Graded CTL* over finite paths

Aniello Murano, Sasha Rubin, Loredana Sorrentino

Universita degli Studi di Napoli Federico II

Abstract. In this paper we introduce the logic Graded Computation Tree
Logic over finite paths (GCTL?}, for short), a variant of the Computation
Tree Logic CTL" in which path quantifiers are interpreted over finite
paths and can count the number of such paths. State formulas of GCTL}
are interpreted over Kripke structures with a designated set of states,
which we call "check points". These special states serve to delineate
the end points of the finite executions. The syntax of GCTL} has path
quantifiers of the form EZ94) which express that there are at least g many
distinct finite paths that a) end in a check point, and b) satisfy 1. After
defining and justifying the logic GCTL}, we solve its model checking
problem providing an upper bound on its computational complexity.

1 Introduction

Temporal logics are a special kind of modal logics in which the truth values of the
assertions vary with time [24]. Introduced in the seventies, these logics provide a
very useful framework for checking the reliability of reactive systems, i.e., systems
that continuously interact with the external environment. In formal verification
[RI9)2T125] to check whether a system meets a desired behaviour, we check, by
means of a suitable algorithm, whether a mathematical model of the system
satisfies a formal specification of the required behaviour, the latter usually given
in terms of a temporal-logic formula.

Depending on the view of the underlying nature of the time, we distinguish
between two types of temporal logics. In linear-time temporal logics (such as
LTL [24]) each moment in time follows a unique possible future. On the other
hand, in branching-time temporal logics (such as CTL [8] and CTL* [14]) each
moment in time can be split into various possible futures. In order to express
properties along one or all the possible futures, branching logics make use of
existential and universal path quantifiers.

Driven by the need to capture some specific system requirements, several
variants and extensions of classic temporal logics have been considered over the
years. One direction concerns the use of graded path modalities in branching-time
temporal logics [SIISI2EGITHITITITT7I2002I22]. These modalities allow us to express
properties such as "there exists at least n possible paths that satisfy a formula" or
"all but n paths satisfy a formula". In [5l6], the authors introduce the extension of
CTL with graded modalities, namely GCTL. They prove that, although GCTL
is more expressive than CTL, the satisfiability problem for GCTL remains
solvable in EXPTIME, even in the case the graded numbers are coded in binary.

In [16] the authors consider the model-checking problem using formulas expressed
in GCTL and investigate its complexity: given a GCTL formula ¢ and a system
model represented by a Kripke structure I, the model-checking problem can be
solved in time (|K| - |¢]), that is the same running time required for CTL. In
[2], the logic GCTL* was investigated. First, it was proved that it is equivalent,
over trees, to Monadic Path Logic. Then, the authors turn to the satisfiability
problem and show that it is 2EXPTIME-COMPLETE. Finally, they show that the
complexity of the model checking problem is PSPACE-COMPLETE. So, for both
decision problems we have the same complexity as for CTL*, although GCTL*
is strictly more expressive.

Another meaningful direction concerning variations of classic temporal logics
concerns the interpretation of formulas over finite paths [TIITOJI9T2/T3]. The
motivation for this is that many areas of Artificial Intelligence and Computer
Science involve finite executions. A seminal work in this setting is [II], where
the LTL logic framework was revisited under this assumption. In [IT] it was
proved that the resulting logic, namely LTLy, has the expressive power of
First Order Logic. Also, it was proved that satisfiability and model-checking are
PSPACE-COMPLETE, thus not harder than LTL. Branching-time temporal logics
interpreted over finite paths were also introduced and studied in the literature
[27UT4]. Very recently, this was also investigated for logics of strategic reasoning [4].

Although the interpretation of graded formulas over finite computations seems
natural and useful in practice, surprisingly this specific combination has never
been addressed in the literature. In formal verification, such a formalism could be
useful to accelerate the process of finding bad computations (similarly to what was
done in [I6] over infinite computations) or to check an unambiguous satisfaction
of a property (similarly to what was done in [I] over infinite computations).

Our Contribution. In this paper we introduce a variant of Computation
Tree Logic (CTL"), namely GCTL}, in which path quantifiers EZ9 are graded
and interpreted over finite paths. Thus this logic, with respect to CTL*, on the
one hand, restricts the evaluation of formulas to finite paths and, on the other
hand, it makes use of a grade g (a natural number or infinity), that is used
along the path quantifier E and A in order to count paths. GCTL} formulas are
interpreted over Kripke structures where additionally we make use of marked
states which we call check points. As the name advocates, these states represent
moments along a system computation in which we can check some specific
requirements. Specifically, these states correspond to the unique moments in
which the computation can end or should be inspected.

