
Games with Additional Winning Strategies∗

Vadim Malvone, Aniello Murano, and Loredana Sorrentino

Università degli Studi di Napoli Federico II

Abstract. In game theory, deciding whether a designed player wins a
game corresponds to check whether he has a winning strategy. There
are situations in which it is important to know whether some extra
winning strategy also exists. In this paper we investigate this question
over two-player finite games, under the reachability objective. We provide
an automata-based technique that, given such a game, it allows to decide
in linear time whether the game admits more than a winning strategy.
We discuss along the paper some case studies and use them to show how
to apply our solution methodology.

1 Introduction

Game theory is a very powerful mathematical framework with several useful
applications in different fields. In economics, it is used to deal with solution
concepts such as Nash equilibrium [18]. In computer science, it is applied to solve
problems in robotics, multi-agent system verification and planning [1, 15,20–22].

In the basic setting, a game consists of two players playing in a turn-based
manner, i.e, the moves of the players are interleaved. Solving a two-player game
amounts to check whether one of the players has a winning strategy. That is, he
can use a sequence of moves (a strategy) that makes him to satisfy the game
target, no matter how his opponent plays. In several settings, however, having
instead a more precise (quantitative) answer would be beneficial. For example,
in planning a rescue, it would be useful to know whether a robot team has more
than a winning strategy from a critical stage, just to have a backup plan in case
the scenario changes during the rescue. Such a redundancy allows to strengthen
the ability of winning the game and therefore its safety.

In this paper, we address the quantitative question of checking whether a
player has more than a strategy to win a two-player finite game G. We investigate
this problem under the reachability target and show an automata-based solution
to solve it in linear time. Precisely, we build an automaton that accepts only trees
that are witnesses of more than one winning strategy for the designed player
over the game G. Hence, we reduce the addressed quantitative question to the
emptiness of this automaton. To give an evidence of our approach, we report on
some cooperative and adversarial game examples.
Related works. Counting strategies has been deeply exploited in the formal
verification setting [3,5,7–9,13] by means of infinite duration games. The automata
construction we use here takes inspiration from the ones used in [2, 9, 19].
∗ This paper is partially supported by the FP7 EU project 600958-SHERPA.

2 Case Studies

In this section we consider two different case studies of two-player games. In the
first case the players behave adversarial. In the second one, they are cooperative.

Cop and Robber Game. Assume we have a maze where a cop aims to catch a
robber, while the latter, playing adversarial, aims for the opposite. For simplicity,
we assume the maze to be a grid divided in rooms, each of them named by its
coordinates in the plane (see Figure 1). Each room can have one or more doors
that allow the robber and the cop to move from one room to another. Each door
has associated a direction along with it can be crossed. Both the cop and the
robber can enter every room. The cop, being in a room, can physically block only
one of its doors. The robber can move in another room if there is a non-blocked
door he can take, placed between the two rooms, with the right direction. The
robber wins the game if he can reach one of the safe places (EXIT) situated in
the four corners of the maze. Otherwise, the robber is blocked in a room or he
can never reach a safe place, and thus the cop wins the game. We assume that
both the cop and the robber are initially siting in the middle of the maze, that is
in the room (1, 1). Starting from the maze depicted in Figure 1, one can see that
the robber has only one strategy to win the game. Consider now two orthogonal
variations of the maze. For the first one, consider flipping the direction of the
door d12. In this case, the robber loses the game. As second variation, consider
flipping the direction of the door d6. Then the robber wins the game and he has
now two strategies to accomplish it.

Escape Game. Assume we have an arena similar to the one described in the
previous example, but now with a cooperative interaction between two players,
a human and a controller, aiming at the same target. Precisely, consider the
arena depicted in Figure 2 representing a building where a fire is occurring. The
building consists of rooms and, as before, each room has one-way doors and its
position is determined by its coordinates. We assume that there is only one exit
in the corner (2, 2). One can think of this game as a simplified version of an
automatic control station that starts working after an alarm fire occurs and all
doors have been closed. Accordingly, we assume that the two players play in turn
and at the starting moment all doors are closed. At each control turn, he opens
one door of the room in which the human is staying. The human turn consists of
taking one of the doors left open if its direction is in accordance with the move.
We assume that there is no communication between the players, but the move.
We start the game with the human siting in the room (0, 0) and the controller
moving first. It is not hard to see that the human can reach the exit trough the
doors d1, d4, d7, d10 opened by the controller. Actually, this is the only possible
way the human has to reach the exit. Conversely, if we consider the scenario in
which the direction of the door d3 is flipped, then there are two strategies to let
the human to reach the exit. Therefore, the latter scenario can be considered as
better (i.e., more robust) than the former. Clearly, this extra information can be
used to improve an exit fire plan at its designing level.

