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Abstract—In the setting of multi-agent games, considerable
effort has been devoted to the definition of modal logics
for strategic reasoning. In this area, a recent contribution is
given by the introduction of Strategy Logic (SL, for short) by
Mogavero, Murano, and Vardi. This logic allows to reason
explicitly about strategies as first order objects and express
in a very natural and elegant way several solution concepts
like Nash, resilient, and secure equilibria, dominant strategies,
etc. The price that one has to pay for the high expressiveness
of SL semantics is that agents strategies it admits may be not
behavioral, i.e., a choice of an agent, at a given moment of a play,
may depend on the choices another agent can make in another
counterfactual play. As the latter moves are unpredictable,
this kind of strategies cannot be synthesized in practice.

In this paper, we investigate two syntactical fragments of
SL, namely the conjunctive-goal and disjunctive-goal, called
SL[CG] and SL[DG] for short, and prove that their semantics
admit behavioral strategies only. These logics are obtained by
forcing SL formulas to be only of the form of conjunctions or
disjunctions of goals, which are temporal assertions associated
with a binding of agents with strategies. As SL formulas
with any Boolean combination of goals turn out to be non
behavioral, we have that SL[CG] and SL[DG] represent the
maximal fragments of SL describing agent behaviors that are
synthesizable. As a consequence of the above results, the model-
checking problem for both SL[CG] and SL[DG] is shown to be
solvable in 2EXPTIME, as it is for the subsumed logic ATL∗.

I. INTRODUCTION

In recent years, game theory has exhibited to be a fruitful
metaphor in open-system verification, where the evolution
emerges from the coordination of different parts viewed
as autonomous and proactive agents [8], [16]. This has
encouraged the development of several modal logics aimed
at reasoning about strategies and their interaction [3], [11],
[13], [14], [21].

An important contribution in this field has been the
development of Alternating-Time Temporal Logic (ATL∗, for
short), introduced by Alur, Henzinger, and Kupferman [3].
Formally, it is obtained as a generalization of branching-time
logic CTL∗ [9], where the path quantifiers there exists “E” and
for all “A” are replaced with strategic modalities of the form
“〈〈A〉〉” and “[[A]]”, for a set A of agents. These modalities are
used to express cooperation and competition among agents in
order to achieve a temporal goal. Several decision problems
have been investigated about ATL∗. In particular, the model-
checking problem is proved to be 2EXPTIME-COMPLETE [3].

Despite its powerful expressiveness, ATL∗ suffers from two
strong limitations: 1) strategies are treated implicitly through

modalities that refer to games between competing coalitions
and 2) strategic modalities only represent coupled ∃∀ and ∀∃
quantifications over strategies. These limitations make ATL∗

less suited to formalize several important strategic notions,
such as Nash Equilibrium and the like.

The above considerations led to introduce and study
in [20] a more powerful logic for strategic reasoning in
order to “unpack” and extend the ATL∗ modalities. The
result is Strategy Logic (SL, for short), which extends ATL∗

in two fundamental aspects. First, strategies are first-order
objects that can be existentially and universally quantified.
Specifically, SL uses the existential 〈〈x〉〉 and the universal
[[x]] strategic modalities, which can be read as “there exists a
strategy x” and “for all strategies x”, respectively. Second,
strategies represent general conditional plans that at each step
prescribe an action on the base of the previous history. Thus,
strategies are not intrinsically glued to a specific agent, but
an explicit binding operator (a, x) allows to bind an agent a
to the strategy associated with a variable x.

The SL features allow a finer-grained description of exten-
sive games and reveals aspects that other classic subsumed
logics, such as ATL∗, are not able to grasp. In particular, a
key aspect in the theory of extensive games is that strategies
are behavioral, that is, by repeating Myerson’s words: “the
correlation between the move he [i.e., an agent] chooses at
one information state and the move would have chosen at
any other information state has no significance” [22].

However, the expressive power of SL allows to specify
some sentences that can be satisfied only by agent strategies
that are not behavioral. More specifically, in a determined
history of the play, what Myerson calls “information state”,
the value of an existential quantified strategy may depend
on how the other strategies will behave in the future or in
other counterfactual plays. This means that, to choose an
existential strategy, we need to know the entire structure
of universal strategies on all possible histories, which is in
general unpredictable, as what we actually know is their
behavior on the history of interest only. This means that
non-behavioral strategies cannot be synthesized in practice.

Additionally, by maintaining in SL this kind of strategies,
we lose important model-theoretic properties and incur in
an increased complexity of related decision problems. In
particular, in [18], it has been shown that the model-checking
problem becomes non-elementary complete. To gain back
elementariness, several fragments of SL, strictly subsuming



ATL∗, have been investigated and studied in [18], [19]. Among
the others, One-Goal Strategy Logic (SL[1G], for short)
encompasses formulas in a special prenex normal form having
a single temporal goal at a time. For a goal, it is specifically
meant an SL formula of the type [ψ, where [ is a binding
prefix of the form (α1, x1), . . . , (αn, xn) containing all the
involved agents and ψ is a linear-time formula. In SL[1G],
each temporal formula ψ is prefixed by a quantification-
binding prefix ℘[ that quantifies over a tuple of strategies
and binds them to all agents. In [18], [19], it has been
showed that SL[1G] admits behavioral strategies1 only and
this has been a key aspect in showing that the model-checking
problem for this logic is 2EXPTIME-COMPLETE, as it is for
ATL∗. This adds motivations on the importance to restrict
our attention to behavioral strategies in SL.

In this paper, we achieve the target of identifying sufficient
criteria for what is behavioral in SL. Specifically, we
consider two syntactical fragments of SL, strictly subsuming
SL[1G], namely the conjunctive-goal and disjunctive-goal,
respectively called SL[CG] and SL[DG], for short. These
logics are obtained by forcing SL formulas to be only
of the form of conjunctions or disjunctions of goals. As
main result, we show that also SL[CG] and SL[DG] admit
behavioral strategies only. Moreover, since SL formulas with
any Boolean combination of goals, named SL[BG] in [18],
[19], turn out to be non behavioral, we have that SL[CG] and
SL[DG] represent the maximal syntactic fragments of SL that
are behavioral. We also solve the model-checking problem
for SL[CG] and SL[DG] via alternating tree automata. As for
SL[1G], the fact that these fragments are behavioral is a key
aspect to strongly simplify the reasoning about strategies
by reducing it to a step-by-step reasoning about which
action to perform. More precisely, we avoid the projection
operation for each quantification in the formula (as it is
instead required for SL) by using a dedicated automaton
that makes an action quantification for each node of the tree
model. As a formula may require different goals to take
care of simultaneously, a specific duty of the automaton
is to show that such goals can be treated separately, but
maintaining their mutual coherence. As this automaton is
only exponential in the size of the formula (in particular, it
is independent from the alternation number of quantifications
in the formula) and its non-emptiness can be computed in
exponential time, we get that the model-checking for both
SL[CG] and SL[DG] is solvable in 2EXPTIME. It is interesting
to observe that the same result holds for SL[1G], while for
SL[BG] it still open the question whether the model checking
problem is elementary or not.

Besides the theoretical aspects, SL[CG] and SL[DG] enable
to formalize several interesting game properties that cannot
be expressed in SL[1G], and hence in ATL∗. Specifically, on
one hand, in SL[CG] it is possible to formalize scenarios

1In [18], [19], we improperly call this kind of strategies elementary.

where an agent can join two or more different coalitions
without producing mutual conflicts or, somewhat conversely,
it can assure that none of them prevails over the others. As
it will be clear in the following, in such a case, conjunctive
goals are strictly required. As shown in [4], this feature is
essential also to address interesting issues such as coalition
decomposability, that is whether a whole coalition can be
split in smaller, and hence more manageable, sub-coalitions.
On the other hand, in SL[DG] it is possible to formalize
implication between goals, which can be used to express that
a winning condition is weaker that another one.

Due to space limit, most of the proofs are omitted and
reported in an extended version. We refer to [18], [19], [20]
for more motivations, examples and related material. For
other recent works in the field of strategic reasoning, one
can also see [1], [2], [5], [6], [7], [10], [17], [23], [25].

Outline: The remaining part of the work is structured
as follows. In Section II, we first recall concurrent game
structures, which represent the semantic framework we
use for the addressed logics. Then, we present syntax and
semantics of SL and introduce its new fragments SL[CG] and
SL[DG], along with some inspiring examples. In addition, we
define the notion of dependence map, which is used to define
the crucial concept of behavioral semantics. In Section III,
we show that classical and behavioral semantics for both
SL[CG] and SL[DG] coincides. In Section IV, we describe
the model-checking automata-theoretic procedure for the
introduced fragments and show a 2EXPTIME upper bound
for the addressed problem. Finally, at the end of the work,
we report some concluding observations and discussions.

II. STRATEGY LOGIC

In this section, we first describe concurrent game structures
and give some preliminary notions. Then, we recall syntax
and semantics of Strategy Logic (SL, for short) and introduce
the new syntactic fragments SL[CG] and SL[DG]. Finally,
we define the notions of dependence maps and behavioral
semantics. For a detailed introduction on SL, see [18], [20].

A. Concurrent game structures

As in ATL∗, SL is interpreted over concurrent game
structures [3], which are labeled transition system,where
each state represents a configuration of an extensive game
characterized by a set of atomic propositions denoting
its meaning. Transitions between states represent possible
concurrent moves of the players involved in the game.

Definition II.1 (Concurrent Game Structures). A concurrent
game structure (CGS, for short) is a tuple G , 〈AP,Ag,Ac,
St, λ, τ, s0〉, where AP and Ag are finite non-empty sets of
atomic propositions and agents, Ac and St are enumerable
non-empty sets of actions and states, s0 ∈ St is a designated
initial state, and λ : St → 2AP is a labeling function that
maps each state to the set of atomic propositions true in that
state. Let Dc , AcAg be the set of decisions, i.e., functions



from Ag to Ac representing the choices of an action for each
agent. 2 Then, τ : St × Dc → St is a transition function
mapping a pair of a state and a decision to a state.

In the following, we use the name of a CGS as a
subscript to extract the components from its tuple-structure.
Accordingly, if G = 〈AP,Ag,Ac,St, λ, τ, s0〉, we have that
AcG = Ac, λG = λ, s0G = s0, and so on. Before introducing
our logic, we need some preliminary definitions.

A track (resp., path) is a finite (resp., an infinite) sequence
of states ρ ∈ St∗ (resp., π ∈ Stω) such that, for all 0 ≤
i ≤ |ρ| − 1 (resp., i ∈ N), there exists a decision d ∈ Dc
such that (ρ)i+1 = τ((ρ)i, d) (resp., (π)i+1 = τ((π)i, d)).
The set Trk ⊆ St+ (resp., Pth ⊆ Stω) contains all non-zero
length tracks (resp., paths). Moreover, Trk(s) (resp., Pth(s))
indicates the subsets of tracks (resp., paths) starting at a state
s ∈ St. Intuitively, tracks and paths of a CGS G are legal
sequences of reachable states in G that can be respectively
seen as partial and complete history of the game.

A strategy is a partial function f : Trk ⇀ Ac that
maps each non-zero length track in its domain to an action.
Intuitively, a strategy is a conditional plan that for each
partial history of G prescribes an action to be executed. For
a state s ∈ St, a strategy f is said s-total if it is defined
on all tracks starting in s, i.e., dom(f) = Trk(s). The set
Str , Trk ⇀ Ac (resp., Str(s) , Trk(s) → Ac) contains
all (resp., s-total) strategies.

Let f ∈ Str be a strategy and ρ a track in its domain. Then,
(f)ρ ∈ Str denotes the translation of a strategy f along ρ, i.e.
a strategy such that (f)ρ(ρ

′) , f(ρ · ρ′≥1), if (ρ′)0 = lst(ρ)
and ρ · ρ′≥1 ∈ dom(f), undefined otherwise. 3 Intuitively,
the translation (f)ρ is the update of the strategy f, once the
history of the game becomes ρ. It is worth noting that, if f
is a (ρ)0-total strategy then (f)ρ is lst(ρ)-total.

Let Var be a fixed set of variables. An assignment is
a partial function χ : Var ∪ Ag ⇀ Str mapping variables
and agents in its domain to a strategy. An assignment χ is
complete if it is defined on all agents, i.e., Ag ⊆ dom(χ). For
a state s ∈ St, it is said that χ is s-total if all strategies χ(l)
are s-total, for l ∈ dom(χ). The set Asg , Var∪Ag ⇀ Str
(resp., Asg(s) , Var ∪ Ag ⇀ Str(s)) contains all (resp.,
s-total) assignments. Moreover, Asg(X) , X→ Str (resp.,
Asg(X, s) , X→ Str(s)) indicates the subset of X-defined
(resp., s-total) assignments, i.e., (resp., s-total) assignments
defined on X ⊆ Var ∪Ag.

As in the case of strategies, we also define a translation
along a given track for assignments. For a given state s ∈ St,
let χ ∈ Asg(s) be an s-total assignment and ρ ∈ Trk(s) a
track. Then, (χ)ρ ∈ Asg(lst(ρ)) denotes the translation of χ

2In the following, we use both X → Y and YX to denote the set of
functions from the domain X to the codomain Y.

