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Abstract. The model checking problem for open systems (called mod-
ule checking) has been intensively studied in the literature, both for
finite–state and infinite–state systems. In this paper, we focus on push-
down module checking with respect to μ–calculus enriched with graded
and nominals (hybrid graded μ-calulus). We show that this problem is
decidable and solvable in double–exponential time in the size of the for-
mula and in exponential time in the size of the system. This result is
obtained by exploiting a classical automata–theoretic approach via push-
down nondeterministic parity tree automata. In particular, we reduce in
exponential time our problem to the emptiness problem for these au-
tomata, which is known to be decidable in Exptime. As a key step of
our algorithm, we show an exponential improvement of the construction
of a nondeterministic parity tree automaton accepting all models of a for-
mula of the considered logic. This result, not only allows our algorithm
to match the known lower bound, but it is also interesting by itself, since
it allows investigating decision problems related to enriched μ-calculus
formulas in a greatly simplified manner. We conclude the paper with
a discussion on the model checking w.r.t. μ-calculus formulas enriched
with backward modalities as well.

1 Introduction

In system design, one of the most challenging problems is to check for system cor-
rectness. Model-checking is a formal method that allows us to automatically ver-
ify, in a suitable way, the ongoing behaviors of reactive systems ([CE81, QS81]).
In this verification technique (for a survey, see [CGP99]), the behavior of a sys-
tem, formally described by a mathematical model, is checked against a behavioral
constraint, possibly specified by a formula in an appropriate temporal logic.

In system modeling, we distinguish between closed and open systems [HP85].
While the behavior of a closed system is completely determined by the state of
the system, the behavior of an open system depends on the ongoing interaction
with its environment [Hoa85]. Model checking algorithms used for the verifica-
tion of closed systems are not appropriate for open systems. In the latter case, we
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should check the system with respect to arbitrary environments and take into ac-
count uncertainty regarding the environment. In [KVW01], model checking has
been extended from closed finite–state systems to open finite–state systems. In
such a framework, the open finite–state system is described by a labeled state–
transition graph called module whose set of states is partitioned into system
states (where the system makes a transition) and environment states (where the
environment makes a transition). Given a module M, describing the system to
be verified, and a temporal logic formula ϕ, specifying the desired behavior of
the system, the problem of model checking a module, called module checking,
asks whether for all possible environments,M satisfies ϕ. Module checking thus
involves not only checking that the full computation tree 〈TM, VM〉 obtained by
unwinding M (which corresponds to the interaction of M with a maximal en-
vironment) satisfies ϕ (which corresponds to model checkingM with respect to
ϕ), but also that all trees obtained from 〈TM, VM〉, by pruning subtrees of envi-
ronment nodes (these trees correspond to all possible choices of the environment
and are collected in exec(M)) satisfy ϕ. To see an example, consider a two-drink
dispenser machine that serves, upon request, tea or coffee. The machine is an
open system and an environment for the system is an infinite line of thirsty peo-
ple. Since each person in the line can prefer both tea and coffee, or only tea, or
only coffee, each person suggests a different disabling of the external nondeter-
ministic choices. Accordingly, there are many different possible environments to
consider. In [KVW01], it has been shown that while for linear–time logics model
and module checking coincide, module checking for specifications given in CTL
and CTL∗ is exponentially harder than model checking. Indeed, CTL and CTL∗

module checking is Exptime–complete and 2Exptime–complete in the size of
the formula, respectively, and both Ptime–complete in the size of the system.

Recently, finite-state module checking has been also investigated with respect
to formulas of the hybrid graded μ–calculus [FM07], a powerful decidable frag-
ment of the fully enriched μ-calculus [BP04, BLMV06]. The μ–calculus is a
propositional modal logic augmented with least and greatest fixpoint operators
[Koz83]. Fully enriched μ–calculus is the extension of the μ–calculus with in-
verse programs, graded modalities, and nominals. Intuitively, inverse programs
allow us to travel backwards along accessibility relations [Var98], nominals are
propositional variables interpreted as singleton sets [SV01], and graded modal-
ities enable statements about the number of successors of a state [KSV02]. By
dropping at least one of the additional constructs, we get a fragment of the fully
enriched μ-calculus. In particular, by inhibiting backward modalities we get the
fragment we call hybrid graded μ-calculus. In [BP04], it has been shown that
satisfiability is undecidable in the fully enriched μ–calculus. On the other hand,
it has been shown in [SV01, BLMV06] that satisfiability for any of its frag-
ments is decidable and Exptime-complete. The upper bound result is based on
an automata–theoretic approach via two-way graded alternating parity tree au-
tomata ( 2GAPT). Intuitively, these automata generalize alternating automata
on infinite trees as inverse programs and graded modalities enrich the standard
μ–calculus: 2GAPT can move up to a node’s predecessor and move down to
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at least n or all but n successors. Using these automata, along with the fact
that each fragment of the fully enriched μ-calculus enjoys the quasi-forest model
property1, it has been shown in [SV01, BLMV06] that given a formula ϕ of a
fragment logic, it is possible to construct a 2GAPT accepting all trees encodings
quasi-forests2 modeling ϕ. Then, the exponential-upper bound follows from the
fact that 2GAPT can be exponentially translated in nondeterministic graded
parity tree automata (GNPT ), and the emptiness problem for GNPT is solvable
in Ptime [KPV02].

Coming back to the finite-state module checking problem for the hybrid
graded μ–calculus, this problem has been shown in [FM07] to be Exptime–
complete. To see an example of its application, consider the previous two-drink
dispenser machine such that whenever a customer can choose a drink he can
also call a customer service, among k > 1 different services. Suppose also that
by taking a customer service choice the drink-dispenser machine stops dispens-
ing drinks unless the customer service resets the machine. Suppose now we want
to check the property that whenever the customer comes at a choice he can al-
ways choose among k different services. This property can be described using a
formula of the hybrid graded μ–calculus, whose truth depends on the possibility
of jumping to nodes, each labeling the start interaction with a particular service
(using nominals), and having exactly k identical of such nodes (using graded
modalities). Clearly, such an open system does not satisfy this formula. Indeed,
it is not satisfied by the particular behavior that chooses always the same service.