d1
↑

d2
↓

→d3

→d4

→d5

d6
↓

d7
↓

→d8

→d9

→d10

d11
↓

d12
↓

EXIT EXIT

EXITEXIT

C&R

0

1

2

10 2

Fig. 1. Cop and Robber Game.

d1
↓

d2
↑

←d3

→d4

→d5

d6
↑

d7
↓

→d8

←d9

→d10

d11
↓

d12
↓

H

EXIT

0

1

2

10 2

Fig. 2. Escape Game.

3 The Game Model

In this paper, we consider two-player turn-based games that are suitable to
represent the case studies we have introduced in the previous section. Precisely,
we consider games consisting of an arena and a target. The arena describes the
configurations of the game through a set of states, being partitioned between the
two players. In each state, only the player that owns it can take a move. This
kind of interaction is also known as token-passing. About the target, we consider
the reachability objective, that is some states are declared target. A winning
strategy for a designed player is a path from the initial state to a target state. If
such a winning strategy exists we say that the player wins the game. Clearly, the
player has more than a winning strategy if there are different paths reaching a
target state. The formal definition of the considered game model follows.

Definition 1. A turn-based two-player reachability game (2TRG, for short),
played between Player 0 and Player 1, is a tuple G , < St, sI , tr, W >, where
St is a finite non-empty set of states, partitioned in St and St with Sti being
the set of states of Player i, sI ∈ St is a designated initial state, W is a set of
target states, and tr ⊆ Sti× St−i, for i ∈ {0, 1} is a transition function mapping
a state of a player to a state belonging to the other player.

The previous two case studies can be easily modeled using a 2TRG. We now
give some details. As set of states we use all the rooms in the maze, together with
the status of their doors. For example, the state ((0, 0), {dc1, dc3}) is the initial
state of the Escape Game where dci means that the door di is closed. For an open
door, instead, we will use the label o in place of c. Formally, let Di,j be the set of
doors (up to four) belonging to the room (i, j), which can be flagged either with
c (closed) or o (open), then we set St ⊆ {((i, j), Di,j) | 0 ≤ i, j ≤ 2}. Transitions
are taken by the human/robber in order to change the room (coordinates) or by
the cop/controller to change the status of its doors. These moves are taken in
accordance with the shape of the maze. The partitioning of the states between
the players follows immediately, as well as the definition of the target states.

4 Searching for Multiple Winning Strategies

To check whether Player 1 has a winning strategy in a 2TRG G one can use
a classic backward algorithm. We briefly recall it. Let succ : St → 2St be the
function that for each state s ∈ St in G gives the set of its successors. The
algorithm starts from a set S equal to W. Iteratively, it tries to increase S by
adding all states s ∈ St that satisfy the following conditions: (i) s ∈ St and
succ(s) ⊆ S; or, (ii) s ∈ St and succ(s)∩ S 6= ∅. If S contains at a certain point
the initial state, then Player 1 wins the game.

In case one wants to ensure that more than a winning strategy exists, the
above algorithm becomes not appropriate. We use instead a top-down automata-
theoretic approach. To give an intuition of this solution, first consider that in
a 2TRG a witness for a winning strategy is a tree that takes for each node
corresponding to a state s in the game, one successor if s belongs to Player 1, or
all successors, otherwise. Indeed, if all the leaves of this tree are target states,
then surely Player 1 has a winning strategy over the game. In case we want to
ensure that at least two winning strategies exist then at a certain point along the
tree Player 1 must take two successors. We build a tree automaton that accepts
exactly this kind of witness trees. For the lack of space, we omit the definition of
tree and the related concepts. We refer for this to [19]. We now give a definition
of witness trees and then we define the tree automata required.