3By lst(w) , (w)|w|−1 it is denoted the last element of a finite non-
empty sequence w ∈ Σ+. Moreover, the notations (w)≤i ∈ Σ∗ and
(w)≥i ∈ Σ∞ indicate the prefix up to and the suffix from index i ∈ [0,
|w|] of a non-empty sequence w ∈ Σ∞.

along ρ, i.e., the lst(ρ)-total assignment, with dom((χ)ρ) ,
dom(χ), such that (χ)ρ(l) , (χ(l))ρ, for all l ∈ dom(χ).

As in first order logic, in order to quantify over strategies
or bind a strategy to an agent, we update an assignment χ
by associating an agent or a variable l with a new strategy f.
Let χ ∈ Asg be an assignment, f ∈ Str a strategy and l ∈
Var∪Ag either an agent or a variable. Then, χ[l 7→ f] ∈ Asg
denotes the new assignment defined on dom(χ[l 7→ f]) ,
dom(χ) ∪ {l} that returns f on l and the same value that χ
would return on the rest of its domain. It is worth noting
that if χ and f are s-total then χ[l 7→ f] is also s-total.

A play is the unique outcome of the game determined
by all agent strategies participating to it; formally, given a
state s ∈ St and a complete s-total assignment χ ∈ Asg(s),
the function play(χ, s) returns the path π ∈ Pth(s) such
that, for all i ∈ N, it holds that (π)i+1 = τ((π)i, d), where
d(a) , χ(a)((π)≤i) for each a ∈ Ag.

Finally, for a state s ∈ St and a complete s-total assign-
ment χ ∈ Asg(s), we define the i-th global translation that
calculates, at a certain step i ∈ N of the play, what is the cur-
rent state and its updated assignment. Formally, the i-th global
translation of (χ, s) is the pair of a complete assignment and
a state (χ, s)i , ((χ)(π)≤i

, (π)i), where π = play(χ, s).
As in the case of components of a CGS, in order to avoid

any ambiguity, we sometimes use the name of the CGS as a
subscript of the sets and functions introduced above.

B. Syntax and semantics

Strategy Logic (SL, for short) [20] syntactically extends
LTL with two strategy quantifiers, the existential 〈〈x〉〉 and
the universal [[x]], and an agent binding (a, x), where a is an
agent and x a variable. Intuitively, these new elements can
be respectively read as “there exists a strategy x”, “for all
strategies x”, and “bind agent a to the strategy associated
with the variable x”.

Definition II.2 (SL Syntax). Given the set of atomic
propositions AP, variables Var, and agents Ag, the formal
syntax of SL is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ |
〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ;

where p ∈ AP, x ∈ Var, and a ∈ Ag.

By sub(ϕ) we denote the set of subformulas of the formula
ϕ. For instance, the subformulas of ϕ = 〈〈x〉〉(a, x)(F p) are
sub(ϕ) = {ϕ, (a, x)(F p), (F p), p}.

Usually, predicative logics need the concepts of free
and bound placeholders in order to formally define their
semantics. For example, in first order logic the only type
of placeholders are variables. In SL, since strategies can be
associated to both agents and variables, we use the set of free
agents/variables free(ϕ) as the subset of Ag∪Var containing
(i) all agents a for which there is no binding (a, x) before the
occurrence of a temporal operator and (ii) all variables x for



which there is a binding (a, x) but no quantification 〈〈x〉〉 or
[[x]]. A formula ϕ without free agents (resp., variables), i.e.,
with free(ϕ) ∩Ag = ∅ (resp., free(ϕ) ∩Var = ∅), is named
agent-closed (resp., variable-closed). If ϕ is both agent- and
variable-closed, it is named sentence. By snt(ϕ) we denote
the set of all sentences that are subformulas of ϕ.

The SL semantics is defined as follows.

Definition II.3 (SL Semantics). Given a CGS G, for all
SL formulas ϕ, states s ∈ St, and s-total assignments
χ ∈ Asg(s) with free(ϕ) ⊆ dom(χ), the modeling relation
G, χ, s |= ϕ is inductively defined as follows.

1) G, χ, s |= p if p ∈ λ(s), with p ∈ AP.
2) Boolean operators are interpreted as usual.
3) For a variable x ∈ Var and a formula ϕ, it holds that:

a) G, χ, s |= 〈〈x〉〉ϕ if there exists an s-total strategy
f ∈ Str(s) such that G, χ[x 7→ f], s |= ϕ;

b) G, χ, s |= [[x]]ϕ if for all s-total strategies f ∈ Str(s)
it holds that G, χ[x 7→ f], s |= ϕ.

4) For an agent a∈Ag, a variable x∈Var, and a formula ϕ,
it holds that G, χ, s |= (a, x)ϕ if G, χ[a 7→ χ(x)], s |= ϕ.

5) Finally, if the assignment χ is also complete, for all
formulas ϕ, ϕ1, and ϕ2, it holds that:

a) G, χ, s |= X ϕ if G, (χ, s)1 |= ϕ;
b) G, χ, s |= ϕ1U ϕ2 if there is an index i ∈ N with
k ≤ i such that G, (χ, s)i |= ϕ2 and, for all indexes
j ∈ N with k ≤ j < i, it holds that G, (χ, s)j |= ϕ1;

c) G, χ, s |= ϕ1R ϕ2 if, for all indexes i ∈ N with k ≤ i,
it holds that G, (χ, s)i |= ϕ2 or there is an index
j ∈ N with k ≤ j < i such that G, (χ, s)j |= ϕ1.

It is evident that, due to Items 1, 2, and 3, the LTL
semantics is simply embedded into the SL one. Furthermore,
since the satisfaction of a sentence ϕ does not depend on
assignments, we omit them and write G, s |= ϕ, when s is a
generic state in St, and G |= ϕ when s = s0.

In what follows a quantification prefix over a set V⊆Var
of variables is a finite word ℘∈{〈〈x〉〉, [[x]] : x ∈ V}|V| of
length |V| such that each variable x ∈ V occurs just once in ℘.
By 〈〈℘〉〉 (resp. [[℘]]) we denote the set of variables occurring
existentially (resp. universally) quantified in ℘. A binding
prefix [ over V is a word of type (a1, x1) . . . (am, xm) such
that xi ∈ V, for each 1≤ i≤m, and Ag = {a1,. . . ,am}. By
Qnt(V) and Bnd(V) we indicate the set of quantification
and binding prefixes over V.

We are now ready to introduce the two fragments of SL
we are interested in this paper, i.e., the conjunctive-goal and
disjunctive-goal strategy logic (SL[CG] and SL[DG], for short).
In the following, when we have to refer to one of the two
logics indifferently, we use the single acronym SL[XG].

Definition II.4 (SL[XG] Syntax). The syntax of SL[CG] and
SL[DG] is defined as follows, with the symbol ~ used in
place of ∧ or ∨, respectively:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | ℘ψ
ψ ::= [ϕ | ψ ~ ψ.

where ℘ ∈ Qnt(free(ψ)) and [ ∈ Bnd(V), for a given set
of variables V ⊆ Var.

The name of these fragments comes from the fact that
formulas of the kind [ϕ are called goals. It is also evident that
SL[XG] resides between the logics SL[1G] (see [19], for more),
where ψ consists of a unique goal [ϕ, and SL[BG] (see [18],
for more), which allows any Boolean combination of goals.

A first important result about SL[XG], is that, differently
from SL[1G], it is not invariant under decision-unwinding.
Intuitively, by decision-unwinding [19] we mean the tree
obtained by unraveling a given CGS with respect to all
possible agent decisions (see Appendix B). Consequently,
SL[XG] is strictly more expressive than SL[1G].

Theorem II.1 (Unwinding Variance). There exists an SL[XG]
sentence ϕ and two models G1 and G2 with isomorphic
decision-unwindings such that G1 |= ϕ and G2 6|= ϕ.

C. Inspiring examples

We now give a few specification examples, in order to
show the expressive power of the introduced fragments.

As first example, assume that one wants to check
whether an agent-provider can serve with a unique pol-
icy the requests of two agent-clients and the behavior
of one agent-client cannot influence the request of the
other one. This property can be described by the SL[CG]
sentence φ = 〈〈x〉〉〈〈y2〉〉〈〈y3〉〉[[z]]((a1, x)(a2, y2)(a3, z)F p ∧
(a1, x)(a2, z)(a3, y3)F q), where a1 is the provider, a2 and
a3 are the two clients, and F p and F q are the relative
requests. Note that the ATL∗ formula φ1 = 〈〈{a1, a2}〉〉F p ∧
〈〈{a1, a3}〉〉F q is too weak for this aim, since according
to it the strategies that a1 may need to adopt in the
two coalitions could be mutually inconsistent. Similarly,
φ2 = 〈〈{a1, a2, a3}〉〉(F p∧F q) does not assure that the agent-
clients are independent, in the sense that no one of them can
jeopardize the request of the other agent. In particular, we
have that φ implies φ1∧φ2, but the converse is not necessarily
true. More generally, sentences like φ can be used in several
contexts. In the field of multi-agent systems, they tell us
that the agent a1 has a strategy that enables to form two
independent coalitions with a2 and a3, respectively, without
embarking on a unique coalition formation process with both
of them. In the context of formal verification, instead, such
sentences can be used at different levels of analysis to test
the fault-tolerance of a component with respect to the others
or the robustness of an entire system, represented by a1, to
possible misuses of single users (a2 and a3).

Now, consider the CGS G of Figure 1, where each
transition is associated with a triple of binary values
representing the decision of a1, a2, and a3, respectively
(self-loops have been omitted for simplicity). Let x and



y2 set to be the strategy that constantly execute the action
1 and y3 set to be the strategy that constantly execute 0.

Figure 1. Provider with unique policy.

It is easy to see that, from
the initial state s1, if x
is bound to a1 and y2
is bound to a2, then the
system is forced to reach
the states s3 or s4 (where
p is true). Similarly, if x
is bound to a1 and y3 is
bound to a3, the system is

forced to reach the states s4 or s5 (where q is true). Thus,
the previous sentence is satisfied in s0.

As another example, let us consider a game with
three agents a1, a2, and a3 such that a2 and a3 want
to achieve G F p and G F q, respectively. We want to
verify whether a1 can act as a “super partes” agent that
balances the evolution of the game so that the other
agents can possibly satisfy their own goal. This can be
expressed in SL[CG] by the sentence φ′ = 〈〈x〉〉[[y]]〈〈z1〉〉〈〈z2〉〉
((a1, x)(a2, y)(a3, z1)G F q ∧ (a1, x)(a3, y)(a2, z2)G F p).

Figure 2. Fair scheduler.

Consider the CGS G of Fig-
ure 2. If a1 constantly exe-
cutes the action 1, then the
even steps of each possible
play will be the initial state
s1. From that state, a2 can-
not force the next state to
yield ¬q and, vice versa, a3
cannot force the next state to
yield ¬p. Thus, G satisfies φ′

in s1. It is worth noting that a1 does not have the power to
decide which winning condition will be satisfied, however
by executing the strategy 0ω it denies both of them.

As final issue, consider the problem to check whether,
given a two-player CGS G, a winning condition ψ1 is
more restrictive for a1 that another condition ψ2. An ATL∗

formula such as [[{a1}]]ψ1 ⇒ [[{a1}]]ψ2 could be used for
this scope. A finer grained representation of the problem
consists in analyzing the capability to obtain ψ1 and ψ2

for each single strategy of the other agent a2: whenever
a1 is able to respond to a strategy of a2 in order to
achieve ψ1, then, against that strategy, it can also achieve
ψ2. Formally, this can be obtained by the SL[DG] sentence
[[x]][[y]]〈〈z〉〉((a2, x)(a1, y)ψ1 → (a2, x)(a1, z)ψ2).

D. Strategy quantifications

In this section we formalize the behavioral semantics
for the prenex fragment of SL, which plays a key role in
maintaining the model-checking problem for SL[XG] as easy
as ATL∗. For this scope, we need first to define the concept of
dependence map that is a Skolemization procedure for SL and,
then, the related notion of elementariness, which represents
a generic functional correspondent of what behavioral means

for strategies. We start with some additional notion. Let
℘ ∈ Qnt(V) be a quantification prefix over a set V ⊆ Var of
variables. For each y ∈ 〈〈℘〉〉, we use Dep(℘, y) to denote the
set of universally quantified variables x ∈ [[℘]] that precede y
in ℘, that are the variable on which y depends. A valuation
of variables over a set D is a partial function v : Var⇀D.
By ValD(V) , V→ D we denote the set of all valuation
functions over D whose domain is V.