In [BMP05], the module checking technique has been also extended to infinite-
state systems by considering open pushdown systems (OPD , for short). These are
pushdown systems augmented with finite information that allows us to partition
the set of configurations (in accordance with the control state and the symbol on
the top of the stack) into system configurations and environment configurations.
To see an example of an open pushdown system, consider an extension of the
above mentioned two-drink dispenser machine, with the additional constraint
that a coffee can be served only if the number of coffees served up to that time
is smaller than that of teas served. Such a machine can be clearly modeled as an
open pushdown system (the stack is used to guarantee the inequality between
served coffees and teas). In [BMP05], it has been shown that pushdown module
checking is 2Exptime–complete for CTL and 3Exptime–complete for CTL∗.

In this paper, we extend the pushdown module checking problem to the hy-
brid graded μ-calculus and, by exploiting an automata-theoretic approach via
pushdown tree automata, we show that this problem is decidable and solvable
in 2Exptime. In particular, we reduce the addressed problem to the emptiness
problem for pushdown tree automata. The algorithm we propose works as fol-
lows. Given an OPD S, a module M induced by the configurations of S, and
an hybrid graded μ-calculus formula ϕ, we first construct in polynomial time
a pushdown Büchi tree automaton (PD–NBT ) AM, accepting exec(M). The

1 A quasi forest is a forest where nodes can have roots as successors.
2 Encoding is done by using a new root node that connects all roots of the quasi-forest

and new atomic propositions which are used to encode programs and jumps to roots.
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construction of AM we propose here extends that used in [BMP05] by also tak-
ing into account thatM must be unwound in a quasi-forest, rather than a tree,
with both nodes and edges labeled. Thus, the set exec(M) is a set of quasi-
forests, and the automaton AM we construct will accept all trees encodings of
all quasi-forests of exec(M). From the formula side, accordingly to [BLMV06],
we can construct in a polynomial time a GAPT A¬ϕ accepting all models of
¬ϕ, with the intent of checking that no models of ¬ϕ are in exec(M). Thus, we
check thatM models ϕ for every possible choice of the environment by checking
whether L(AM) ∩ L(A¬ϕ) is empty. To the best of our knowledge, the latter
problem can only be solved in triple-exponential time. For example, by using a
double-exponential translation of GAPT into nondeterministic parity tree au-
tomata (NPT ) [BLMV06, KSV02] and the fact that the emptiness problem for
the intersection of a PD–NBT and an NPT is solvable in Exptime [KPV02].
Here, by showing a non-trivial exponential reduction of 2GAPT into NPT , we
show a 2Exptime upper bound for the addressed problem. Since the pushdown
module checking problem for CTL is 2Exptime-hard, we get that the addressed
problem is then 2Exptime-complete. The exponential improvement on translat-
ing 2GAPT into NPT does not only allow us to match the known lower bound,
but it also turns out to be useful in several automata-theoretic approaches to
system verification. In particular, it also allows us to get results concerning de-
cision problems for the hybrid μ–calculus (such as the satisfiability and module
checking problems [BLMV06, FM07]) in a simplified way.

The rest of the paper is organized as follows. In the next section, we give pre-
liminaries on labeled forests, hybrid graded μ-calculus, open Kripke structures,
and open pushdown systems. In section 3, we recall 2GAPT and NPT . In sec-
tion 4, we show an exponential translation of 2GAPT into NPT . In section 5, we
give the module checking algorithm and conclude in section 6 with a discussion
on model checking w.r.t. fragments of fully enriched μ-calculus also including
the backward modality.

2 Preliminaries

Labeled Forests. For a finite set X , we denote the size of X by |X |, the set
of words over X by X∗, the empty word by ε, and with X+ we denote X∗ \ {ε}.
Given a word w in X∗ and a symbol a of X , we use w · a to denote the word
wa. Let IN be the set of positive integers. For n ∈ IN, let N denote the set
{1, 2, . . . , n}. A forest is a set F ⊆ N

+ such that if x · c ∈ F , where x ∈ N
+

and c ∈ N, then also x ∈ F . The elements of F are called nodes, and words
consisting of a single natural number are roots of F . For each root r ∈ F , the
set T = {r · x | x ∈ N

∗ and r · x ∈ F} is a tree of F (the tree rooted at r). For
x ∈ F , the nodes x · c ∈ F where c ∈ N are the successors of x, denoted sc(x),
and x is their predecessor. The number of successors of a node x is called the
degree of x (deg(x)). The degree h of a forest F is the maximum of the degrees
of all nodes in F and the number of roots. A forest with degree h is an h-ary
forest. A full h-ary forest is a forest having h roots and all nodes with degree h.
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Let F ⊆ N
+ be a forest, x a node in F , and n ∈ N. As a convention, we take

x · ε = ε ·x = x, (x · c) ·−1 = x, and n ·−1 as undefined. We call x a leaf if it has
no successors. A path π in F is a word π = x1x2 . . . of F such that x1 is a root of
F and for every xi ∈ π, either xi is a leaf (i.e., π ends in xi) or xi is a predecessor
of xi+1. Given two alphabets Σ1 and Σ2, a (Σ1, Σ2)–labeled forest is a triple
〈F, V, E〉, where F is a forest, V : F → Σ1 maps each node of F to a letter in
Σ1, and E : F × F → Σ2 is a partial function that maps each pair (x, y), with
y ∈ sc(x), to a letter in Σ2. As a particular case, we consider a forest without
labels on edges as a Σ1–labeled forest 〈F, V 〉, and a tree as a forest containing
exactly one tree. A quasi–forest is a forest where each node may also have roots
as successors. For a node x of a quasi–forest, we set children(x) as sc(x) \ N.
All the other definitions regarding forests easily extend to quasi–forests. Notice
that in a quasi–forest, since each node can have a root as successor, a root can
also have several predecessors, while every other node has just one. Clearly, a
quasi–forest can always be transformed into a forest by removing root successors.