We address the model checking problem for GCTL} and solve it by means
of an automata-theoretic approach.

Outline This paper is structured in the following way. In Section [2] we present
some basic known concepts about automata and directed graphs that we use to
solve our problem. In Section 3] we introduce and discuss the syntax and semantics
of GCTL;. In Section 4| we solve the model checking problem for GCTL; and
provide an upper bound on its computational complexity. Finally, in Section
we summarize the obtained results and we give some possible future directions.

2 Preliminaries

In this section, we give some concepts about the graphs and the automata we are
going to use along the paper in order to solve the model checking problem we
address. As these are common definitions, an expert reader can skip this part.

Directed Graphs A graph G is an ordered pair (V,E) such that V is a finite
set of vertices (also, named states nodes or points) and E is a set of edges (also,
named arcs or lines), i.e., ordered pairs of elements of V.

Let G be a directed graph. A path in G is a sequence of m vertices vg, ..., U1
such that, for each ¢ = 1,...,m — 1 we have that (v;_1,v;) € E. Moreover, we
define the length of the path as the number m of vertices which constitute the
path. Given two vertex v, and vy, we also say that v is reachable from v, if
there exists a path of length at least 1 from v, to v,. A path is called simple if
no vertex appears more than once.

Nondeterministic Finite Word Automaton. A Nondeterministic Finite
Word Automaton (NFW, for short) is a tuple A = (AP,N, 1,0, F) where

— AP is a finite non-empty set of atomic propositions;
— N is a finite non-empty set of states;

— I C N is a non-empty set of initial states;

§: N x 24P — 9N ig 3 transition function.

— F C N is a set of final states.

Intuitively, 6(n, p) is the set of states that A can move into when it is in the
state n and reads a subset of atoms p € 24F. The automaton A is deterministic
(DFW, for short) if |I| =1 and |§(n, p)| = 1 for each state n and atom p € AP.

A run r of A on a word w = po,p1,....pm_1 € (247)* is a sequence
N, N1, ..., Ny of m + 1 states in N such that ng € I and n;41 = 6(n;, p;) for
0 <i < m. A nondeterministic automaton can have many runs of a given input
word. The run r is accepting if n,, € F. The word w is accepted by A if A has
an accepting run on w. The language of A is the set of words accepted by A.

3 Graded Computation Tree Logic over finite paths

In this section, we introduce the logic Graded Computation Tree Logic over finite
paths (GCTL;, for short), a variant of CTL" in which the path quantifiers are
graded and interpreted over finite paths. In particular, the syntax of GCTL}
is an adaptation of branching-time logic with the following main features. On
the one hand it restricts GCTL* [5] by considering finite paths that end in
check points, and on the other hand it extends CTL* [I4] by means of grades
g € NU {oo} applied to the existential path quantifier E.

The obtained existential path operators EZ9¢ express that there are at least ¢
distinct paths satisfying . Just as for CTL*, the syntax includes path-formulas,
expressing properties of paths, and state-formulas, expressing properties of states.

Definition 1 (GCTL} syntax). GCTL} formulas are inductively built from
a set of atomic propositions AP, by using the following grammar:

d:=p|-d|dA¢|EZ9Y |EZ2, where p € AP and g € N
V=@ | Y | YA | X | YUy

All the formulas generated by a ¢-rule are called state-formulas, while the
formulas generated by a -rule are called path-formulas. The temporal oper-
ators are X (read "next") and U (read "until"). The path quantifier is E=9
(read "there exists at least g distinct paths..."). We introduce the following ab-
breviations: A<99) = —E=9—) (read "all but less than g paths satisfy ¥"),
P1RYy = (-1 U—hy) (read "release"), Fi = truely (read "eventually"),
Gy = falseRy (read "globally"), and v V ¢g = =01 A =y (read "or").

The semantics for GCTL} is defined w.r.t. a particular Kripke Structure in
which there are special states which we call check points. It is a structure similar
to a nondeterministic automaton and it is defined as follows.

Definition 2 (Kripke Structure System with check points). A Kripke
Structure System with check points (KSc, for short) is a tuple I = (St, AP, \, J, so,
C) such that:

— St is a finite non-empty set of states;

— AP is a set of atomic propositions;

X : St — 24P s the labeling function mapping each state to the atomic
propositions true in that state;

6 C St x St is a transition relation;

— So € St is an initial state;

C C St is a set of states called check points.

A path p in K is a finite (resp., infinite) sequence of states p € St* (resp., St*)
such that, for all 7 € [0, |p| — 1] (resp., for all i € N) it holds that (p;, piy1) € 9.