A dependence map for ℘ over D is a function θ :
ValD([[℘]])→ValD(V) satisfying the following properties:
(i) θ(v)(x) = v(x), for all x∈ [[℘]] and (ii), for all v1, v2 ∈
ValD([[℘]]) and y ∈ 〈〈℘〉〉, if v1�Dep(℘,y) = v2�Dep(℘,y) then
θ(v1)(y)=θ(v2)(y), where v�Dep(℘,y) is the restriction of v
to Dep(℘, y). By DMD(℘) we denote the set of all depen-
dence maps of ℘ over D. Intuitively, Item (i) says that θ takes
the same values of its argument w.r.t. the universal variables in
℘ and Item (ii) ensures that the value of θ w.r.t. an existential
variable y in ℘ only depends on variables in Dep(℘,y).

A fundamental theorem reported below states that if a
formula is satisfiable then it is always possible to find a
suitable dependence map returning the existential strategies in
response to the universal ones. This procedure, easily proved
to be correct by induction on the structure of the formula
in [18], can be seen as the equivalent of the Skolemization in
first order logic. Here we give an intuition about it through an
example. Consider the SL[XG] sentence ϕ = ℘ψ, where ℘ =
[[x]]〈〈y〉〉 and ψ = ((a1, x)(a2, y)G p) ~ ((a1, y)(a2, x)F ¬p).
In order to satisfy ϕ, we need to choose for every strategy
associated with x a “right" strategy to associate with y such
that ψ is true. A dependence map over strategies can be
given to maintain the correlation between strategies for y
chosen with respect to any possible one given for x.

Theorem II.2 (SL Strategy Quantification). Let G be a CGS
and ϕ = ℘ψ be an SL sentence, where ψ is agent-closed and
℘ ∈ Qnt(free(ψ)). Then, G |= ϕ iff there exists a dependence
map θ ∈ DMStr(s0)(℘) such that G, θ(χ), s0 |= ψ, for all
χ ∈ Asg([[℘]], s0).

The above theorem substantially characterizes SL se-
mantics by means of the concept of dependence map.
Such a characterization enables the definition of alternative
semantics, based on the choice of a subset of dependence
maps that ensures better model properties and easier decision
problems. Here, we consider the set of dependence maps
that are elementary, which allows us to greatly simplify the
reasoning about strategy quantifications by reducing them to a
set of quantifications over actions, one for each track in their
domains. Actually, this is a purely functional concept that
allows to identify, from a computational point of view, a more
tractable set of dependence maps over generic domain set.

We formally define elementariness, through the concept
of adjoint function. To intuitively understand this concept,
consider again the formula ϕ given above. As we have
pointed out in Theorem II.2, a dependence map associates a



strategy for y at every given strategy for x. By recalling that
a strategy is a function from tracks to actions, this means
that the behavior of the strategy for y on a certain track ρ,
depends on the overall behavior of the strategy for x over all
possible tracks. The adjoint function lets us to put all possible
tracks as a common factor in the choice of strategies for y.
Consequently, it will be enough for y to take into account how
x behaves on ρ, that is the history of the current play. Let us
now formalize the concept of adjoint function. From now on,
we denote by ĝ : Y → (X→ Z) the operation of flipping of
a generic function g : X→ (Y → Z), i.e., the transformation
of g by swapping the order of its arguments. Let D, T, U,
and V be four sets, and m : (T → D)U → (T → D)V

and m̃ : T → (DU → DV) two functions. Then, m̃ is
the adjoint of m if m̃(t)(ĝ(t))(x) = m(g)(x)(t), for all
g ∈ (T → D)U, x ∈ V, and t ∈ T. Thus, a function m
transforming a map of kind (T→ D)U into a new map of
kind (T→ D)V has an adjoint m̃ if such a transformation can
be done pointwisely w.r.t. the set T. Similarly, from an adjoint
function it is possible to determine the original function
unambiguously. Hence, there is a one to one correspondence
between functions admitting an adjoint and the adjoint itself.

The formal meaning of the elementariness of a dependence
map over generic functions follows.

Definition II.5 (Elementary Dependence Maps). Let ℘ ∈
Qnt(V) be a quantification prefix over a set V ⊆ Var
of variables, D and T two sets, and θ ∈ DMT→D(℘) a
dependence map for ℘ over T→ D. Then, θ is elementary
if it admits an adjoint function. EDMT→D(℘) denotes the
set of all elementary dependence maps for ℘ over T→ D.

At this point, as mentioned above, we introduce a notion
of behavioral satisfiability, in symbols |=B, which requires
the elementariness of dependence maps over strategies.

Definition II.6 (SL Behavioral Semantics). Let G be a
CGS and ϕ = ℘ψ an SL sentence, where ψ is agent-
closed and ℘ ∈ Qnt(free(ψ)). Then, G |=B ϕ iff there
exists a dependence map θ ∈ EDMStr(s0)(℘) such that
G, θ(χ), s0 |= ψ, for all χ ∈ Asg([[℘]], s0).

Observe that, differently from the classic semantics, the
quantifications in a prefix are not treated individually but
as an atomic block. This is due to the necessity of having
a strict correlation between the point-wise structure of the
quantified strategies.

III. BEHAVIORAL SEMANTICS

In this section, we show that in SL[XG] standard and
behavioral semantics coincide. As seen in the previous
section, the concept of elementariness is essentially a property
of the dependence maps that allows to identify a way to
satisfy a sentence in a behavioral manner. Looking at a
prototypical SL[XG] sentence ℘([1ψ1 ~ · · · ~ [nψn), with
~ being either ∧ or ∨, a dependence map, once applied

to the quantification prefix ℘, determines a set of strategies
associated with the relative variables. Nevertheless, since
each binding [i possibly “distributes” those strategies to the
agents in a different way, we may have n different complete
assignments for ϕ and, hence, as many evolutions of the
game. For instance, in the example of Figure 1, if x, y2, and
y3 are interpreted as before (i.e., 1ω, 1ω, 0ω, respectively)
and z is set to the strategy that constantly executes the
action 1, then [1 = (a1, x)(a2, y2)(a3, z) produces the path
π1 = s1s2s3s3 · · · and [2 = (a1, x)(a2, z)(a3, y3) the path
π2 = s1s2s4s4 · · · . Thus, the main difficulty w.r.t. the proof
of behavioral semantics for SL[XG] consists in dealing with
all these different evolutions coherently. However, the fact
that the goals can only be put either in conjunction or in
disjunction ensures that these evolutions of the game “run
in parallel” without interfering with each other.
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Figure 3. A CGS G.

On the contrary, the
same does not hold for
SL[BG]. Consider, for
example, the sentence
ϕ = [[x]]〈〈y〉〉〈〈z〉〉(a, y)
(b, x)X p ↔ (a, z)(b, x)
F q and the CGS G of
Figure 3, where the agent
a is the only one that

controls the state s0, while the agent b controls the states s′1
and s′′1 . It is not hard to see that G |= ϕ. However, we have
that G 6|=B ϕ, since, to choose the value of the strategies to
associate with the existential variables on s0, we necessarily
need to know the entire strategy associated to x and not
only its value on s0 itself. In particular, agent a should
foresight whether agent b intends to achieve, at some point
in the future of the states s′1 and s′′1 , the atomic proposition
q or not. Therefore, agent a does not have any synthesizable
action in the state s0.

As in [18], to prove, instead, that SL[XG] admits behavioral
strategies only, we reduce the check of G |= ϕ to a
dependence-vs-valuation game, i.e., a turn-based two player
game (TPG, for short), with the two players called Even and
Odd, which is used to simulate the behavioral semantics.
Intuitively, given a CGS G and an SL[XG] formula ϕ = ℘ψ,
with ψ = ([1ψ1 ~ · · · ~ [nψn), a strategy for the player
Even corresponds to an elementary dependence map, while a
strategy for the player Odd corresponds to a valuation of the
universal variables. Thus, G |=B ϕ iff Even has a strategy that,
no matter how the player Odd sets the universal variables,
forces the play to satisfy ψ.

A. Dependence-vs-valuation game

Before introducing the formalization of the dependence-
vs-valuation game to which we reduce the verification of
the SL[XG] modeling relation, we need the four auxiliary
notions of walk, evolution, dependence cluster, and valuation
cluster that constitute the building blocks of the game. In



particular, evolutions are used as states of the game arena,
while dependence and valuation clusters as possible moves
of the two players. In addition, the walks allow to define the
winning condition of the game. In the following, G denotes
a CGS, s ∈ St a state, and ℘ ∈ Qnt(V) and B ⊆ Bnd(V),
respectively, a quantification prefix and a set of binding
prefixes for a given set of variables V ⊆ Var.

We have emphasized that, when the variables in V
have been assigned with some strategies, different bindings
produce in general different plays, so we introduce the notion
of walk to formally deal with these multiple plays at the
same time. Given a binding prefix [ ∈ B we denote by
ζ[ : Ag → V the function associating with each agent the
related variable in [, i.e., for all a ∈ Ag, there is 0 ≤ i < |[|
such that ([)i = (a, ζ[(a)). Then, a function wlk : B→ PthG
is a walk if there exists an assignment χ ∈ AsgG(V, s) such
that wlk([) = playG(χ ◦ ζ[, s), for all [ ∈ B. By WlkG(B, s)
we denote the set of all walks of G from s w.r.t. B. Moreover,
by wlkG(χ,B, s) ∈WlkG(B, s) we indicate the unique walk
derived from χ.

An evolution takes a snapshot at a certain step i of all
tracks that are evolving in a walk, representing in this way a
possible position of the verification game behind the check
of G |= ϕ. Formally, an evolution is a function evl : B→ St
for which there exist a walk wlk∈WlkG(B, s) and an index
i∈N such that evl([)=(wlk([))i, for all [∈B. By Evl(B, s)
we denote the set of all evolutions of G from s w.r.t. B.

From now on, let evl ∈ Evl(B, s) be an evolution. Then,
a dependence cluster w.r.t. evl is a function dc : B →
DMAcG (℘) such that, for all [1, [2 ∈ B, if evl([1) = evl([2)
then dc([1) = dc([2). By DCG(℘,B, evl, s) we denote the
set of all dependence clusters for G in s w.r.t. ℘, B, and evl.
Intuitively, a dependence cluster represents, at a certain step,
how a dependence map behaves along the tracks produced
by different bindings. Since a dependence map produces a
unique assignment of variables, if two bindings are going
along the same track (which is given by the condition
evl([1) = evl([2)), the dependence cluster has to return on
them the same valuation of existential variables.

Finally, let V′ a subset of V. Then, a valuation cluster w.r.t.
evl and V′ is a function vc : B→ ValAcG (V′) such that, for
all [1, [2 ∈ B, if evl([1) = evl([2) then vc([1) = vc([2). By
VCG(V′,B, evl, s) we denote the set of all valuation clusters
for G in s w.r.t. V′, B, and evl. Intuitively, a valuation cluster
represents different valuations of universal variables of the
quantification prefix along the tracks produced by different
bindings. Like dependence clusters, as far as two bindings
are running along the same track, valuations of universal
variables have to be the same.

At this point, we define the required dependence-vs-
valuation game that mimics the game behind the behavioral
semantics of SL[XG]. Informally, it consists of (i) two non-
empty non-intersecting sets of states, Ne and No, for players
Even and Odd, respectively, (ii) a designated initial state

n0 ∈ Ne, and (iii) two binary relations Ee ⊆ Ne ×No

and Eo ⊆ No×Ne representing at each state the possible
moves of Even and Odd, respectively. The notions of track,
path, strategy, and play are analogous to those of a CGS
and are not repeated here. However, to avoid confusion
between concurrent game structures and the corresponding
dependence-vs-valuation games, we denote with Mtc the set
of all possible paths, namely matches, in a dependence-vs-
valuation game. Finally, Win ⊆ Mtc is the winning set, i.e.,
the set of all paths that are winning for Even.

Definition III.1 (Dependence-vs-Valuation Game). Let W ⊆
WlkG(B, s) be a set of walks. Then, the dependence-vs-
valuation game for G in s over W w.r.t. ℘ and B is the TPG
H(G, s,W, ℘,B) , 〈Ne,No,Ee ,Eo , n0,Win〉 where:
• Ne , EvlG(B, s) and No , {(evl, dc) : evl ∈

EvlG(B, s) ∧ dc ∈ DCG(℘,B, evl, s)};
• Ee , {(evl, (evl, dc)) ∈ Ne × No} and Eo ,
{((evl, dc), evl′) ∈ No × Ne : ∃vc ∈ VCG([[℘]],B,
evl, s)s.t.∀[ ∈ B.evl′([) = τ(evl([), dc([)(vc([))◦ζ[)};

• n0([) , s, for all [ ∈ B;
• Win , {$ ∈ Mtc : ∃wlk ∈ W . ∀i ∈ N, [ ∈

B . ($)2i([) = (wlk([))i}.

Intuitively, the previous definition reformulates the ver-
ification process of a sentence ϕ as a zero-sum game
where, step-by-step, the Even player attempts to satisfy ϕ by
choosing “good” dependence clusters (Odd nodes) that, for
each binding, interpret the existential variables and the Odd
player replies with “bad” valuations of the universal variables
(Even nodes) to try to make ϕ unsatisfied. In particular, the
peculiarity of behavioral semantics is reformulated in this
setting, through the concept of elementary dependence map,
by means of the following notion of encasement.