Definition 2. Given a 2TRG G a witness tree T is a finite tree whose nodes
correspond to the states of G and satisfy the following properties:

– the root node corresponds to the initial state sI of G;
– for each x ∈ T that is not a leaf and corresponds to a Player 1 state s in G,
it holds that x has as children a non-empty subset of succ(s);

– for each x ∈ T that is not a leaf and corresponds to a Player 0 state s in G,
it holds that x has as children the set of succ(s);

– each leaf of T corresponds to a target state in G;
– each leaf in T has an ancestor node x that corresponds to a Player 1 state in
G and it has at least two children.

The above definition, but the last item, is the classical characterization of
strategy tree. Last property further ensures that Player 1 has the ability to
enforce at least two winning strategies no matter how Player 0 acts.

Definition 3. A nondeterministic tree automaton (NTA, for short) is a tuple
A ,< Q,Σ, q0, δ, F >, where Q is a set of states, Σ is an alphabet, q0 ∈ Q is an
initial state, δ : Q×Σ → 2Q

∗
is a transition function mapping pairs of states and

symbols to a set of tuples of states, and F ⊆ Q is a set of the accepting states.

An NTA A recognizes trees and works as follows. For a node tree labeled
by σ and A being in a state s, it sends different copies of itself to successors in
accordance with δ. For example, if δ(s, σ) = {(s1, s2), (s3, s4)} either A proceeds
with a left child in state s1 and a right child in state s2, or it proceeds with a

left child in state s3 and a right child in state s4. By L(A) we denote the set of
trees accepted by A. It is not empty if L(A) 6= ∅.

We now give the main result of this paper, i.e. we show that it is possible
to decide in linear time whether, in a 2TRG, Player 1 has more than a winning
strategy. We later report on the application of this result along the case studies.

Theorem 1. For a 2TRG game G it is possible to decide in linear time whether
Player 1 has more than a strategy to win the game.

Proof (sketch). Consider a 2TRG game G. We build an NTA A that accepts
all trees that are witnesses of more than a winning strategy for Player 1 over
G. We briefly describe the automaton. It uses St × {ok, split} as set of states
where ok and split are flags and the latter is used to remember that along
the tree Player 1 has to ensure the existence of two winning strategies by
opportunely choosing a point where to "split". We use a one-letter alphabet
Σ, as this set takes no role. For the initial state we set q0 = (sI , split). For
the transitions, starting from a state q = (s, flag), we distinguish between two
cases: (i) s ∈ St. If flag = ok then δ(q) = succ(s) × {ok}, otherwise, let
succ(s) = {s1, . . . , sn} then δ(q) = {((s1, f1), . . . , (sn, fn))} and there exists
1 ≤ i ≤ n such that fi = split and for all j 6= i, we have fj = ok. (ii) s ∈ St.
If flag = ok then δ(q) = {((s′, ok))} with s′ ∈ succ(s), otherwise, we have
δ(q) = {((s′, ok), (s′′, ok)), ((s′, split))}, with s′, s′′ ∈ succ(s) and s′ 6= s′′. The
set of accepting states is W × {ok}. A tree is accepted by A if at a certain point
Player 1 can take two successors in G both leading to a target state.

The size of the automaton is just linear in the size of the game. Moreover, by
using the fact that, from [19], checking the emptiness of an NTA can be performed
in linear time, the desired complexity result follows. �

Consider the Escape Game example. By applying the above construction, the
automaton A accepts an empty language. Indeed, for each input tree, A always
leads to a leaf containing either a state with a non-target component (i.e., the
tree is a witness of a losing strategy) or with a flag split (i.e., Player 1 cannot
select two winning strategies). Conversely, consider the same game, but flipping
the direction of the door d3 in the maze. In this case, A accepts exactly one tree.
Indeed starting from the initial state (((0, 0), {dc1, dc3}), split), A proceeds in two
different direction with states (((0, 0), {do1, dc3}), ok) and (((0, 0), {dc1, do3}), ok),
that refer to two distinct winning strategies for the controller.

A similar reasoning can be exploited with the Cop and Robber Game example.
Indeed, the automaton accepts an empty language. Conversely, by flipping the
door d4, it accepts the tree that is witnessing of two different winning strategies
each of them going through one of the two doors left unblocked by the cop.

We finally conclude this section by recalling that in one player games the
problem of checking whether more than a winning strategy exists can be checked
in NLogSpace. Indeed, it is enough to extend the classic path algorithm by
extending it in a way that we search for two paths by doubling the used logarithmic
working space 1.
1 We thank prof. Alberto Pettorossi for useful discussion in this respect.