Also, we define Pth(K) C St USt™ to denote the sets of paths 7 in K and we
define Pth(s) to denote the set of paths starting from s. The first element of 7 is
denoted by fst(r) £ mg, and its last by Ist(r). Furthermore, we write (7); 2 7;
to denote the i-th element of 7.

The semantics for GCTL? is defined w.r.t. KSc. The existential quantifiers
EZ91) express that there are at least g distinct paths ending in check points that
satisfy 1. We distinguish finite paths 71, 7o € Pth(K) of K in the natural way:
two paths are distinct if |m1| # |m2| or there exists an index 0 < 4 < |7 such
that that T1 (’L) 75 7T2(i).

Definition 3 (GCTL}; Semantics). The semantics of GCTL} formulas is
recursively defined as follows. For a Kripke Structure System with check points
KSc K, a state s, a path m and a natural number i € N, we have that:

— For state-formulas ¢, ¢1, and ¢s:
o K,sE=pif p € As);
e K,sk=¢if K s~ o;

o [C,s =1 A if both K, s = ¢1 and K, s = ¢
o K, s |= EZ99 if there exists at least g distinct paths 7 in Pth(s) such that
(a) Ist(w) € C and (b) K, 7,0 = ;
o K, s |= EZ if there exists infinitely many distinct paths m in Pth(s)
such that (a) Ist(m) € C and (b) K, 7,0 = 9;
— For path-formulas ¢, ¥, ¥y, and ¥y
’Caﬂ—vi }Z ¢ Zf IC’ (Tr)l ': (7257'
K,mi b= if Ky, i = ;
K, =1 A if both K,)i =11 and K, m,i = g;
K,milEXYifi+1l<|r| and K,m,i+ 1 E;
K,m,i = 1 Uthy if there exists k € N such that K, 7, i + k |E 2 and
K,mi+4j =1, for all j € [0 K[;

We say that m satisfies the path formula 1 over K, and write K, 7 = 9, if
K, 7,0 . Also, we say that K satisfies the state formula ¢, and write K |= ¢,
if K, s0 |E ¢. We call a path formula without a path quantifier a flat path formula.

Note that a finite path 7 satisfies X at position ¢ implies, in particular, that
1 is not the last position in 7.

Remark 1. The logic CTL} introduced in [4] is similar to GCTL} except that it
does not have graded quantifiers, only E. That logic is a fragment of ours, simply
restrict to formulas in which every degree g is equal to 1.

Fig. 1: Example of a KSc K that models a map in a military scenario.

Example 1. As an example we consider the KSc K depicted in Figure [1] It
models a map available to a military aircraft-pilot carrying relief supplies and
food. The states St = {ng, n1,n2, n3, n4,ns} correspond to different places, and
the only checkpoint is n4 (so C = {n4}) and corresponds to a neutral zone. The
initial state is ng. Each state of IC is labeled by a set of atomic proposition where
AP = {s,hd,1d} and s stands for "safe", hd stands for "high danger" and ld
stands for "low danger". They indicate the degree of danger in crossing that area.
In detail, the places are labeled as follows: A(ng) = {s, —hd}, A(n1) = {—s,hd},
A(ng) = {s,—hd}, A(n3) = {s,1d}, A(s4) = {s,~hd, =1d} and A(n5) = {—s}. The
GCTL} formula ¢ = E>24) where ¢ = F(s A =1d A —=hd) holds in the given KSc
since there are many distinct paths (at least two) that satisfy the formula. In
particular, all paths matching the regular expression

nonang + no(nsns) ng + nona(nans) ny

satisfy 1. Instead, if we use the GCTL} formula ¢ = EZ%) where 1) = —hd U (F (sA
—ld A =hd)) we have that the formula does not hold since there is only a single
path satisfying v, i.e., ngnang.

4 Model Checking

In this section, we solve the model checking GCTL? and we provide an upper
bound on its computational complexity. First, we formulate the decision problem
as follows.

Definition 4 (Model Checking). Given a KSc K and a GCTL} formula ¢
decide if K = ¢.

In order to measure the complexity, we need to define the size of the input
K and ¢. The size of a structure K is its number of states, and the size of a
formula ¢ is defined as usual, except that [EZ9%)| = 1+ |g| + || for g # oo, and
|[EZ>°9)| = 1 + |[¢], i.e., the grades are represented in unary.

Here is the main theorem of this section:

Theorem 1. Model checking GCTL;Z is in ExpSpace.