Definition III.2 (Encasement). Let W ⊆WlkG(B, s) be a
set of walks. Then, W is an encasement w.r.t. ℘ and B if there
exists an elementary dependence map θ ∈ EDMStrG(s)(℘)
such that, for all assignments χ∈AsgG([[℘]], s), it holds that
wlkG(θ(χ),B, s)∈W.

B. Proof of behavioral semantics

In this section, we describe the proof of the behavioral
semantics for SL[XG], which allows us to construct, in the
next section, a suitable automata-theoretic procedure for its
model-checking problem. Note that, due to the length and
high-complex nature of the whole proof, we only sketch its
fundamental steps and refer to Appendix C for full details.

From a very high-level point of view, the proof schema
proceeds in a similar way to what was done in [18] for
SL[1G]. Therefore, in order to simplify the presentation and
better understand the new proof, we first recall the structure
of the old one: (i) we start constructing a two player game H
simulating SL[1G] behavioral semantics of a given sentence
φ = ℘[ψ over an assigned CGS G; (ii) let P be the set of paths



satisfying the LTL formula ψ, which is also the winning set
of the game H, we prove that it is an encasement iff G |=B φ
(see Definition 3.4 of [18]); (iii) via the encasement property,
we show that if player Even wins H then P is an encasement
and, vice versa, if P is Borelian but not an encasement then
player Odd wins H (encasement characterization lemma, see
Lemma B.5 of [18]); (iv) we prove that if player Odd wins
the dual game H, obtained by the dual prefix ℘, then player
Even wins the original game H (dependence-vs-valuation
duality lemma, see Lemma B.4 of [18]); (v) finally, we put
all these facts together in the following way (see Theorem
4.24 of [18]): (a) we suppose that G |= φ and assume P as
the set of paths satisfying ¬ψ, which is also the Borelian
winning set of the dual game H; (b) since G 6|=B ¬φ, by Item
(ii), we get that P is not an encasement; (c) thus, by Item
(iii), we derive that player Odd wins H; (d) so, by Item (iv),
we have that player Even wins the game H; (e) now, again
by Item (iii), we get that P is an encasement; (f) finally, by
a last application of Item (ii), we conclude that G |=B φ. At
the end, since the inverse direction, G |=B φ implies G |= φ,
is immediate by definition, we get that G |= φ iff G |=B φ.

Clearly, due to the fact that an SL[XG] sentence has to deal
with more than one play at a time, in order to apply the same
proof structure to this logic, we have to generalize the two
player game described above. Then, walks and evolutions
allow to coherently track the verification process of temporal
operators on all plays derived by the bindings, in one shot.

However, it is important to observe that parameterizing all
two-player game components w.r.t. bindings does not entail
by itself that the proof for SL[1G] works directly for SL[XG].
Indeed, another fundamental aspects in our new approach
is to show that when one of the two players has a winning
strategy, he has a decoupled winning strategy, i.e., a way to
chose his moves w.r.t. a given binding that does not depend
on what the other player has done before on bindings that
are not running on the same track. To formally prove this
fact, we first introduce a topology of open and closed sets on
walks and then prove the following two preliminary facts: (i)
the set of walks derived by a SL[XG] sentence is a member
of the topology; (ii) if a player wins the two player game
with an open/closed winning set then he has a decoupled
winning strategy. Informally, a set of walks W is open if,
for each walk wlk ∈W, there exists a binding b for which
the play wlk(b), whatever it is combined with other plays
for the other bindings, form a new walk still contained in
W. On the contrary, a set of walks W is closed if every
walk wlk obtained by the shuffle of the plays of a set of
walks {wlk1, . . .wlkn} in W is still a member of W. With
this results as a tool, we are able to show the following
generalizations of Lemmas B.5 and B.4 of [18], respectively.

Lemma III.1 (Encasement Characterization). Let W ⊆
WlkG(B,s) be an open/closed set of walks andH=〈A,Win〉
=H(G,s,W,℘,B) be the dependence-vs-valuation game for

G in s over W w.r.t. ℘ and B. Then, the following hold:
1) if player Even wins H then W is an encasement w.r.t.

℘ and B;
2) if Win is a Borelian set and W is not an encasement

w.r.t. ℘ and B then player Odd wins H.

Lemma III.2 (Dependence-vs-Valuation Duality). Let W ⊆
WlkG(B, s) be an open/closed set of walks, H = 〈A,
Win〉 = H(G, s,W, ℘,B) the dependence-vs-valuation game
for G in s over W w.r.t. ℘ and B, andH = 〈A,Mtc\Win〉 =
H(G, s,WlkG(B, s)\W, ℘,B) its dual game. Then, if player
Odd wins the dual TPG H, player Even wins the TPG H.

At this point, we can sketch the proof of behavioral
semantics for SL[CG] (resp., SL[DG]): (a) we suppose that
G |= φ, where φ = ℘

∧
[∈B [ψ[ (resp., φ = ℘

∨
[∈B [ψ[) and

assume W as the set of walks satisfying ¬
∧
[∈B [ψ[ (resp.,

¬
∨
[∈B [ψ[), which is linked one-to-one to the Borelian

winning set Mtc\Win of the dual game H; (b) we show that
W is an open (resp., closed) set, so, W , WlkG(B, s) \W
is closed (resp., open); (c) since G 6|=B ¬φ, we obtain that
Mtc \Win is not an encasement; (d) therefore, by Item 2
of Lemma III.1, we derive that player Odd wins H; (e)
consequently, by Lemma III.2, we have that player Even
wins the original game H; (f) now, by Item 1 of Lemma III.1,
we obtain that the set of walks W, from which H is derived,
is an encasement; (g) finally we conclude that G |=B φ.

Theorem III.1 (SL[XG] Behavioral Semantics). For all
SL[XG] sentences ϕ, it holds that G |= ϕ iff G |=B ϕ.

Finally, note that the same two player game we have
defined for SL[XG] could also be used to prove the behavioral
semantics of the full SL[BG], as its structure does not
change when we have generic Boolean combinations of
goals. However, since we already know that SL[BG] admits
non-behavioral strategies too, an immediate question that
promptly arises is why the proof does not work for the
latter logic. Essentially, the problem is that the winning set
derived from a SL[BG] sentence does not satisfy the decoupled
property we mentioned above. This is due to the fact that
the induced sets of walks are neither open nor closed, but
belong to higher levels of the related topological hierarchy.
Consequently, Lemmas III.1 and III.2 cannot hold for SL[BG].

IV. MODEL-CHECKING PROCEDURE

We finally solve the model-checking problem for SL[XG]
and show that it is 2EXPTIME-COMPLETE, as it is for the
less expressive ATL∗ and SL[1G] logics. The algorithmic
procedure is based on an automata-theoretic approach, which
reduces the decision problem for our logic to the emptiness
problem of a suitable universal Co-Büchi tree automaton
(UCT, for short) [12]. Our technique is innovative w.r.t. those
proposed in literature for CTL∗ [15] and ATL∗ [3], since it is
based on the novel notion of elementary dependence map and
behavioral semantics. In particular, we extend the procedure



proposed in [18] for SL[1G], along with a machinery to
handle the conjunction/disjunction of goals. The high-level
idea behind this approach is to avoid the use of projections
for the strategy quantifications (which is instead required
for SL), by reducing them to action quantifications, which
can be managed on each state of the model without a non-
elementary blow-up. Naturally, this approach is correct, since
SL[XG] has behavioral strategies only, as we proved before.

To proceed with the formal description of the model-
checking procedure, we first introduce the concept of
encoding for the assignments over a CGS.

Intuitively, this is a tree Tχ whose nodes correspond to all
possible histories in the unraveling of the CGS G and whose
labeling represents, for the given assignment χ, all actions
that the strategies associated to the variables prescribe.

Definition IV.1 (Assignment-State Encoding). Let G be a
CGS, s ∈ StG one of its states, and χ ∈ AsgG(V, s) an
assignment defined on the set V ⊆ Var ∪ Ag. Then, a
(ValAcG (V) × StG)-labeled StG-tree Tχ , 〈T, u〉, where
T , {ρ≥1 : ρ ∈ TrkG(s)}, is an assignment-state encoding
for χ if it holds that u(t) , (χ̂(s · t), lst(s · t)), for all t ∈ T.

By a suitably embedding of the Vardi-Wolper construc-
tion [24] into a tree automaton, we build an UCT recognizing
all assignment-state encodings derived by assignments satis-
fying a given goal.

Lemma IV.1 (Goal Automaton). Let G be a CGS and [ψ
a goal without principal subsentences. There is a UCT UG[ψ
with O(2|ψ|) states such that, for all states s ∈ StG and
assignments χ∈AsgG(free([ψ), s), it holds that G, χ, s |= [ψ
iff Tχ ∈ L(UG[ψ), where Tχ is the assignment-state encoding
for χ and L(UG[ψ) is the set of trees UG[ψ accepts.

Now, we introduce an encoding for the information con-
tained into the elementary dependence maps over strategies
used to satisfy a given sentence. Intuitively, this is a tree
similar to the assignment-state encoding, except that the
labeling is used to represent the dependence maps over
actions contained into the dependence map over strategies.

Definition IV.2 (Elementary Dependence-State Encoding).
Let G be a CGS, s ∈ StG one of its states, and θ ∈
EDMStrG(s)(℘) an elementary dependence map over strate-
gies for a quantification prefix ℘ ∈ Qnt(V) over the set
V ⊆ Var. Then, a (DMAcG (℘) × StG)-labeled StG-tree
Tθ , 〈T, u〉, where T , {ρ≥1 : ρ ∈ TrkG(s)}, is an
elementary dependence-state encoding for θ if it holds that
u(t) , (θ̃(s · t), lst(s · t)), for all t ∈ T.

In the next lemma, we show the existence of an UCT
that accepts a given elementary dependence-state encoding
T iff an input UCT accepts all assignment-state encodings
T ′ derived from T . This automaton is used to handle the
strategy quantifications on each state of the model, by means

of quantification over actions modeled by the choice of an
action dependence map.

Lemma IV.2 (Dependence Map Automaton). Let G be a
CGS, U a UCT, and ℘ ∈ Qnt(V) a quantification prefix over
V ⊆ Var. There is a UCT U℘ with the same states of U
such that, for all states s ∈ StG and elementary dependence
maps over strategies θ ∈ EDMStrG(s)(℘), it holds that Tθ ∈
L(U℘) iff Tθ(χ) ∈ L(U), for all χ ∈ AsgG([[℘]], s), where Tθ
and Tθ(χ) are, respectively, the elementary dependence-state
encoding for θ and the assignment-state encoding for θ(χ).

We can now state the next theorem that is at the base of the
model-checking procedure for SL[XG]. Actually, we build an
automaton for an SL[CG] sentence and translate the model-
checking question to its non-emptiness problem. In the case
we start with an SL[DG] sentence, first we dualize it in an
SL[CG] one, apply the previous construction, and check for
the emptiness of the obtained automaton. Thus, the result
for SL[DG] follows merely as a corollary.

Theorem IV.1 (SL[XG] Sentence Automaton). Let G be
a CGS, s ∈ StG one of its states, and φ = ℘

∧
[∈B [ψ[

(resp., φ = ℘
∨
[∈B [ψ[) an SL[CG] (resp., SL[DG]) sentence.

Then, there exists an UCT UG,sφ with O(2|φ|) states such that
G,∅, s |= φ iff L(UG,sφ ) 6= ∅ (resp., L(UG,sφ ) = ∅).

Finally, by a simple calculation of the size of Uφ and
the complexity of the related (non) emptiness problem, we
state in the next theorem the exact complexity of the model-
checking problem for SL[XG]. Note that, in order to maintain
a low data complexity, we first translate the UCT into an
NPT and then make the product with the CGS under analysis.

Theorem IV.2 (SL[XG] Model-Checking). The model-
checking problem for SL[XG] is PTIME-COMPLETE w.r.t.
the size of the model and 2EXPTIME-COMPLETE w.r.t. the
size of the specification.

V. DISCUSSION

Reasoning implicitly about strategies, as done in ATL∗

and its several variants, works well for two persons/teams
zero-sum games, where at the abstract level what matters are
simply the outcomes that players can ensure. However, for
multi-player games with non-zero-sum objectives, it has been
observed that an explicit representation of strategies can be
useful in several cases to better capture the involved reasoning
and in expressing various solution concepts, such as Nash,
resilient, and secure equilibria. It is for this reason that a
first-order framework such as SL, which allows quantification
over strategy terms, is a natural setting to explore. Given
this context, SL seems somehow even too expressive in
the sense that it is possible to formulate sentences that can
be satisfied only if we accept non-behavioral existentially
quantified strategies. Such sentences can be considered as
the undesirable part of SL for several reasons. First, their



satisfaction joins together different possible plays of a game,
whereas in standard game theory each single play ends up
with an utility profile or a winning agent, so they do not have
a clear game-theoretical counterpart. Second, their meaning
is somewhat deceptive: even when they say that an agent can
in principle respond to another agent, actually the relative
strategy is not synthesizable, since it requires information that
is inherently not at the disposal of that agent. Finally, also
from a computational point of view, all relative reasoning
tasks are severely affected. In particular, model checking is
non-elementary in the size of the specification.