5 Conclusion and Future Work

In this paper we have introduced a simple but effective automata-based method-
ology to check whether a player has more than a winning strategy in a two-player
game under the reachability objective. We have showed how this methodology can
be applied in practice by reporting on its use over two different game scenarios,
one cooperative and one adversarial. We believe that the solution algorithm we
have conceived in this paper can be used as core engine to count strategies in
more involved game scenarios and in many solution concepts reasoning.

This work opens to several interesting questions and extensions. For instance,
it would be worth investigating game scenarios in which one or both players
have imperfect information regarding some moves of the other player. The
imperfect information setting is an important field of study in game theory with
several practical applications. For some related works see [6, 12, 14]. Another
interesting direction would be to consider the counting of strategies in multi-agent
concurrent games. This kind of games have several interesting applications in
artificial intelligence [20–22]. One can also consider some kind of hybrid game,
where one can opportunely combine team of players working concurrently with
some others playing in a turn-based manner [10, 11, 17]. Last but not least, it
would be worth investigating infinite-state games. These games arise for example
in case the interaction among the players behaves in a recursive way [4, 16].

References

1. R. Alur, T. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic.
JACM, 49(5):672–713, 2002.

2. A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic. In
LICS’09, pages 342–351. IEEE Computer Society, 2009.

3. P. Bonatti, C. Lutz, A. Murano, and M. Vardi. The Complexity of Enriched
muCalculi. LMCS, 4(3):1–27, 2008.

4. L. Bozzelli, A. Murano, and A. Peron. Pushdown Module Checking. FMSD,
36(1):65–95, 2010.

5. D. Calvanese, G. D. Giacomo, and M. Lenzerini. Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In IJCAI’99, volume 99,
pages 84–89, 1999.

6. K. Chatterjee, L. Doyen, T. A. Henzinger, and J. Raskin. Algorithms for omega-
regular games with imperfect information. Logical Methods in Computer Science,
3(4):1–23, 2007.

7. M. Faella, M. Napoli, and M. Parente. Graded Alternating-Time Temporal Logic.
FI, 105(1-2):189–210, 2010.

8. A. Ferrante and A. Murano. Enriched Mu-Calculi Module Checking. In FOS-
SACS’09, LNCS 5504, pages 183–197. Springer, 2007.

9. A. Ferrante, A. Murano, and M. Parente. Enriched Mu-Calculi Module Checking.
LMCS, 4(3):1–21, 2008.

10. W. Jamroga and A. Murano. On Module Checking and Strategies. In AAMAS’14,
pages 701–708. IFAAMAS, 2014.

11. W. Jamroga and A. Murano. Module checking of strategic ability. In AAMAS’15,
pages 227–235. IFAAMAS, 2015.

12. J.H. Reif. The complexity of two-player games of incomplete information. Journal
of computer and system sciences, 29(2):274–301, 1984.

13. O. Kupferman, U. Sattler, and M. Vardi. The Complexity of the Graded muCalculus.
In CADE’02, LNCS 2392, pages 423–437. Springer, 2002.

14. O. Kupferman and M. Vardi. Module Checking Revisited. In CAV’97, LNCS 1254,
pages 36–47. Springer, 1997.

15. O. Kupferman, M. Vardi, and P. Wolper. Module Checking. IC, 164(2):322–344,
2001.

16. A. Murano and G. Perelli. Pushdown multi-agent system verification. In IJCAI’15,
2015.

17. A. Murano and L. Sorrentino. A game-based model for human-robots interaction.
In WOA’15, CEUR Workshop Proceedings. CEUR-WS.org. To appear, 2015.

18. R. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1991.
19. W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer

Science, Volume B: Formal Models and Sematics (B), pages 133–192. Elsevier and
MIT Press, 1990.

20. M. Wooldridge. Intelligent Agents. In G. Weiss, editor, Multiagent Systems. A
Modern Approach to Distributed Artificial Intelligence. MIT Press: Cambridge,
Mass, 1999.

21. M. Wooldridge. Reasoning about Rational Agents. MIT Press : Cambridge, Mass,
2000.

22. M. Wooldridge. An Introduction to Multi Agent Systems. John Wiley & Sons, 2002.

	Games with Additional Winning Strategies
	Vadim Malvone, Aniello Murano, and Loredana Sorrentino