Hybrid Graded μ–Calculus. Let AP , Var , Prog , and Nom be finite and
pairwise disjoint sets of atomic propositions, propositional variables, (atomic)
programs, and nominals. The set of hybrid graded μ–calculus formulas is the
smallest set such that (i) true and false are formulas; (ii) p and ¬p, for p ∈
AP∪Nom , are formulas; (iii) x ∈ Var is a formula; (iv) if ϕ1 and ϕ2 are formulas,
α ∈ Prog, n is a non negative integer, and y ∈ V ar, then ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2,
〈n, α〉ϕ1, [n, α]ϕ1, μy.ϕ1(y), and νy.ϕ1(y) are also formulas. Observe that we
use positive normal form, i.e., negation is applied only to atomic propositions.

We call μ and ν fixpoint operators. A propositional variable y occurs free in a
formula if it is not in the scope of a fixpoint operator. A sentence is a formula
that contains no free variables. We refer often to the graded modalities 〈n, α〉ϕ1

and [n, α]ϕ1 as respectively atleast formulas and allbut formulas and assume
that the integers in these operators are given in binary coding: the contribution
of n to the length of the formulas 〈n, α〉ϕ and [n, α]ϕ is �log n� rather than n.

The semantics of the hybrid graded μ–calculus is defined with respect to a
Kripke structure, i.e., a tuple K = 〈W, W0, R, L〉 where W is a non–empty set
of states, W0 ⊆ W is the set of initial states, R : Prog → 2W×W is a function
that assigns to each atomic program a transition relation over W , and L : AP ∪
Nom → 2W is a labeling function that assigns to each atomic proposition and
nominal a set of states such that the sets assigned to nominals are singletons
and subsets of W0. If (w, w′) ∈ R(α), we say that w′ is an α–successor of w.
Informally, an atleast formula 〈n, α〉ϕ holds at a state w of K if ϕ holds in at least
n+1 α–successors of w. Dually, the allbut formula [n, α]ϕ holds in a state w of K
if ϕ holds in all but at most n α–successors of w. Note that ¬〈n, α〉ϕ is equivalent
to [n, α]¬ϕ, and the modalities 〈α〉ϕ and [α]ϕ of the standard μ–calculus can be
expressed as 〈0, α〉ϕ and [0, α]ϕ, respectively.

To formalize semantics, we introduce valuations. Given a Kripke structure
K = 〈W, W0, R, L〉 and a set {y1, . . . , yn} of variables in Var , a valuation V :
{y1, . . . , yn} → 2W is an assignment of subsets of W to the variables y1, . . . , yn.
For a valuation V , a variable y, and a set W ′ ⊆W , we denote by V [y ←W ′] the
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valuation obtained from V by assigning W ′ to y. A formula ϕ with free variables
among y1, . . . , yn is interpreted over K as a mapping ϕK from valuations to
2W , i.e., ϕK(V) denotes the set of points that satisfy ϕ under valuation V . The
mapping ϕK is defined inductively as follows:

– trueK(V) = W and falseK(V) = ∅;
– for p ∈ AP ∪ Nom, we have pK(V) = L(p) and (¬p)K(V) = W \ L(p);
– for y ∈ Var , we have yK(V) = V(y);
– (ϕ1 ∧ ϕ2)K(V) = ϕK

1 (V) ∩ ϕK
2 (V) and (ϕ1 ∨ ϕ2)K(V) = ϕK

1 (V) ∪ ϕK
2 (V);

– (〈n, α〉ϕ)K(V) = {w : |{w′ ∈ W : (w, w′) ∈ R(α) and w′ ∈ ϕK(V)}| ≥ n+1};
– ([n, α]ϕ)K(V) = {w : |{w′ ∈W : (w, w′) ∈ R(α) and w′ �∈ ϕK(V)}| ≤ n};
– (μy.ϕ(y))k(V) =

⋂{W ′ ⊆W : ϕK([y ←W ′]) ⊆W ′};
– (νy.ϕ(y))k(V) =

⋃{W ′ ⊆W : W ′ ⊆ ϕK([y ←W ′])}.
For a state w of a Kripke structure K, we say that K satisfies ϕ at w if w ∈ ϕK.

In what follows, a formula ϕ counts up to b if the maximal integer in atleast and
allbut formulas used in ϕ is b− 1.

Open Kripke Structures. In this paper we consider open systems, i.e., sys-
tems that interact with their environment and whose behavior depends on this
interaction. The (global) behavior of such a system is described by a module
M = 〈Ws, We, W0, R, L〉, which is a Kripke structure where the set of states
W = Ws ∪We is partitioned in system states Ws and environment states We.

Given a moduleM, we assume that its states are ordered and the number of
successors of each state w is finite. For each w ∈ W , we denote by succ(w) the
ordered tuple (possibly empty) of w’s α-successors, for all α ∈ Prog. WhenM is
in a system state ws, then all states in succ(ws) are possible next states. On the
other hand, whenM is in an environment state we, the possible next states (that
are in succ(we)) depend on the current environment. Since the behavior of the
environment is not predictable, we have to consider all the possible sub–tuples
of succ(we). The only constraint, since we consider environments that cannot
block the system, is that not all the transitions from we are disabled.