Clearly, all these considerations arise the problem to isolate
the desirable part of SL that requires behavioral strategies
only. This property essentially says that in order to reason
about strategies it suffices to reason about individual actions,
for each history of the game. Thanks to this, we are able to
employ an automata-theoretic approach through which the
strategy quantifications can be handled without the need to
perform the projection operations, which usually implies a
non-elementary blow up of the resulting automaton.

In this paper, we have addressed the question of which
are the SL syntactic fragments of this sort. Specifically, we
have introduced and investigated the conjunctive-goal and
disjunctive-goal SL, respectively called SL[CG] and SL[DG],
and shown that they admit a behavioral semantics. Since by
allowing any Boolean combination of goals, the resulting
logic, named SL[BG], does not retain this property [18], we
have that SL[CG] and SL[DG] are the maximal syntactic
fragments of SL that are behavioral. Moreover, we proved
that their model-checking problem is 2EXPTIME-COMPLETE,
i.e., asymptotically not more expensive than the one for
SL[1G], which strictly subsumes ATL∗. This strengthens the
hypothesis that being behavioral is a sufficient condition to
maintain the same complexity of ATL∗.

Finally, it is important to stress that the fragments we
have introduced in this work can be considered as the
first relevant attempt to define a logic formalism able to
describe synthesizable properties of non-zero-sum games,
such as coalition decomposability, arbitrage and implication
of winning conditions, etc., still maintaining a 2EXPTIME-
COMPLETE model-checking problem.
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APPENDIX

A. Mathematical Notation

In this short reference appendix, we report the classical
mathematical notation and some common definitions that are
used along the whole work.

Classic objects: We consider N as the set of natural
numbers and [m,n] , {k ∈ N : m ≤ k ≤ n}, [m,n[, {k ∈
N : m ≤ k < n}, ]m,n] , {k ∈ N : m < k ≤ n}, and
]m,n[ , {k ∈ N : m < k < n} as its interval subsets, with
m ∈ N and n ∈ N̂ , N ∪ {ω}, where ω is the numerable
infinity, i.e., the least infinite ordinal. Given a set X of
objects, we denote by |X| ∈ N̂ ∪ {∞} the cardinality of X,
i.e., the number of its elements, where ∞ represents a more
than countable cardinality, and by 2X , {Y : Y ⊆ X} the
powerset of X, i.e., the set of all its subsets.

Relations: By R ⊆ X×Y we denote a relation between
the domain dom(R) , X and codomain cod(R) , Y, whose
range is indicated by rng(R) , {y ∈ Y : ∃x ∈ X. (x, y) ∈
R}. We use R−1 , {(y, x) ∈ Y × X : (x, y) ∈ R} to
represent the inverse of R itself. Moreover, by S ◦ R, with
R ⊆ X × Y and S ⊆ Y × Z, we denote the composition
of R with S , i.e., the relation S ◦ R , {(x, z) ∈ X × Z
: ∃y ∈ Y. (x, y) ∈ R ∧ (y, z) ∈ S}. We also use Rn ,
Rn−1 ◦ R, with n ∈ [1, ω[ , to indicate the n-iteration of
R ⊆ X × Y, where Y ⊆ X and R0 , {(y, y) : y ∈ Y} is
the identity on Y. With R+ ,

⋃<ω
n=1 R

n and R∗ , R+∪R0

we denote, respectively, the transitive and reflexive-transitive
closure of R. Finally, for an equivalence relation R ⊆ X×X
on X, we represent with (X/R) , {[x]R : x ∈ X}, where
[x]R , {x′ ∈ X : (x, x′) ∈ R}, the quotient set of X w.r.t.
R, i.e., the set of all related equivalence classes [·]R.

Functions: We use the symbol YX ⊆ 2X×Y to denote
the set of total functions f from X to Y, i.e., the relations
f ⊆ X×Y such that for all x ∈ dom(f) there is exactly one
element y ∈ cod(f) such that (x, y) ∈ f. Often, we write f :
X→ Y and f : X ⇀ Y to indicate, respectively, f ∈ YX and
f ∈

⋃
X′⊆X YX′ . Regarding the latter, note that we consider

f as a partial function from X to Y, where dom(f) ⊆ X
contains all and only the elements for which f is defined.
Given a set Z, by f�Z , f∩ (Z×Y) we denote the restriction
of f to the set X ∩ Z, i.e., the function f�Z : X ∩ Z ⇀ Y
such that, for all x ∈ dom(f)∩Z, it holds that f�Z(x) = f(x).
Moreover, with ∅ we indicate a generic empty function,
i.e., a function with empty domain. Note that X ∩ Z = ∅
implies f�Z = ∅. Finally, for two partial functions f, g : X ⇀
Y, we use f d g and f e g to represent, respectively, the
union and intersection of these functions defined as follows:
dom(f d g) , dom(f) ∪ dom(g) \ {x ∈ dom(f) ∩ dom(g)
: f(x) 6= g(x)}, dom(f e g) , {x ∈ dom(f) ∩ dom(g) :
f(x) = g(x)}, (f d g)(x) = f(x) for x ∈ dom(f d g) ∩
dom(f), (f d g)(x) = g(x) for x ∈ dom(f d g) ∩ dom(g),
and (f e g)(x) = f(x) for x ∈ dom(f e g).

Words: By Xn, with n ∈ N, we denote the set of all
n-tuples of elements from X, by X∗ ,

⋃<ω
n=0 Xn the set of

finite words on the alphabet X, by X+ , X∗ \ {ε} the set
of non-empty words, and by Xω the set of infinite words,
where, as usual, ε ∈ X∗ is the empty word. The length of a
word w ∈ X∞ , X∗ ∪Xω is represented with |w| ∈ N̂. By
(w)i we indicate the i-th letter of the finite word w ∈ X∗,
with i ∈ [0, |w|[ . Furthermore, by fst(w) , (w)0 (resp.,
lst(w) , (w)|w|−1), we denote the first (resp., last) letter of
w. In addition, by (w)≤i (resp., (w)>i), we indicate the prefix
up to (resp., suffix after) the letter of index i of w, i.e., the
finite word built by the first i+1 (resp., last |w|−i−1) letters
(w)0, . . . , (w)i (resp., (w)i+1, . . . , (w)|w|−1). We also set,
(w)<0 , ε, (w)<i , (w)≤i−1, (w)≥0 , w, and (w)≥i ,
(w)>i−1, for i ∈ [1, |w|[ . Mutatis mutandis, the notations
of i-th letter, first, prefix, and suffix apply to infinite words
too. Finally, by pfx(w1, w2) ∈ X∞ we denote the maximal
common prefix of two different words w1, w2 ∈ X∞, i.e.,
the finite word w ∈ X∗ for which there are two words
w′1, w

′
2 ∈ X∞ such that w1 = w · w′1, w2 = w · w′2, and

fst(w′1) 6= fst(w′2). By convention, we set pfx(w,w) , w.
Trees: For a set ∆ of objects, called directions, a ∆-tree

is a set T ⊆ ∆∗ closed under prefix, i.e., if t · d ∈ T, with
d ∈ ∆, then also t ∈ T. We say that it is complete if it holds
that t · d′ ∈ T whenever t · d ∈ T, for all d′ < d, where
<⊆ ∆×∆ is an a priori fixed strict total order on the set
of directions that is clear from the context. Moreover, it is
full if T = ∆∗. The elements of T are called nodes and the
empty word ε is the root of T. For every t ∈ T and d ∈ ∆,
the node t · d ∈ T is a successor of t in T. The tree is
b-bounded if the maximal number b of its successor nodes is
finite, i.e., b = maxt∈T |{t · d ∈ T : d ∈ ∆}| < ω. A branch
of the tree is an infinite word w ∈ ∆ω such that (w)≤i ∈ T,
for all i ∈ N. For a finite set Σ of objects, called symbols, a
Σ-labeled ∆-tree is a quadruple 〈Σ,∆,T, v〉, where T is a
∆-tree and v : T→ Σ is a labeling function. When ∆ and Σ
are clear from the context, we call 〈T, v〉 simply a (labeled)
tree.

B. Expressiveness
In this appendix, we report the result about the variance of

SL[XG] w.r.t. the decision-unwinding. This fact, together
with the invariance of SL[1G] under the same kind of
unwinding [19], implies that the latter, and consequently
ATL∗, are strictly less expressive than SL[XG].

To do this, we first introduce two particular kinds of CGS
whose structure is a directed tree.

Definition A.1 (Concurrent Game Trees). A concurrent game
tree (CGT, for short) is a CGS T , 〈AP,Ag,Ac,St, λ, τ, ε〉,
where (i) St ⊆ ∆∗ is a ∆-tree for a given set ∆ of directions
and (ii) if t · e ∈ St then there is a decision d ∈ Dc such
that τ(t, d) = t · e, for all t ∈ St and e ∈ ∆. Furthermore,
T is a decision tree (DT, for short) if (i) St = Dc∗ and (ii)
if t · d ∈ St then τ(t, d) = t · d, for all t ∈ St and d ∈ Dc.



Now, we can report the definition of decision-unwinding,
which is a generalization for CGSs of the classic concept of
unwinding of labeled transition systems.

Definition A.2 (Decision-Unwinding). Let G be a CGS. Then,
the decision-unwinding of G is the DT GDU , 〈AP,Ag,AcG ,
DcG

∗, λ, τ, ε〉 for which there is a surjective function unw :
DcG

∗ → StG such that (i) unw(ε) = s0G , (ii) unw(τ(t, d)) =
τG(unw(t), d), and (iii) λ(t) = λG(unw(t)), for all t ∈ DcG

∗

and d ∈ DcG .

At this point, we can prove the required result.

Theorem II.1 (Unwinding Variance). There exists an SL[XG]
sentence ϕ and two models G1 and G2 with isomorphic
decision-unwindings such that G1 |= ϕ and G2 6|= ϕ.

Proof: Consider the two CGSs G1 and G2 of Figure 4,
with AP = {p}, Ag = {α, β}, AcG1 = AcG2 = {0, 1},
StG1 = StG2 = {s0, s′1, s′′1 , s′2, s′′2 , s′3, s′′3}, λG1 = λG2 , and
s0G1 = s0G2 = s0. It is immediate to see that they have the
same decision-unwinding, i.e., G1DU = G2DU (see Figure 5).

Now, consider the SL[CG] sentence ϕ =
〈〈x〉〉〈〈yp〉〉〈〈y¬p〉〉((α, x)(β, yp)(X X p)) ∧ ((α, x)(β, y¬p)
(X X ¬p)). It is easy to see that G1 6|= ϕ, while G2 |= ϕ.
Thus, SL[CG] cannot be invariant under decision-unwinding.
Indeed, each strategy fx of the agent α in G1 forces
to reach only one state at a time among s′2, s′′2 , s′3,
and s′′3 . Formally, for each strategy fx ∈ StrG1(s0),
there is a state s ∈ {s′2, s′′2 , s′3, s′′3} such that, for all
strategies fy ∈ StrG1(s0), it holds that (π)2 = s, where
π , play(∅[α 7→ fx][β 7→ fy], s0). Thus, it is impossible
to satisfy both the goals X X p and X X ¬p with the same
strategy of α.

Conversely, since s0 in G2 is owned by the agent β, we
may reach both s′1 and s′′1 with the same strategy fx of α.
Thus, if fx(s0 · s′1) 6= fx(s0 · s′′1), we reach, at the same time,
either the pair of states s′2 and s′′3 or s′2 and s′3. Formally,
there are a strategy fx ∈ StrG2(s0), with fx(s0 · s′1) 6= fx(s0 ·
s′′1), a pair of states (sp, s¬p) ∈ {(s′2, s′′3), (s′′2 , s

′
3)}, and two

strategies fyp , fy¬p ∈ StrG2(s0) such that (πp)2 = sp and
(π¬p)2 = s¬p, where πp , play(∅[α 7→ fx][β 7→ fyp ], s0)

and π¬p , play(∅[α 7→ fx][β 7→ fy¬p ], s0). So, we can satisfy
both goals X X p and X X ¬p with the same strategy of α.

Finally, since the SL[DG] sentence ϕ′ = [[x]][[yp]][[y¬p]]
((α, x)(β, yp)(X X p)) ∨ ((α, x)(β, y¬p)(X X ¬p)) is equiva-
lent to ¬ϕ, we immediately obtain that G1 |= ϕ′, while
G2 6|= ϕ′. Therefore, SL[DG] cannot be invariant under
decision-unwinding too.

C. Behavioral Semantics
In this appendix, we show that SL[XG] has the behavioral

semantics, that is, for each ϕ ∈ SL[XG] and CGS G, it holds
that G |= ϕ if and only if G |=B ϕ.

