2008). ATL* Satisfiability is
2ExpTime-Complete. In ICALP’08, LNCS 5126, pages
373–385. Springer.

[Song and Touili, 2014] Song, F. and Touili, T. (2014).
Efficient CTL model-checking for pushdown systems.
Theor. Comput. Sci., 549:127–145.

[Vester, 2014] Vester, S. (2014). Model-checking Quan-
titative Alternating-time Temporal Logic on One-
counter Game Models. Technical report, ArXiv.

[Walukiewicz, 1996] Walukiewicz, I. (1996). Pushdown
Processes: Games and Model Checking. In CAV’96,
pages 62–74.

[Walukiewicz, 2000] Walukiewicz, I. (2000). Model
Checking CTL Properties of Pushdown Systems. In
FSTTCS’00, pages 127–138.