The set of all (maximal) computations ofM starting from W0 is described by a
(W, Prog)–labeled quasi–forest 〈FM, VM, EM〉, called computation quasi–forest,
which is obtained by unwindingM in the usual way. The problem of deciding, for
a given branching–time formula ϕ over AP ∪Nom, whether 〈FM, L ◦ VM, EM〉
satisfies ϕ at a root node, denoted M |= ϕ, is the usual model–checking prob-
lem [CE81, QS81]. On the other hand, for an open systemM, the quasi–forest
〈FM, VM, EM〉 corresponds to a very specific environment, i.e., a maximal envi-
ronment that never restricts the set of its next states. Therefore, when we exam-
ine a branching–time formula ϕ w.r.t.M, the formula ϕ should hold not only in
〈FM, VM, EM〉, but in all quasi-forests obtained by pruning from 〈FM, VM, EM〉
subtrees rooted at children of environment nodes, as well as inhibiting some of
their jumps to roots, if there are any. The set of these quasi–forests, which
collects all possible behaviors of the environment, is denoted by exec(M) and
is formally defined as follows. A quasi–forest 〈F, V, E〉 ∈ exec(M) iff for each
wi ∈ W0, we have V (i) = wi, and for x ∈ F , with V (x) = w, succ(w) =
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〈w1, . . . , wn, wn+1, . . . , wn+m〉, and succ(w)∩W0 = 〈wn+1, . . . , wn+m〉, there ex-
ists S = 〈w′

1, . . . , w
′
p, w

′
p+1, . . . , w

′
p+q〉 sub-tuple of succ(w) such that p + q ≥ 1,

S = succ(w) if w ∈ Ws and the following hold:

– children(x) = {x · 1, . . . , x · p} and, for 1 ≤ j ≤ p, we have V (x · j) = w′
j and

E(x, x · j) = α if (w, w′
j) ∈ R(α);

– for 1 ≤ j ≤ q, let xj ∈ N such that V (xj) = w′
p+j , then E(x, xj) = α if

(w, w′
p+j) ∈ R(α).

In the following, we consider quasi–forests in exec(M) as labeled with (2AP∪Nom,
P rog), i.e., the label of a node x is L(V (x)). For a module M and a for-
mula ϕ of the hybrid graded μ–calculus, we say that M reactively satisfies
ϕ, denoted M |=r ϕ, if all quasi-forests in exec(M) satisfy ϕ. The problem
of deciding whether M |=r ϕ is called hybrid graded μ–calculus module
checking.

Open Pushdown Systems (OPD). An OPD over AP ∪ Nom ∪ Prog is a
tuple S = 〈Q, Γ, 	, C0, Δ, ρ1, ρ2, Env〉, where Q is a finite set of (control) states,
Γ is a finite stack alphabet, 	 �∈ Γ is the stack bottom symbol. We set Γ� = Γ ∪{	},
Conf = Q × (Γ ∗ · 	) to be the set of (pushdown) configurations, and for each
configuration (q, A · γ), we set top((q, A · γ)) = (q, A) to be a top configuration.
The function Δ : Prog → 2(Q×Γ�)×(Q×Γ∗

� ) is a finite set of transition rules
such that 	 is always present at the bottom of the stack and nowhere else (thus
whenever 	 is read, it is pushed back). Note that we make this assumption also
about the various pushdown automata we use later. The set C0 ⊆ Conf is
a finite set of initial configurations, ρ1 : AP → 2Q×Γ� and ρ2 : Nom → C0

are labeling functions associating respectively to each atomic proposition p a
set of top configurations in which p holds and to each nominal exactly one
initial configuration. Finally, Env ⊆ Q × Γ� specifies the set of environment
configurations. The size |S| of S is |Q|+ |Δ|+ |Γ |.

The OPD moves in accordance with the transition relation Δ. Thus, ((q, A),
(q′, γ)) ∈ Δ(α) implies that if the OPD is in state q and the top of the stack is A,
it can move along with an α–transition to state q′, and substitute γ for A. Also
note that the possible operations of the system, the labeling functions, and the
designation of configurations as environment configurations, are all dependent
only on the current control state and the top of the stack.

An OPD S induces a moduleMS = 〈Ws, We, W0, R, L〉, where:

– Ws ∪We = Conf , i.e. the set of pushdown configurations, and W0 = C0;
– We = {c ∈ Conf | top(c) ∈ Env}.
– ((q, A · γ), (q′, γ′ · γ)) ∈ R(α) iff there is ((q, A), (q′, γ′)) ∈ Δ(α);
– L(p) = {c ∈ Conf | top(c) ∈ ρ1(p)} for p ∈ AP ; L(o) = ρ2(o) for o ∈ Nom.

The hybrid graded (μ-calculus) pushdown module checking problem is to de-
cide, for a given OPD S and an enriched μ–calculus formula ϕ, whether
MS |=r ϕ.
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3 Tree Automata

Two-way Graded Alternating Parity Tree Automata (2GAPT). These
automata are an extension of nondeterministic tree automata in such a way
that a 2GAPT can send several copies of itself to the same successor (alter-
nating), send copies of itself to the predecessor (two-way), specify a number n
of successors to which copies of itself are sent without specifying which succes-
sors these exactly are (graded), and accept trees along with a parity condition,
cf. [BLMV06]. To give a formal definition, let us start with some technicalities.

For a given set Y , let B+(Y ) be the set of positive Boolean formulas over Y
(i.e., Boolean formulas built from elements in Y using ∧ and ∨), where we also
allow the formulas true and false and ∧ has precedence over ∨. For a set X ⊆ Y
and a formula θ ∈ B+(Y ), we say that X satisfies θ iff assigning true to elements
in X and assigning false to elements in Y \ X makes θ true. For b > 0, let
〈[b]〉 = {〈0〉, 〈1〉, . . . , 〈b〉}, [[b]] = {[0], [1], . . . , [b]}, and Db = 〈[b]〉 ∪ [[b]]∪ {−1, ε}.

Formally, a 2GAPT on Σ-labeled trees is a tuple A = 〈Σ, b, Q, δ, q0, F〉,
where Σ is the input alphabet, b > 0 is a counting bound, Q is a finite set of
states, δ : Q × Σ → B+(Db × Q) is a transition function, q0 ∈ Q is an initial
state, and F is a parity acceptance condition (see below). Intuitively, an atom
(〈n〉, q) (resp. ([n], q)) means that A sends copies in state q to n + 1 (resp. all
but n) different successors of the current node, (ε, q) means that A sends a
copy (in state q) to the current node, and (−1, q) means that A sends a copy
to the predecessor of the current node. A run of A on an input Σ-labeled tree
〈T, V 〉 is a tree 〈Tr, r〉 in which each node is labeled by an element of T × Q.
Intuitively, a node in Tr labeled by (x, q) describes a copy of the automaton in
state q that reads the node x of T . Runs start in the initial state and satisfy the
transition relation. Thus, a run 〈Tr, r〉 with root z has to satisfy the following:
(i) r(z) = (1, q0) for the root 1 of T and (ii) for all y ∈ Tr with r(y) = (x, q) and
δ(q, V (x)) = θ, there is a (possibly empty) set S ⊆ Db×Q, such that S satisfies
θ, and for all (d, s) ∈ S, the following hold:

– If d ∈ {−1, ε}, then x · d is defined, and there is j ∈ N such that y · j ∈ Tr

and r(y · j) = (x · d, s);
– If d = 〈n〉 (resp., d = [n]), there are at least t = n+1 (resp., t = deg(x)−n)

distinct indexes i1, . . . , it such that for all 1 ≤ j ≤ t, there is j′ ∈ N such
that y · j′ ∈ Tr, x · ij ∈ T , and r(y · j′) = (x · ij, s).