In the following, G will denote a CGS, s ∈ St a states, and
℘ ∈ Qnt(V) and B ⊆ Bnd(V), respectively, a quantification
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Figure 4. The two CGSs G1 and G2 with identical decision-unwinding.
ε

∅

01

∅
00

∅
10

∅
11

∅

00·11
∅

00·10
∅

00·01
p

00·00
p

· · ·
11·00
p

11·01
p

11·10
∅

11·11
∅

00 01 10 11

00 01 10 11 00 01 10 11

Figure 5. Part of the decision-unwinding of G1 and G2.

prefix and a set of binding prefixes for a given set of variables
V ⊆ Var.

1) Two-player games: A two-player arena (TPA, for short)
is a tuple A, 〈Ne,No,E , n0〉, where Ne and No are non-
empty non-intersecting sets of nodes for players Even and
Odd, respectively, E , Ee ∪Eo , with Ee ⊆ Ne×No and
Eo ⊆ No×Ne, is the edge relation between nodes, and
n0∈Ne is a designated initial node.

An Even (resp., Odd) position in A is a sequence of nodes
σ∈(Ne ·No)∗ ·Ne (resp., σ∈(Ne ·No)+) such that (σ)0 =n0
and, for all i∈ [0, |σ|−1[, either ((σ)i, (σ)i+1) ∈ Ee , if i≡0
(mod 2), or ((σ)i, (σ)i+1)∈Eo , otherwise. By Pose (resp.,
Poso) we denote the set of Even (resp., Odd) positions.

The following notions are basically the analogous of the
notions of strategy, path and play we have already introduced
for CGS. However, in order to avoid confusion, we use
here the different names of scheme, match and match map,
respectively.

An Even (resp., Odd) scheme in A is a function se :
Pose → No (resp., so : Poso → Ne) that maps each Even
(resp., Odd) position to an Odd (resp., Even) node in a
way that is compatible with the edge relation Ee (resp.,
Eo), i.e., for all σ ∈ Pose (resp., σ ∈ Poso), it holds
that (lst(σ), se(σ)) ∈ Ee (resp., (lst(σ), so(σ)) ∈ Eo). By
Sche (resp., Scho) we indicate the sets of Even (resp., Odd)
schemes.

A match in A is an infinite sequence of nodes $ ∈
(Ne · No)ω such that ($)0 = n0 and, for all i ∈ N,



either (($)i, ($)i+1) ∈ Ee , if i ≡ 0 (mod 2), or
(($)i, ($)i+1) ∈ Eo , otherwise. By Mtc we denote the set
of all matches. The match map mtc : Sche × Scho → Mtc
is the function that, given two schemes se ∈ Sche and
so ∈ Scho, returns the unique match $ = mtc(se, so) such
that, for all i ∈ N, it holds that either ($)i+1 = se(($)≤i),
if i ≡ 0 (mod 2), or ($)i+1 = so(($)≤i), otherwise.

A two-player game (TPG, for short) is a tuple H , 〈A,
Win〉, where A is a TPA and Win ⊆ Mtc is the winning
set, i.e., the set of all matches that are winning for Even.
We say that player Even (resp., Odd) wins H, i.e., he has a
winning scheme, if there exists an Even (resp., Odd) scheme
se ∈ Sche (resp., so ∈ Scho) such that, for all Odd (resp.,
Even) schemes so ∈ Scho (resp., se ∈ Sche), it holds that
mtc(se, so) ∈Win (resp., mtc(se, so) 6∈Win).

2) Topological definitions: We provide some preliminary
definitions about set of walks. These definitions formalize
the type of set of walks that derive from conjunctive goals.

Definition A.3 (Open Walk Sets). Let W ⊆ WlkG(B, s)
be a set of walks. Then, W is open if, for each wlk ∈ W,
there exists [ ∈ B such that, for all wlk′ ∈ WlkG(B, s), if
wlk′([) = wlk([) then wlk′ ∈W.

Intuitively, a set of walks W is open if it represents for
each walk wlk a disjunctive condition over its paths wlk([).

Definition A.4 (Closed Walk Sets). Let W ⊆ WlkG(B, s)
be a set of walks. Then, W is closed if, for each wlk ∈
WlkG(B, s), it holds that, if for all [ ∈ B there exists a
wlk′ ∈W such that wlk([) = wlk′([) then wlk ∈W.

Intuitively, a set of walks W is closed if we collect the
single paths wlk([) with wlk ∈W and then recombine them.
This means that W represents for each walk wlk a conjunctive
condition over its paths wlk([).

Lemma A.1 (Open vs Closed Walk Set). Let W ⊆
WlkG(B, s) be a set of walks. Then, W is open iff
WlkG(B, s) \W is closed.

The following lemma formally shows the intuition behind
open and closed sets of walks.

Lemma A.2 (SL[XG] Topology). Let ψ[ be an SL formula
with free(ψ[) = Ag, for each binding [ ∈ B. Then, the
following holds:

1) the set {wlkG(χ,B, s) : χ ∈ AsgG(V, s) ∧ G, χ, s |=∨
[∈B [ψ[} is open;

2) the set {wlkG(χ,B, s) : χ ∈ AsgG(V, s) ∧ G, χ, s |=∧
[∈B [ψ[} is closed.

3) Decoupled schemes: The proof of elementariness for
SL[XG] uses some general properties of functions that are
formalized in the following definitions.

Definition A.5 (Decoupled Functions). Let X, Y, and Z
be three sets and f : (X → Y) → (X → Z) a function.

Then, f is decoupled if, for all elements x ∈ X and functions
g1, g2 : X→ Y with g1(x) = g2(x), it holds that f(g1)(x) =
f(g2)(x).

Intuitively, the previous definition says that the behavior
of f(g) on x does not depend on the whole g, but only on
the value g(x).

Definition A.6 (Connection Functions). Let X, Y, and Z be
three sets and f : (X→ Y)→ (X→ Z) and f̃ : X→ (Y →
Z) two functions. Then, f̃ is the connection of f if, for all
x ∈ X and g : X→ Y, it holds that f̃(x)(g(x)) = f(g)(x).

As shown by the following lemma, Definitions A.5 and A.6
have actually the same meaning.

Lemma A.3 (Decoupled Function). Let X, Y, and Z be
three sets and f : (X→ Y)→ (X→ Z) a function. Then, f
is decoupled iff there exists a connection function for it.

Definition A.7 (Simple Function Sets). Let S ⊆ X→ Y be
a set of functions between two sets X and Y. Moreover, let
S↓x , {g(x) : g ∈ S}, for all x ∈ X. Then, S is simple if,
for all g : X→ Y, it holds that if g(x) ∈ S↓x, for all x ∈ X,
then g ∈ S.

Simple sets represent a generalization over generic func-
tions of the notion of closed sets of walks.

Lemma A.4 (Simple Function Set). Let X, Y, and Z be three
sets and f : (X → Y) → (X → Z) a decoupled function.
Then, rng(f) is simple.

Proof: Let S , rng(f). Then, to prove the statement,
we have to show that, given a generic function h : X→ Z, if
h(x) ∈ S↓x, for all x ∈ X, then h ∈ S. So, for each x ∈ X,
suppose that h(x) ∈ S↓x. By definition of the set S↓x, there
is a function hx ∈ S such that h(x) = hx(x). Therefore,
since S is the range of f, there exists a function gx : X→ Y
such that h(x) = f(gx)(x). Now, let g : X→ Y be such that
g(x) = gx(x), for all x ∈ X. Then, due to the fact that f is
decoupled, we obtain that h(x) = f(gx)(x) = f(g)(x), for
all x ∈ X. Hence, h = f(g), which implies that h ∈ S.

We now give the definition of what we mean for decoupled
Odd and Even schemes.

Definition A.8 (Decoupled Odd Schemes). Let G be a
CGS, s ∈ St one of its states, and ℘ ∈ Qnt(V) and
B ⊆ Bnd(V), respectively, a quantification prefix and a
set of binding prefixes for a given set of variables V ⊆ Var.
Then, an Odd scheme so ∈ Scho in the TPA A(G, s, ℘,B)
is decoupled if, for all Even positions σ ∈ Pose, the
function fσ : DCG(℘,B, lst(σ), s) → EvlG(B, s) defined
as follows is decoupled: fσ(dc) , so(σ · (lst(σ), dc)), for all
dc ∈ DCG(℘,B, lst(σ), s).

Intuitively, Definition A.8 simply says that an Odd scheme
is a decoupled function with respect to the dependence maps
chosen by the Even player.



Definition A.9 (Decoupled Even Schemes). Let G be a CGS,
s ∈ St one of its states, and ℘ ∈ Qnt(V) and B ⊆ Bnd(V),
respectively, a quantification prefix and a set of binding
prefixes for a given set of variables V ⊆ Var. Then, an Even
scheme se ∈ Sche in the TPA A(G, s, ℘,B) is decoupled if,
for all Odd positions σ ∈ Poso, the function fσ : {evl ∈
EvlG(B, s) : σ · evl ∈ Pose} → DMAcG (℘)B satisfying the
following property is decoupled: se(σ · evl) = (evl, fσ(evl)),
for all evl ∈ dom(fσ).

Mutandum mutandis, Definition A.9 has the same meaning
as Definition A.8.

Lemma A.5 (Decoupled Odd Scheme). Let G be a CGS,
s ∈ St one of its states, ℘ ∈ Qnt(V) and B ⊆ Bnd(V),
respectively, a quantification prefix and a set of binding
prefixes for a given set of variables V ⊆ Var, and
W ⊆ WlkG(B, s) an open/closed set of walks. Moreover,
let H = 〈A,Win〉 = H(G, s,W, ℘,B) be the dependence-
vs-valuation game for G in s over W w.r.t. ℘ and B. Then, if
player Odd has a winning scheme in H, he has a decoupled
winning scheme.

Proof: The following proof regards the case of open
sets of walks only. The case of closed sets can be proved in
a similar way.

To prove the statement, we show how to transform a given
winning Odd scheme so in a decoupled one so

′. To do this,
we first define, in a mutual recursive way, two functions
through which we map, respectively, positions and decision
clusters on which to define the function so

′ into those on
which we can evaluate the function so, for each binding in
the set B. Then, we prove that the obtained scheme so

′ is
winning, by using the assumption on the set of walks W.

Let P , {(σ,C) ∈ Pose × 2B : C ∈ (B/≡lst(σ))} be
the set of pairs of Even positions and related classes of
bindings. Then, it is easy to see that, (n0,B) ∈ P and, for
each pair (σ · (lst(σ), dc) · evl,C) ∈ P, there is a unique
class of bindings C′ ∈ (B/≡lst(σ)) such that C ⊆ C′. By
c : P \ {(n0,B)} → 2B we indicate the function returning
such a class, i.e., C ⊆ c(σ · (lst(σ), dc) · evl,C) and (σ, c(σ ·
(lst(σ), dc) ·evl,C)) ∈ P, for all (σ ·(lst(σ), dc) ·evl,C) ∈ P.
Observe that c(σ·(lst(σ), dc)·evl, [[]evl) = [[]lst(σ), for all [ ∈
B. Furthermore, let Q , {(σ,C, θ) ∈ Pose×2B×DMAcG (℘)
: (σ,C) ∈ P} be the set of triples containing Even positions,
related classes of bindings, and dependence maps.

Now, consider two functions p : P → Pose and q :
Q→ DMAcG (℘)B satisfying the following mutual recursive
properties.

1) a) p(n0,B) = n0.
b) For all (σ · (lst(σ), dc) · evl,C) ∈ P, if evl�C =

evl′�C then p(σ · (lst(σ), dc) · evl,C) = σ′ ·
(lst(σ′), dc′) · evl′, where the Even position σ′,
the dependence cluster dc′, and the evolution evl′

are defined as follows:

• σ′ , p(σ, c(σ · (lst(σ), dc) · evl,C));
• dc′ , q(σ, c(σ · (lst(σ), dc) · evl,C), θ), where
θ ∈ DMAcG (℘) is such that θ = dc([), for all
[ ∈ C;

• evl′ , so(σ
′ · (lst(σ′), dc′)).

2) For all (σ,C, θ) ∈ Q, it holds that:
a) q(σ,C, θ) ∈ DCG(℘,B, lst(p(σ,C)), s);
b) q(σ,C, θ)([) = θ, for all [ ∈ C.

At this point, we can define the new Odd scheme so
′ as

follows: so
′(σ · (lst(σ), dc))([) , so(σ[ · (lst(σ[), dc[))([),

where σ[ , p(σ, [[]lst(σ)) and dc[ , q(σ, [[]lst(σ), dc([)),
for all σ · (lst(σ), dc) ∈ Poso and [ ∈ B. It is easy to
see that so′ is decoupled, i.e., for each position σ ∈ Pose,
the function fσ : DCG(℘,B, lst(σ), s)→ EvlG(B, lst(σ)) is
decoupled as well, where fσ(dc) , so

′(σ ·(lst(σ), dc)), for all
dc ∈ DCG(℘,B, lst(σ), s). To show this fact, let [ ∈ B be a
binding and dc1, dc2 ∈ DCG(℘,B, lst(σ), s) two dependence
clusters such that dc1([) = dc2([). Then, it is immediate
to see that fσ(dc1)([) = so

′(σ · (lst(σ), dc1))([) = so(σ[ ·
(lst(σ[), dc[))([) = so

′(σ · (lst(σ), dc2))([) = fσ(dc2)([),
where dc[ = q(σ, [[]lst(σ), dc1([)) = q(σ, [[]lst(σ), dc2([)).