We establish this upper bound as follows. To check whether K = ¢ we mark
each state of IC by the state sub-formulas of ¢ true at that state, see Algorithm
In order to deal with formulas of the form EZ94), we view 1) as an LTL formula
over the marked Kripke structure and call Algorithm [2] This algorithm converts
1 into an DFW accepting the models of v, then builds the product with the
Kripke structure resulting in a graph with a single initial state and a set of
target vertices. We count the number of paths from the initial vertices to the
target vertices using classical graph reachability algorithms, see Algorithm [T}
The product graph is double-exponential in |¢| and polynomial in the Kripke
structure. However, the counting can be done in NLogSpace in the product graph
and polynomial space in g. Thus we obtain that the model checking problem
GCTL} is in ExpSpace.

Here are the details. We begin by describing the NLogSpace for counting.

Algorithm 1 ExistsPaths

1: function ExisTsPaTHs(G, s, T, g) > Returns YES if there is at least g distinct

2:

paths from s to the vertices in T.

if there exists a vertex t € T and a vertex v such that Reach(G,s,v) and

Reach(G,v,v) and Reach(G,v,t) then

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

return YES > There are infinitely many paths
end if
if g = co then
return NO
end if > There are finitely many paths and g < oo
for all i < g do > Initialise g many paths
cur; <— s
fin; <0 > fin; = 0 means the ith path is not finished
end for
for alli # j < g do > dif fi,; = 1 means the indexed paths are different
diffi; =0
end for
for steps = 1 to number of vertices do > We are testing for simple paths

for all i do
if fin;=0 and cur; € T then
non-deterministically let fin; € {0, steps}
end if > fin; # 0 represents the length of the ith path
if fin; = 0 then
replace cur; by an element of Adj(cur;) chosen non-deterministically
end if
end for
for alli # j < g do
If cur; # cur; then dif f; j < 1
end for
end for
if \,curi € T and A\,_;(fin: = fin; — dif fi; = 1) then
return YES
else
return NO
end if

end function

Proposition 1 (Counting Paths). The Algorithm ExistsPaths(G,s,T,g) in
Algorithm[1] decides if there exist at least g distinct paths in a graph G, each of
which starts with s and ends with some vertex in T. It works in NLogSpace in G
and PSpace in g.

Proof. Consider the first condition. It asks if there exists a vertex v such that
the following properties are verified: (a) Reach(G, s,v) is true (b) Reach(G,v,v)
is true and (¢) Reach(G,v,t) is true. This just says that there is a path between
s and some element of T" in which some vertex is traversed more than once. But
since the graph is finite, this is equivalent to the property that there are infinitely
many paths from s to T'. If this is the case we return YES no matter the value of
g. Otherwise, we proceed with two cases.

If g = 0o we return NO. If g # co the rest of the algorithm checks if there are
at least g simple paths from s to T. Note that this is sufficient because if there
are at least g, not necessarily simple, paths from s to T then there are infinitely
many paths from s to T' (just repeat the segment between two occurrences of
the same vertex), which we know there are not since the first condition failed.

The rest of the algorithm uses the following terminology: for a vertex v we let
Adj(v) denote the set of vertices v’ such that (v,v’) € E. The algorithm uses the
following variables: an integer variable steps (which is used to count the number
of traversed vertices); variables cur; (for i < g) that vary over states of G (and
are used to store the current vertices of paths), variables dif f; ; (for ¢,j < g with
i # k) that take the value 1 once a difference is found in paths of equal length),
and fin; for i < g which takes value 0 if the 7th path is not finished, and value
fin; # 0 if the length of the path is fin;. The algorithm runs for as many steps
as there are vertices in the graph. It consists of three phases: it first guesses if
a given path ending in T finishes (it may continue and finish at a later time),
and if so it records this fact in fin;; it then guesses the next vertex of all paths
that have not finished; it then records if it finds a difference in the paths. The
return condition says that each path should end in 7" and if two paths are the
same length then they should be different. d

The Algorithm [2] presented below, shows how to model flat path formulas.

Algorithm 2 ModelCheckingFlat

1: function MoDELCHECKINGFLAT(K, 4, g) > Returns the set of states s such that
(K, s) = EZ94. > Here 9 is a flat path-formula

2 Convert 1) into an equivalent DEW(N, i, A, C').

3 Form the product graph G of KSc and the DFW. It has vertex set St x V.

4: Return the set of states s such that ExistsPaths(G,(s,i),C x C’,g)

5: end function

Proposition 2 (Flat Formulas). Model Checking CTL} formulas of the form
EZ94) where 1) is a flat path formula is in ExpSpace in the structure and PSpace
mg.