Note that if θ = true, then y does not need to have successors. This is the
reason why Tr may have leaves. Also, since there exists no set S as required for
θ = false, we cannot have a run that takes a transition with θ = false.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance con-
dition. In the parity acceptance condition, F is a set {F1, . . . , Fk} such that
F1 ⊆ . . . ⊆ Fk = Q and k is called the index of the automaton. An infinite path
π on Tr satisfies F if there is an even i such that π contains infinitely many
states from Fi and finitely many states from Fi−1. An automaton accepts a tree
iff there exists an accepting run of the automaton on the tree. We denote by
L(A) the set of all Σ-labeled trees that A accepts.
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A 2GAPT is a GAPT if δ : Q × Σ → B+(Db \ {−1} × Q) and a 2APT if
δ : Q×Σ → B+({−1, ε, 1, . . . , h} ×Q). Moreover, it is an NPT if δ : Q×Σ →
B+({1, . . . , h} ×Q) and the transition relation δ is in disjunctive normal form,
where in each conjunct each direction appears at most once [KVW00]. We now
recall a result on GAPT and hybrid graded μ-calculus formulas.

Lemma 1 ([BLMV06]). Given an hybrid graded μ-calculus sentence ϕ with �
atleast subsentences and counting up to b, it is possible to construct a GAPT with
O(|ϕ|2) states, index |ϕ|, and counting bound b that accepts exactly each tree that
encodes a quasi-forest modeling ϕ having degree at most max{|Nom|+1, �(b+1)}.

Nondeterministic Pushdown Parity Tree Automata (PD–NPT). A
PD–NPT (without ε-transitions), on Σ-labeled full h-ary trees, is a tuple P =
〈Σ, Γ, 	, Q, q0, γ0, ρ,F〉, where Σ is a finite input alphabet, Γ , 	, Γ�, and Q are
as in OPD , (q0, γ0) is the initial configuration, ρ : Q×Σ × Γ� → 2(Q×Γ∗

� )h

is a
transition function, and F is a parity condition over Q. Intuitively, when P is
in state q, reading an input node x labeled by σ ∈ Σ, and the stack contains a
word A ·γ ∈ Γ ∗ · 	, then P chooses a tuple 〈(q1, γ1), . . . , (qh, γh)〉 ∈ ρ(q, σ, A) and
splits in h copies such that for each 1 ≤ i ≤ h, a copy in configuration (qi, γi · γ)
is sent to the node x·i in the input tree. A run of P on a Σ-labeled full h-ary tree
〈T, V 〉 is a (Q× Γ ∗ · 	)-labeled tree 〈T, r〉 such that r(ε) = (q0, γ0) and for each
x ∈ T with r(x) = (q, A·γ), there is 〈(q1, γ1), . . . , (qh, γh)〉 ∈ ρ(q, V (x), A) where,
for all 1 ≤ i ≤ h, we have r(x · i) = (qi, γi · γ). The notion of accepting path is
defined with respect to the control states that appear infinitely often in the path
(thus without taking into account any stack content). Then, the notions given
for 2GAPT regarding accepting runs, accepted trees, and accepted languages,
along with the parity condition, easily extend to PD–NPT . We also consider
Büchi condition F ⊆ Q, which simply is a special parity condition {∅,F , Q}.
In the following, we denote with PD–NBT a PD–NPT with a Büchi condition.
The emptiness problem for an automaton P is to decide whether L(P) = ∅. We
now recall two useful results on the introduced automata.

Proposition 1 ([KPV02]). The emptiness problem for a PD–NPT on Σ-
labeled full h-ary trees, having index m, n states, and transition function ρ,
can be solved in time exponential in n ·m · h · |ρ|.
Proposition 2 ([BMP05]). On Σ-labeled full h-ary trees, given a PD–NBT
P = 〈Σ, Γ, Q, q0, γ0, ρ, Q〉 and an NPT A = 〈Σ, Q′, q′0, δ,F ′〉, there is a PD–NPT
P ′ such that L(P ′) = L(P) ∩ L(A). Moreover, P ′ has |Q| · |Q′| states, the same
index as A, and the size of the transition relation is bounded by |ρ| · |δ| · h.

4 From 2GAPT to NPT

In this section, we give a nontrivial exponential-time translation from 2GAPT to
NPT . To the best of our knowledge this exponentially improves the known result
from the literature, e.g. using results from [BLMV06, KSV02] one can easily get a
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double exponential-time translation. The translation we propose uses the notions
of strategies, promises and annotations, which we now recall.

Let A = 〈Σ, b, Q, δ, q0,F〉 be a 2GAPT with F = 〈F1, . . . , Fk〉 and 〈T, V 〉
be a Σ-labeled tree. Recall that Db = 〈[b]〉 ∪ [[b]] ∪ {−1, ε} and δ : (Q × Σ) →
B+(Db ×Q). For each control state q ∈ Q, let index(q) be the minimal i such
that q ∈ Fi. A strategy tree for A on 〈T, V 〉 is a 2Q×Db×Q-labeled tree 〈T, str〉
such that, defined head(w) = {q : (q, d, q′) ∈ w} as the set of sources of w, it
holds that (i) q0 ∈ head(str(root(T ))) and (ii) for each node x ∈ T and state q,
the set {(q, q′) : (q, d, q′) ∈ str(x)} satisfies δ(q, V (x)).