It remains to prove that so′ is a winning scheme for the
Odd player, i.e. for all Even scheme se ∈ Sche, it holds that
$ , mtc(se, so

′) 6∈Win, which means that $ ∈ Mtc \Win.
To do this, fix an Even scheme se ∈ Sche. We now proceed
by proving in sequence the following five steps, for each
binding [ ∈ B.

1) (($)2i)�[[]($)2i
= ((p(($)≤2i, [[]($)2i))2i)�[[]($)2i

,
for all i ∈ N.

2) p(($)≤2j , [[]($)2j ) = (p(($)≤2i, [[]($)2i))≤2j , for all
i, j ∈ N, with j ≤ i.

3) There is a unique match $[ ∈ Mtc such that
($[)≤2i = p(($)≤2i, [[]($)2i), for all i ∈ N.

4) There is an Even scheme se[ ∈ Sche such that
(i) $[ = mtc(se[, so) and (ii) se[(($[)≤2i) =
(($[)2i, q(($)≤2i, [[]($)2i , dc([))), where the depen-
dence cluster dc ∈ DCG(℘,B, ($)2i, s) is such that
se(($)≤2i) = (($)2i, dc), for all i ∈ N.

5) ($)2i([) = ($[)2i([), for all i ∈ N.
To prove the first item, observe that ($)0 =

n0 = p(n0,B). Thus, for i = 0, the thesis
is immediate. Now, fix i > 0 and let dc ∈
DCG(℘,B, ($)2(i−1), s) be the dependence cluster such
that ($)≤2i = ($)≤2(i−1) · (($)2(i−1), dc) · ($)2i.
Then, it holds that (($)2i)�[[]($)2i

= so
′(($)≤2(i−1) ·

(($)2(i−1), dc))�[[]($)2i
= so(σ[ · (lst(σ[), dc[))�[[]($)2i

,
where σ[ , p(($)≤2(i−1), [[]($)2(i−1)

) and dc[ ,
q(($)≤2(i−1), [[]($)2(i−1)

, dc([)). Now, by definition of the
function p, we derive that (p(($)≤2i, [[]($)2i))2i = so(σ[ ·
(lst(σ[), dc[)). Hence, the thesis follows immediately.

The second item can be easily proved by induction on i ∈
N, for all j ∈ N with j ≤ i. Let σi , p(($)≤2i, [[]($)2i). As
base case, i = 0. Consequently, j = 0. So, we immediately



obtain that σj = σ0 = (σ0)≤0 = (σi)≤j . As inductive
case, for a given i ∈ N, suppose that σj = (σi)≤j , for all
j ∈ N with j ≤ i. We now prove that the same holds for
i + 1. If j = i + 1, the statement is trivial, since σj =
σi+1 = (σi+1)≤i+1 = (σi+1)≤j . Therefore, suppose that
j ≤ i. By definition of the function p, the previous item, and
the fact that c(($)≤2(i+1), [[]($)2(i+1)

) = [[]($)2i , we have
that σi+1 = σi · (lst(σi), dc′) ·evl′, where the decision cluster
dc′ and the evolution evl′ are derived from ($)2(i+1) via the
functions p and q. Therefore, by the inductive hypothesis,
we obtain that (σi+1)≤2j = (σi)≤2j = σj . So, the thesis is
proved.

For the third item, let $[ ∈ (Ne × No)ω be the infinite
word such that (i) ($[)0 , n0, (ii) ($[)2i−1 , (p(($)≤2i,
[[]($)2i))2i−1, and (iii) ($[)2i , (p(($)≤2i, [[]($)2i))2i,
for all i ∈ [1, ω[ . It is easy to see that $[ is a
match. Now, again by induction on i ∈ N, we
prove that ($[)≤2i = p(($)≤2i, [[]($)2i). The
case base i = 0 is immediate by definition. So,
let i > 0 and suppose, by inductive hypothesis,
that ($[)≤2(i−1) = p(($)≤2(i−1), [[]($)2(i−1)

).
Then, by the previous item, we have that
($[)≤2(i−1) = (p(($)≤2i, [[]($)2i))2(i−1). Consequently,
by the choice of $[, it holds that ($[)≤2i =
(p(($)≤2i, [[]($)2i))2(i−1) · (p(($)≤2i, [[]($)2i))2i−1 ·
(p(($)≤2i, [[]($)2i))2i = p(($)≤2i, [[]($)2i).

To prove the forth item, let se[ ∈ Sche be an
Even scheme such that se[(($[)≤2i) = (($[)2i,
q(($)≤2i, [[]($)2i , dc([))), for all i ∈ N, where the
dependence cluster dc ∈ DCG(℘,B, ($)2i, s) is
derived by the second component of the scheme
se(($)≤2i) = (($)2i, dc). The existence of such a
scheme is ensured by the definition of the function
q and the previous item, since q(($)≤2i, [[]($)2i ,
dc([)) ∈ DCG(℘,B, lst(p(($)≤2i, [[]($)2i)), s) =
DCG(℘,B, ($[)2i, s). At this point, it remains to show that
$[ = mtc(se[, so). To do this, let $′[ = mtc(se[, so). By a
last induction on i ∈ N, we prove that ($[)≤2i = ($′[)≤2i.
The case base i = 0 is immediate by definition. So,
let i > 0 and suppose, by inductive hypothesis, that
($[)≤2(i−1) = ($′[)≤2(i−1). First observe that ($)≤2i =
($)≤2(i−1)·se(($)≤2(i−1))·so′(($)≤2(i−1)·se(($)≤2(i−1))),
since $ , mtc(se, so

′). Therefore, by the first and
third item, the definition of the function p, and the
fact that c(($)≤2i, [[]($)2i) = [[]($)2(i−1)

, we have
that ($[)≤2i = p(($)≤2i, [[]($)2i) = ($[)≤2(i−1) ·
(($[)2(i−1), dc

′) · so(($[)≤2(i−1) · (($[)2(i−1), dc
′)), where

dc′ = q(($)≤2(i−1), [[]($)2(i−1)
, dc([)) is obtained from

the dependence cluster dc contained in the scheme
se(($)≤2(i−1)) = (($)2(i−1), dc). Now, by the choice of
the scheme se[, it holds that ($[)≤2i = ($[)≤2(i−1) ·
se[(($[)≤2(i−1))·so(($[)≤2(i−1) ·se[(($[)≤2(i−1))). Hence,
by the inductive hypothesis and the definition of $′[, we

have that ($[)≤2i = ($′[)≤2(i−1) · se[(($
′
[)≤2(i−1)) ·

so(($
′
[)≤2(i−1) · se[(($

′
[)≤2(i−1))) = ($′[)≤2i.

We finally show the fifth item. For i = 0, it is
immediate to see that, for all [ ∈ B, it holds that
($)0([) = ($[)0([), since ($)0 = n0 = ($[)0. So,
suppose that i > 0. By definition of $, it holds that
($)2i = so

′(($)≤2(i−1) · se(($)≤2(i−1))). Therefore, by
definition of so

′, we have that ($)2i([) = so
′(($)≤2(i−1) ·

se(($)≤2(i−1)))([) = so(σ[ · (lst(σ[), dc[))([), where the
Even position σ[ and the dependence cluster dc[ are defined
as follows: σ[ , p(($)≤2(i−1), [[]($)2(i−1)

) and dc[ ,
q(($)≤2(i−1), [[]($)2(i−1)

, dc([)) with se(($)≤2(i−1)) =
(($)2(i−1), dc). Now, by the third item and part (ii)
of the fourth one, we obtain that σ[ = ($[)≤2(i−1)
and (lst(σ[), dc[) = se[(($[)≤2(i−1)). Thus, ($)2i([) =
so(($[)≤2(i−1) · se[(($[)≤2(i−1)))([). Hence, by part (i) of
the forth item, we derive that ($)2i([) = ($[)2i([).

At this point, since so is a winning scheme, by part (i) of
the fourth item, we obtain that $[ ∈ Mtc \Win = {$′ ∈
Mtc : ∃wlk ∈ W′ . ∀i ∈ N, [ ∈ B . ($′)2i([) = (wlk([))i},
where W′ , WlkG(B, s)\W, for all [ ∈ B. Now, due to the
fact that W is an open/closed set, by Lemma A.1 on open
vs closed walk set, we have that W′ is a closed/open set.
Therefore, for each $′ ∈ Mtc, it holds that, if for all [ ∈ B
there is a $′′ ∈ Mtc\Win such that ($′)2i([) = ($′′)2i([),
for all i ∈ N, then $′ ∈ Mtc \Win. Hence, by the last item,
we derive that $ ∈ Mtc \Win.

We end this section by giving a Lemma specular to above
one for Even scheme. Consequently, the proof is an easily
adaptation of that lemma and, therefore, it is omitted.

Lemma A.6 (Decoupled Even Scheme). Let G be a CGS,
s ∈ St one of its states, ℘ ∈ Qnt(V) and B ⊆ Bnd(V),
respectively, a quantification prefix and a set of binding
prefixes for a given set of variables V ⊆ Var, and
W ⊆ WlkG(B, s) an open/closed set of walks. Moreover,
let H = 〈A,Win〉 = H(G, s,W, ℘,B) be the dependence-
vs-valuation game for G in s over W w.r.t. ℘ and B. Then, if
player Even has a winning scheme in H, he has a decoupled
winning scheme.

4) Encasement characterization: In the following lemma,
we give a characterization for the winning conditions of
the two players via the encasement property. In particular,
we show a one-to-one relationship between the wining in
the dependence-vs-valuation game of player Even and the
verification of the encasement property of the associated walk
set. Moreover, in the case that the winning condition of the
latter is a Borelian set, by means of Martin’s Determinacy
Theorem, we can complete the characterization by also
proving the existence of a one-to-one relationship between
the wining of player Odd and the negation of the encasement
property.

Lemma A.7 (Encasement Characterization). Let W ⊆



WlkG(B, s) be an open/closed set of walks and H = 〈A,
Win〉 = H(G, s,W, ℘,B) be the dependence-vs-valuation
game for G in s over W w.r.t. ℘ and B. Then, the following
hold:

1) if player Even wins H then W is an encasement w.r.t.
℘ and B;

2) if Win is a Borelian set and W is not an encasement
w.r.t. ℘ and B then player Odd wins H.

Proof: [Item 1]. Suppose that player Even wins the TPG
H. Then, by Lemma A.6, there exists a decoupled Even
scheme se ∈ Sche such that, for all Odd schemes so ∈ Scho,
it holds that mtc(se, so) ∈Win. Now, to prove the statement,
we have to show that there exists an elementary dependence
map θ ∈ EDMStr(s)(℘) such that, for all assignments χ ∈
Asg([[℘]], s), it holds that wlkG(θ(χ),B, s) ∈W.

To do this, first consider, for each track ρ ∈ Trk(s), the
set Qρ , {(σ, [) ∈ Pose × B : |σ| = 2|ρ| − 1 ∧ ∀i ∈ [0,
|ρ|[ .(σ)2i([) = (ρ)i} of pairs of Even positions σ and
bindings [ such that ρ represents the projection of σ on [.

Since se is decoupled, for each Odd position σ ∈ Poso,
there exists a decoupled function fσ : {evl ∈ EvlG(B, s)
: σ · evl ∈ Pose} → DMAcG (℘)B such that se(σ · evl) =
(evl, fσ(evl)), for all evl ∈ dom(fσ).

By an easy induction on the length of the tracks, it is
possible to see that, for each ρ ∈ Trk(s), there exists a θρ ∈
DMAc(℘) such that fσ(evl)([) = θ, for all (σ · evl, [) ∈ Qρ.

At this point, let w : Trk(s) → DMAc(℘) be the
function such that w(ρ) = θρ, for all ρ ∈ Trk(s). By
Lemma B.3 of [18] on adjoint dependence maps, there
exists an elementary dependence map θ ∈ EDMStr(s)(℘)

for which w is the adjoint, i.e., w = θ̃. Moreover, let χ ∈
Asg([[℘]], s) be a generic assignment and consider a derived
Odd scheme so ∈ Scho satisfying the following property:
so((σ ·evl) ·(evl, dc))([) = τ(evl([), dc([)(χ̂(ρ))◦ζ[), for all
ρ ∈ Trk(s), (σ · evl, [) ∈ Qρ, and dc ∈ DCG(℘,B, evl, s).

Now, since by hypothesis we have that $ , mtc(se, so) ∈
Win, to prove the statement we have only to show by
induction that (wlk([))i = ($)2i([), for all i ∈ N and [ ∈ B,
where wlk = wlk(θ(χ),B, s). Such and induction is easy and
left to the reader.

[Item 2]. If W is closed but not an encasement w.r.t. ℘
and B, by Item 1, we have that player Even does not win
the TPG H. Now, since Win is Borelian, by the determinacy
theorem, it holds that player Odd wins the same game.