A promise tree for A on 〈T, V 〉 is a 2Q×Q-labeled tree 〈T, pro〉. We say that pro
fulfills str for V if the states promised to be visited by pro satisfy the obligations
induced by str as it runs on V . Formally, pro fulfills str for V if for every node x ∈
T , the following hold: “for every (q, 〈n〉, q′) ∈ str(x) (resp. (q, [n], q′) ∈ str(x)),
at least n + 1 (resp deg(x)− n) successors x · j of x have (q, q′) ∈ pro(x · j)”.

An annotation tree for A on 〈T, str〉 and 〈T, pro〉 is a 2Q×{1,...,k}×Q-labeled
tree 〈T, ann〉 such that for each x ∈ T and (q, d1, q1) ∈ str(x) the following hold:

– if d1 = ε, then (q, index(q1), q1) ∈ ann(x);
– if d1 ∈ {1, . . . , k}, then for all d2 ∈ {1, . . . , k} and q2 ∈ Q such that

(q1, d2, q2) ∈ ann(x), we have (q, min(d1, d2), q2) ∈ ann(x);
– if d1 = −1 and x = y · i, then for all d2, d3 ∈ {1, . . . , k} and q2, q3 ∈ Q such

that (q1, d2, q2) ∈ ann(y), (q2, d3, q3) ∈ str(y), and (q2, q3) ∈ pro(x), it holds
that (t, min(index(q1), d2, index(q3)), q3) ∈ ann(x);

– if d1 ∈ [[b]]∪〈[b]〉, y = x·i, and (q, q1) ∈ pro(y), then for all d2, d3 ∈ {1, . . . , k}
and q2, q3 ∈ Q such that (q1, d2, q2) ∈ ann(y) and (q2,−1, q3) ∈ str(y), it
holds that (t, min(index(q1), d2, index(q3)), q3) ∈ ann(x).

A downward path induced by str, pro, and ann on 〈T, V 〉 is a sequence
〈x0, q0, t0〉, 〈x1, q1, t1〉, . . . such that x0 = root(T ), q0 is the initial state of A
and, for each i ≥ 0, it holds that xi ∈ T , qi ∈ Q, and ti = 〈qi, d, qi+1〉 ∈
str(xi) ∪ ann(xi) is such that either (i) d ∈ {1, . . . , k} and xi+1 = xi, or (ii)
d ∈ 〈[b]〉 ∪ [[b]] and there exists c ∈ {1, . . . , deg(xi)} such that xi+1 = xi · c and
(qi, qi+1) ∈ pro(xi+1). In the first case we set index(ti) = d and in the second
case we set index(ti) = min{j ∈ {1, . . . , k} | qi+1 ∈ Fj}. Moreover, for a down-
ward path π, we set index(π) as the minimum index that appears infinitely often
in π. Finally, we say that π is accepting if index(π) is even.

The following lemma relates languages accepted by 2GAPT with strategies,
promises, and annotations.

Lemma 2 ([BLMV06]). Let A be a 2GAPT. A Σ-labeled tree 〈T, V 〉 is ac-
cepted by A iff there exist a strategy tree 〈T, str〉, a promise tree 〈T, pro〉 for A
on 〈T, V 〉 such that pro fulfills str for V , and an annotation tree 〈T, ann〉 for A
on 〈T, V 〉, 〈T, str〉 and 〈T, pro〉 such that every downward path induced by str,
pro, and ann on 〈T, V 〉 is accepting.

Given an alphabet Σ for the input tree of a 2GAPT with transition function
δ, let Dδ

b be the subset containing only the elements of Db appearing in δ.
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Then we denote by Σ′ the extended alphabet for the combined trees, i.e., Σ′ =
Σ × 2Q×Dδ

b×Q × 2Q×Q × 2Q×{1,...k}×Q.

Lemma 3. Let A be a 2GAPT running on Σ–labeled trees with n states, index
k and counting bound b that accepts h-ary trees. It is possible to construct in
exponential-time an NPT A′ running on Σ′–labeled h-ary trees that accepts a
tree iff A accepts its projection on Σ.

Proof. Let A = 〈Σ, b, Q, q0, δ,F〉 with F = 〈F1, . . . , Fk〉. By Lemma 2, we
construct A′ as the intersection of three NPT A′, A′′, and A′′′, each hav-
ing size exponential in the size of A, such that, given a Σ′-labeled tree T ′ =
〈T, (V, str, pro, ann)〉, (i) A′ accepts T ′ iff str is a strategy for A on 〈T, V 〉 and
pro fulfills str for V , (ii) A′′ accepts T ′ iff ann is an annotation for A on 〈T, V 〉,
〈T, str〉 and 〈T, pro〉, and (iii) A′′′ accepts T ′ iff every downward path induced
by str, pro, and ann on 〈T, V 〉 is accepting.

The automaton A′ = 〈Σ′, Q′, q′0, δ′,F ′〉 works as follows: on reading a node
x labeled (σ, η, ρ, ω), then it locally checks whether η satisfies the definition
of strategy for A on 〈T, V 〉. In particular, when A′ is in its initial state, we
check that η contains a transition starting from the initial state of A. Moreover,
the automaton A′ sends to each child x · i the pairs of states that have to be
contained in pro(x · i), in order to verify that pro fulfills str. To obtain this, we
set Q′ = 2Q×Q ∪ {q′0} and F ′ = {∅, Q′}. To define δ′, we first give the following
definition. For each node x ∈ T labeled (σ, η, ρ, ω), we set

S(η) = {〈S1, . . . , Sdeg(x)〉 ∈ (2Q×Q)deg(x) such that
[for each (q, 〈m〉, p) ∈ η there is P ⊆ {1, . . . deg(x)} with |P | = m + 1
such that for all i ∈ P, (q, p) ∈ Si] and
[for each (q, [m], p) ∈ η there isP ⊆ {1, . . . deg(x)} with |P | = deg(x)− m
such that for all i ∈ P, (q, p) ∈ Si]}

to be the set of all tuples with size deg(x), each fulfilling all graded modalities
in str(x). Notice that |S(η)| ≤ 2hn2

. Then we have

δ′(q, (σ, η, ρ, ω)) =

⎧
⎪⎨

⎪⎩

S(η) if ∀ p ∈ head(η), {(d, p′) | (p, d, p′) ∈ η} satisfies δ(p, σ)

and [(q = q1
0 and q0 ∈ head(η)) or (q �= q1

0 and q ⊆ ρ)]

false otherwise.

Hence, in A′ we have |Q′| = 2n2
, |δ′| ≤ 2n2(k+1), and index 2.

A′′ = 〈Σ′, Q′′, q′′0 , δ′′,F ′′〉 works in a similar way to A′. That is, for each
node x, it first locally checks whether the constraints of the annotations are
verified; then it sends to the children of x the strategy and annotation associated
with x, in order to successively verify whether the promises associated with the
children nodes are consistent with the annotation of x. Therefore, in A′′ we have
Q′′ = 2Q×Dδ

b×Q × 2Q×{1,...,k}×Q, q′′0 = (∅, ∅), F ′′ = {∅, Q′′}, and for a state
(ηprev, ωprev) and a letter (σ, η, ρ, ω) we have

δ′′((ηprev, ωprev), (σ, η, ρ, ω)) =

⎧
⎪⎨

⎪⎩

〈(η, ω), . . . , (η, ω)〉 if the local conditions for the

annotations are verified

false otherwise.

Hence, in A′′ we have |Q′′| ≤ 2n2(|δ|+k), |δ′′| ≤ h · 2n2(|δ|+k), and index 2.
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Finally, to define A′′′ we start by constructing a 2APT B whose size is polyno-
mial in the size of A and accepts 〈T, (V, str, pro, ann)〉 iff there is a non accepting
downward path (w.r.t. A) induced by str, pro, and ann on 〈T, V 〉. The automa-
ton B = 〈Σ′, QB, qB

0 , δB,FB〉 (which in particular does not need direction −1)
essentially chooses, in each state, the downward path to walk on, and uses an
integer to store the index of the state. We use a special state � not belonging
to Q to indicate that B proceeds in accordance with an annotation instead of a
strategy. Therefore, QB = ((Q ∪ {�})× {1, . . . , k} ×Q) ∪ {qB

0 }.
To define the transition function on a node x, let us introduce a function f that

for each q ∈ Q, strategy η ∈ 2Q×Dδ
b×Q, and annotation ω ∈ 2Q×{1,...,k}×Q gives

a formula satisfied along downward paths consistent with η and ω, starting from
a node reachable in A with the state q. That is, in each node x, the function f
either proceeds according to the annotation ω or the strategy η (note that f does
not check that the downward path is consistent with any promise). Formally, f
is defined as follows, where index(p) is the minimum i such that p ∈ Fi:

f(q, η, ω) =
∨

(q,d,p)∈ω

d∈{1,...,k}

〈ε, (�, d, p)〉 ∨
∨

(q,d,p)∈η

d∈〈[b]〉∪[[b]]

∨

c∈{1,...,deg(x)}
〈c, (q, index(p), p)〉

Then, we have δB(qB
0 , (σ, η, ρ, ω)) = f(q0, η, ω) and

δB((q, d, p), (σ, η, ρ, ω)) =

{
false if q �= � and (q, p) �∈ ρ

f(p, η, ω) otherwise.
.

A downward path π is non accepting for A if the minimum index that appears
infinitely often in π is odd. Therefore, FB = 〈FB

1 , . . . , FB
k+1, Q

B〉 where FB
1 = ∅

and, for all i ∈ {2, . . . , k + 1}, we have FB
i = {(q, d, p) ∈ QB | d = i− 1}. Thus,

|QB| = kn(n + 1) + 1, |δB| = k · |δ| · |QB|, and the index is k + 2. Then, since
B is alternating, we can easily complement it in polynomial-time into a 2APT
B that accepts a tree iff all downward paths induced by str, pro, and ann on
〈T, V 〉 are accepting. Finally, following [Var98] we construct in exponential-time
the desired automaton A′′′. ��

5 Deciding Hybrid Graded Pushdown Module Checking

In this section, we show that hybrid graded pushdown module checking is de-
cidable and solvable in 2Exptime. Since CTL pushdown module checking is
2Exptime-hard, we get that the addressed problem is 2Exptime-complete. For
the upper bound, the algorithm works as follows. Given an OPD S and the mod-
ule MS induced by S, by combining and extending the constructions given in
[BMP05] and [FM07], we first build in polynomial-time a PD–NBT AS accept-
ing each tree that encodes a quasi-forest belonging to exec(MS). Then, given
an hybrid graded μ-calculus formula ϕ, according to [BLMV06], we build in
polynomial-time a GAPT A¬ϕ (Lemma 1) accepting all models of ¬ϕ, with the
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intent of checking that no models of ¬ϕ are in exec(MS) 3. Then, accordingly
to the basic idea of [KVW01], we check that M |=r ϕ by checking whether
L(AS) ∩ L(A¬ϕ) is empty. Finally, we get the result by using an exponential-
time reduction of the latter to the emptiness problem for PD–NPT , which from
Proposition 1 can be solved in Exptime. As a key step of the above reduc-
tion, we use the exponential-time translation from GAPT into NPT showed in
Section 4.

Let us start dealing with AS . Before building the automaton, there are some
technical difficulties to overcome, which are also new with respect to [BMP05].
First note that since AS is a PD–NBT , it only deals with trees having labels
on nodes, while exec(M) contains quasi-forests with both edges and nodes la-
beled. To solve this problem, for each quasi-forest in exec(M), the automaton
AS accepts a corresponding encoding tree obtained by (i) adding a new root
connecting all roots of the quasi-forest, (ii) moving the label of each edge to the
target node of the edge (using a new atomic proposition pα, for each program α),
and (iii) substituting “jumps to roots” with new atomic propositions ↑αo (repre-
senting an α-labeled jump to the unique root node labeled by nominal o). Let
AP∗ = AP ∪ {pα | α is a program} ∪ {↑αo | α is a program and o is a nominal},
we denote with 〈T, V ∗〉 the 2AP∗∪Nom-labeled tree encoding of a quasi-forest
〈F, V, E〉 ∈ exec(M), obtained using the above transformations.