5) Game duality: In this section we prove the fundamental
relationship between dependence-vs-valuation games and
their duals. Basically, we show that if the Odd player wins
the game then the Even player can win the dual game.
This represents the second of the two crucial steps in our
elementariness proof.

Before starting, we have to introduce the following
auxiliary notation related to cluster of dependence and
valuation functions.

Definition A.10 (Clusters Composition). Let G be a CGS,
s ∈ St one of its states, ℘ ∈ Qnt(V) and B ⊆ Bnd(V),
respectively, a quantification prefix and a set of binding
prefixes for a given set of variables V ⊆ Var, and
evl ∈ EvlG(B, s) an evolution. Then, by κevl : DCG(℘,B, evl,
s) × VCG([[℘]],B, evl, s) → VCG(V,B, evl, s) we denote
the composition function between dependence and valu-
ation clusters such that, for all dc ∈ DCG(℘,B, evl, s),
vc ∈ VCG([[℘]],B, evl, s), and [ ∈ B, it holds that
κevl(dc, vc)([) = dc([)(vc([)).

Definition A.11 (Clusters Transition Function). Let G be
a CGS, s ∈ St one of its states, and B ⊆ Bnd(V) a set
of binding prefixes for a given set of variables V ⊆ Var.
Then, by υ : {(evl, vc) ∈ EvlG(B, s) × ValAcG (V′)B :
vc ∈ VCG(V,B, evl, s)} → EvlG(B, s) we denote the cluster
transition function such that, for all evl ∈ EvlG(B, s),
vc ∈ VCG([[℘]],B, evl, s), and [ ∈ B, it holds that
υ(evl, vc)([) = τ(evl([), vc([) ◦ ζ[).

We also need to state the following lemma proved to hold
in [18].

Lemma A.8 (Dependence Dualization). Let ℘ ∈ Qnt(V) be
a quantification prefix over a set of variables V ⊆ Var, D
a generic set, and S ⊆ ValD(V) a set of valuations of V
over D. Moreover, suppose that, for all dependence maps
θ ∈ DMD(℘), there is a valuation v ∈ ValD([[℘]]) such that
θ(v) ∈ S. Then, there exists a dependence map θ ∈ DMD(℘)
such that, for all valuations v ∈ ValD([[℘]]), it holds that
θ(v) ∈ S.

At this point, we can proceed with the duality proof.

Lemma A.9 (Dependence-vs-Valuation Duality). Let W ⊆
WlkG(B, s) be an open/closed set of walks, H = 〈A,
Win〉 = H(G, s,W, ℘,B) the dependence-vs-valuation game
for G in s over W w.r.t. ℘ and B, and H = 〈A,
Mtc\Win〉 = H(G, s,WlkG(B, s)\W, ℘,B) its dual game.
Then, if player Odd wins the dual TPG H, player Even wins
the TPG H.

Proof: Suppose that player Odd wins the dual TPG
H. Since W is open/closed, by Lemma A.1 on open vs
closed walk set, it holds that WlkG(B, s)\W is closed/open.
Therefore, by Lemma A.5 on decoupled Odd scheme, there
exists a decoupled Odd scheme so ∈ SchoA such that, for all
Even schemes se ∈ ScheA , it holds that mtcA(se , so) ∈Win.
Now, to prove that Even wins the TPG H, we have to show
that there exists an Even scheme se ∈ ScheA such that, for all
Odd schemes so ∈ SchoA, it holds that mtcA(se, so) ∈Win.

Since so is decoupled, it follows that, for all σ ∈ PoseA ,
the function fσ : DCG(℘,B, lst(σ), s) → EvlG(B, s)
such that fσ (dc) , so(σ · (lst(σ), dc)), for all dc ∈
DCG(℘,B, lst(σ), s), is decoupled. By Lemma A.3 on decou-
pled functions, fσ has a connection f̃σ : B→ DMAc(℘)→
St. Now, it is easy to see that there exists a decoupled



function hσ : DCG(℘,B, lst(σ), s) → VCG(V,B, lst(σ), s)
for which its connection function h̃σ : B → DMAc(℘) →
ValAc(V) is such that f̃σ ([)(θ) = τ(lst(σ)([), h̃σ ([)(θ)◦ ζ[).
From now on, let Sσ , rng(hσ ) and Tσ , rng(fσ ).

By the choice of the function hσ , we have that, for all
dc ∈ DCG(℘,B, lst(σ), s), there exists a vc ∈ VCG([[℘]],B,
lst(σ), s) such that κlst(σ)(dc, vc) ∈ Sσ . Therefore, it is
immediate to see that, for all [ ∈ B and θ ∈ DMAc(℘),
there exists a v ∈ ValAc([[℘]]) such that θ(v) ∈ Sσ ↓[.
Now, by Lemma A.8 on dependence dualization, for all
[ ∈ B, there is a θσ ∈ DMAc(℘) such that, for all
v ∈ ValAc([[℘]]), it holds that θσ (v) ∈ Sσ ↓[. This implies
that there exists a dcσ ∈ DCG(℘,B, lst(σ), s) such that,
for all vc ∈ VCG([[℘]],B, lst(σ), s) and [ ∈ B it holds
that κlst(σ)(dcσ , vc)([) ∈ Sσ ↓[. At this point, since hσ is
decoupled, by Lemma A.4 on simple function set, we have
that κlst(σ)(dcσ , vc) ∈ Sσ .

Now, consider two partial functions p : PoseA ⇀ PoseA
and q : PoseA ⇀ DMAc(℘)B, with dom(p) = dom(q),
satisfying the following mutual recursive properties.

1) a) n0 ∈ dom(p) and p(n0) = n0.
b) For all σ · (lst(σ), dc) · evl ∈ PoseA, it holds that:
• if σ ∈ dom(p) and evl ∈ Tp(σ) then σ ·

(lst(σ), dc)·evl ∈ dom(p) and p(σ·(lst(σ), dc)·
evl) = p(σ)·(lst(p(σ)), q(σ ·(lst(σ), dc)·evl))·
evl;

• if σ · (lst(σ), dc) · evl ∈ dom(p) then σ ∈
dom(p) and evl ∈ Tp(σ).

2) For all σ · (lst(σ), dc) · evl ∈ dom(q), it holds that:
a) q(σ · (lst(σ), dc) · evl) ∈ DCG(℘,B, lst(p(σ)), s);
b) evl = so(p(σ)·(lst(p(σ)), q(σ ·(lst(σ), dc)·evl))).

By construction, it is immediate to see that such two functions
surely exist and that lst(p(σ)) = lst(σ), for all σ ∈ dom(p).

Now, choose an Even scheme se ∈ ScheA in A such that
se(σ) , (lst(σ), dcp(σ)), for all σ ∈ dom(p). Moreover, let
so ∈ SchoA be a generic Odd scheme in A and consider the
derived match $ , mtcA(se, so). It remains only to prove
that $ ∈ Win. As first thing, by induction on i ∈ N, it is
easy to see that ($)≤2i ∈ dom(p). Moreover, there exists
an Even scheme se ∈ ScheA in A such that so(p(($)≤2i) ·
se(p(($)≤2i))) = ($)2(i+1). Therefore, ($)2i = ($)2i,
for all i ∈ N, where $ , mtcA(se , so). Now, since so is
winning, we have that $ ∈Win. Hence, due to the structure
of the winning set Win, we obtain that $ ∈Win, as well.

6) Elementariness proof: We are finally able to prove
the elementariness property for SL[XG].

Theorem C.5.1 (SL[XG] Formula Elementariness). Let G be
a CGS, ϕ an SL[XG] formula, s ∈ St a state, and χ ∈ Asg(s)
an s-total assignment with free(ϕ) ⊆ dom(χ). Then, it holds
that G, χ, s |= ϕ iff G, χ, s |=B ϕ.

Proof: The proof proceeds by induction on the structure

of the formula. For the sake of succinctness, we only show the
most important inductive case of principal subsentences φ ∈
psnt(ϕ), i.e., when φ is of the form ℘

∧
[∈B [ψ[, where ℘ ∈

Qnt(V) and B ⊆ Bnd(V) are, respectively, a quantification
prefix and a set of binding prefixes over a set V ⊆ Var of
variables, and all ψ[ are SL formulas with free(ψ[) = Ag.

[If]. The proof of this direction is immediate and left to
the reader.

[Only if]. Assume that G,∅, s |= ℘ψ. Then, it is easy
to see that, for all elementary dependence maps θ ∈
EDMStr(s)(℘), there is an assignment χ ∈ Asg([[℘]], s)
such that G, θ(χ), s |= ψ. Indeed, suppose by contra-
diction that there exists an elementary dependence map
θ ∈ EDMStr(s)(℘) such that, for all assignments χ ∈
Asg([[℘]], s), it holds that G, θ(χ), s 6|= ψ, i.e., G, θ(χ), s |=
¬ψ. Then, by Theorem II.2 of SL strategy quantification,
we have that G,∅, s |= ℘¬ψ, i.e., G,∅, s |= ¬℘ψ, and so
G,∅, s 6|= ℘ψ, which is impossible.

Now, let W , {wlkG(χ,B, s) : χ ∈ AsgG(V, s) ∧
G, χ, s 6|= ψ}. By Lemma A.2, we have that W is open/closed.
Moreover, it is evident that, for all elementary dependence
maps θ ∈ EDMStr(s)(℘), there is an assignment χ ∈
Asg([[℘]], s) such that wlkG(θ(χ),B, s) 6∈W.

At this point, by Definition III.2 of encasement, it is clear
that W is not an encasement w.r.t. ℘ and B. In addition,
since all ψ[ describe a regular language, the derived set
Win is Borelian. Consequently, by Item 2 of Lemma III.1
of encasement characterization, we have that player Odd
wins the TPG H(G, s,W, ℘,B). Thus, by Lemma III.2 of
dependence-vs-valuation duality, player Even wins the dual
TPG H(G, s,WlkG(B, s) \W, ℘,B). Hence, by Item 1 of
Lemma III.1, we have that WlkG(B, s)\W is an encasement
w.r.t. ℘ and B.

Finally, again by Definition III.2, there exists an elementary
dependence map θ ∈ EDMStr(s)(℘) such that, for all assign-
ments χ ∈ Asg([[℘]], s), it holds that wlkG(θ(χ),B, s) ∈
WlkG(B, s) \W.

Now, it is immediate to observe that WlkG(B, s) \W =
{wlkG(χ,B, s) : χ ∈ AsgG(V, s) ∧ G, χ, s |= ψ}. So, by
the inductive hypothesis, we have that WlkG(B, s) \W =
{wlkG(χ,B, s) : χ ∈ AsgG(V, s) ∧ G, χ, s |=B ψ}, from
which we derive that there exists an elementary dependence
map θ ∈ EDMStr(s)(℘) such that, for all assignments χ ∈
Asg([[℘]], s), it holds that G, θ(χ), s |=B ψ. Consequently, by
Definition II.6 of SL elementary semantics, we have that
G,∅, s |=B ℘ψ.

As an immediate consequence of the previous theorem,
we derive the following result.

Theorem III.1 (SL[XG] Behavioral Semantics). For all
SL[XG] sentences ϕ, it holds that G |= ϕ iff G |=B ϕ.

D. Model Checking
For the proofs of Lemmas IV.1 and IV.2, see Lemmas 5.10

and 5.12 of [18], respectively. The proof of Theorem IV.1



follows.

Theorem IV.1 (SL[XG] Sentence Automaton). Let G be
a CGS, s ∈ StG one of its states, and φ = ℘

∧
[∈B [ψ[

(resp., φ = ℘
∨
[∈B [ψ[) an SL[CG] (resp., SL[DG]) sentence.

Then, there exists an UCT UG,sφ with O(2|φ|) states such that
G,∅, s |= φ iff L(UG,sφ ) 6= ∅ (resp., L(UG,sφ ) = ∅).

Proof: We first prove the statement for SL[CG]. Then,
for SL[DG], the result is derived by using the following
observation: starting with a SL[DG] sentence φ, first we
dualize it in an SL[CG] one φ′ ≡ ¬φ and then we apply the
same construction we use for SL[CG], obtaining the UCT UG,sφ′ .
Finally, since G,∅, s |= φ′ iff L(UG,sφ′ ) 6= ∅, we obtain that
G,∅, s |= φ iff L(UG,sφ′ ) = ∅. We now give the construction
SL[CG].

As first thing, by means of Lemma IV.1, we build the UCTs
UG[ψ, for all goals [ψ[ with [ ∈ B, of which we made the
product obtaining the new UCT UG∧

[∈B [ψ
. It is evident that,

by construction, for all states s ∈ StG and assignments χ ∈
AsgG(free(

∧
[∈B [ψ), s), it holds that G, χ, s |=

∧
[∈B [ψ

iff Tχ ∈ L(UG∧
[∈B [ψ

), where Tχ is the assignment-state
encoding for χ. At this point, by applying Lemma IV.2 to
UG∧

[∈B [ψ
, we derive the required UCT UG,sφ .