Another technical difficulty to handle with is related to the fact that quasi-
forests of exec(M) (and thus their encodings) may not be full h-ary, since the
nodes of the OPD from which M is induced may have different degrees. Also,
quasi-forests of exec(M) may not share the same structure, since they are ob-
tained by pruning subtrees from the computation quasi-forest 〈FM, VM, EM〉
of M. Let 〈TM, V ∗

M〉 be the h-ary computation tree of M obtained from 〈FM,
VM, EM〉 using the above encoding. By extending an idea of [KVW01, BMP05],
we consider each tree 〈T, V ∗〉, encoding of a quasi-forest 〈F, V, E〉 of exec(M), as
a 2AP∗∪Nom∪{t}∪{⊥}-labeled full h-ary tree 〈TM, V ∗∗〉 (where ⊥ and t are fresh
proposition names not belonging to AP ∗ ∪Nom) in the following way: first we
add proposition t to the label of all leaf nodes of the forest; second, for each node
x ∈ TM with p children x ·1, . . . , x ·p (note that 0 ≤ p ≤ h), we add the children
x · (p + 1), . . . , x · h and label these new nodes with ⊥; finally, for each node x
labeled by ⊥ we add recursively h children labeled by ⊥. Thus, for each node
x ∈ TM\{root(TM)}, if x ∈ F then V ∗∗(x) = V ∗(x), otherwise V ∗∗(x) = {⊥}
and therefore the proposition ⊥ is used to denote both “disabled” states and
“completion” states. In this way, all trees encoding quasi-forests belonging to
exec(M) are full h-ary trees, and they differ only in their labeling. Moreover,
the environment can also disable jumps to roots. This is performed by removing
from enabled environment nodes some of the ↑αo labels. Notice that since we
consider environments that do not block the system, nodes associated with envi-
ronment states have at least one successor not labeled by {⊥}, unless they have
↑αo in their labels. Putting in practice the construction proposed above, we obtain
the following result, where êxec(M) is the set of all 2AP∗∪Nom∪{t}∪{⊥}-labeled

3 For better readability, in the rest of the paper we use M instead of MS .
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full h-ary trees obtained from 〈TM, V ∗
M〉 in the above described manner (the

detailed construction is reported in the full version of the paper).

Lemma 4. Given an OPD S = 〈Q, Γ, 	, C0, Δ, ρ1, ρ2, Env〉 with branching de-
gree h, we can build a PD–NBT AS = 〈Σ, Γ, 	, Q′, q′0, γ0, δ, Q〉, which accepts
exactly êxec(M), such that Σ = 2AP∗∪Nom∪{t} ∪ {⊥}, |Q′| = O(|Q|2 · |Γ |), and
|δ| is polynomially bounded by h · |Δ|.
Let us now go back to the hybrid graded μ-calculus formula ϕ. Using Lem-
mas 1 and 3, we get that given an hybrid graded μ-calculus formula ϕ, we can
build in exponential-time an NPT A¬ϕ accepting all models of ¬ϕ. Now, recall
that given a module M induced by an OPD S and the automaton AS accept-
ing all trees encoding of quasi-forests belonging to exec(M) (see Lemma 4), it
is possible to check whether M |=r ϕ by checking whether L(AS) ∩ L(A¬ϕ)
is empty. Also, recall by Proposition 2 that L(AS) ∩ L(A¬ϕ) can be accepted
by a PD–NPT A whose size is exponential in the size of ϕ and polynomial in
the size of S. Finally, by recalling that the emptiness problem for A can be
checked in Exptime (Proposition 1) and that the pushdown module checking
problem for CTL is 2Exptime-hard with respect to the size of the formula and
Exptime-hard in the size of the system [BMP05], we get the following result.

Theorem 1. The hybrid graded μ-calculus pushdown module checking problem
is 2Exptime–complete with respect to the size of the formula and Exptime–
complete with respect to the size of the system.

6 Discussion

As a direct consequence of the algorithm we have proposed, we get that “push-
down model checking” with respect to formulas of the hybrid graded μ-calculus
is also solvable in 2Exptime. Indeed, we recall that model checking a closed sys-
tem is equivalent to check a module in which the maximal environment, which
corresponds to the full computation tree, satisfies the specification. Consider now
the automaton described in Lemma 4. We can easily simplify the construction to
get an automaton that accepts only the full computation tree. Then, by applying
our module checking algorithm we easily get the result.

The above idea can be also extended to other fragments of the fully enriched
μ-calculus. We recall that this calculus extends the hybrid graded one by also
allowing “backward” modalities. Syntactically, it is obtained by allowing a pro-
gram α in atleast and allbut formulas to be either an atomic program a or its
inverse a−. To deal with inverse programs, we also extend R as follows: for
each a ∈ Prog , we set R(a−) = {(v, u) : (u, v) ∈ R(a)}. The semantics given
for hybrid graded μ-calculus extends to fully enriched μ-calculus, accordingly
and in a natural way. We recall that fully enriched μ-calculus is undecidable
(see [BP04]), while any of its fragments is decidable. We argue that also for
those fragments including backwards modalities, the pushdown model checking
is solvable in 2Exptime. The main technical difficulty here is that since we are
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dealing with a backward modality, the unwinding must take care also of the
past configurations. In particular, since each node in the tree can only have one
parent, we need to simulate in forward all past configurations, but one. This can
be accomplished by inverting the modality (i.e., inverting the program). Using
such an unwinding, along with the above idea of constructing an automaton
(by simplifying that given in Lemma 4) that accepts only the full computation
tree (which now also needs to keep track of the past computations), and the
pushdown module checking algorithm idea, we get the result.

Acknowledgments. We thank the anonymous referee for his useful comments
regarding backward modalities.
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