Proof. For the second step of the Algorithm [2| convert the formula into an
NFW using an adaptation of the classic Vardi-Wolper construction for finite
words[28/TT]. The NFW accepts all paths (defined over the atomic propositions
AP) that satisfy the formula 1. The number of states of the NFW is at most
exponential in the size of the formula. To finish the second step of the algorithm,
determinise this NFW to get a DFW. This step also costs an exponential.

In the third step of the algorithm, we create a new graph in which the set
of vertex is given by the product of the set of states St of the KSc K and the
set of states of the DFW A. There is an edge (s,n) — (s',n') if d(s,s’) and
A(n,A(s)) = n'. Finally, in the last step, thanks to the algorithm FzistsPaths
we verify in LOGSPACE (in the size of graph), for each state s of KSc, if there
exists at least g distinct paths starting from the vertex of (s,¢) (thus the DFW
is also in its initial state) and ending in a vertex of the form (s,n) where n is a
final state of the DFW. These paths correspond, exactly, to the paths in KSc
that satisfy . Since the graph is of double exponential size in |9, the whole
algorithm runs in exponential space. a

In Algorithm [3| we give our algorithm for model checking arbitrary formulas.
It uses the following notions.

A formula ¢ is a maximal state-subformula of ¢ if ¢ is a state-subformula of
¢ and ¢ is not a proper sub-formula of any other state sub-formula of ¢. Every
flat path formula 1 of GCTL; formula ¢ can be viewed as an LTL formula
¥ whose atoms are elements of a maximal state-subformula ¢ as is usual for
branching-time logics, e.g., see [21].

Algorithm 3 ModelChecking

1: function MoDELCHECKING(K, ¢)> Returns the set of states s for which K,s = ¢
2 Introduce a new atom pg

3 if ¢ =p € AP then

4: return the set of states s such that p € A(s).

5: end if
6.
7

8

if ¢ = —¢1 then
return the set of states s such that s ZMODELCHECKING(KC, ¢1).

: end if
9: if ¢ = ¢1 A ¢2 then
10: return the set of states s such that s € (,_; , MODELCHECKING(KC, ¢;).
11: end if ’
12: if ¢ = EZ%) then
13: for all maximal state-subformulas ¢ of ¢ do
14: Introduce a fresh atom p,,
15: Redefine X so that p, € A(s) iff s EMODELCHECKING (K, ¢).
16: Replace every occurrence of ¢ in ¢ by p,.
17: end for
18: return the set of states s such that s € MODELCHECKINGFLAT(K, v, g).
19: end if

20: end function

Theorem 2. The Model Checking Problem of GCTL; is in FxpSpace.

Proof. To solve the model checking problem we give the Algorithm [3] named
ModelChecking(KC, ¢) that processes the state sub-formulas ¢ of ¢, starting from
the innermost one and, for each state s decides if (K, s) = ¢ holds. The atomic
case and the Boolean operations are immediate. For the path quantifier EZ91) the
algorithm relabels each state by a fresh atom p,, iff the maximal state sub-formula
@ of 1 holds in that state. This is done recursively. It then treats ¢ as flat path
formula by replacing each ¢ by p,. It then calls ModelCheckingFlat with the
new relabeled C, the flat formula ¢ and the given graded g. ad

5 Conclusion and Future Work

Recently, temporal logic formalisms restricted to finite computations have received
large attention in formal system verification. This concept is very important in
many areas of Artificial Intelligence. For example, one may think of business
processes that are modelled using finite path, or to automated planning in which
the executions are often finite. In this paper we have introduced a variant of CTL*,
namely GCTL}, in which the formulas are interpreted over finite paths that
can be selected by the logic by means of a graded modality. We have addressed
the model checking problem for GCTL} and proved it to be in ExpSpace. We
believe that one can refine the approach, or use partitioning tree automata [5],
and get a better complexity. The known lower bounds is for the fragment CTL’}7
i.e., PSPACE [4].

Besides that, this articles opens to several direction for future work. First,
we recall that graded modalities have been studied also in the context of the
modal p-calculus, with and without backwards modalities [7]. It would be worth
reconsider that logic under the finite path semantics as we have done in this
paper. Another interesting direction would be to consider enriching GCTL’J‘Z
with knowledge operators. This would allows us to talk about a finite amount of
knowledge (but unbounded) along paths. Also, recent work shows how to count
the number of strategies in a graph game [23/4], and extending our work to count
strategies in the finite-trace case is of interest.

Finally, note that we have assumed in this paper that graded numbers used
along formulas are coded in unary. By using a binary coding we immediately loose
an exponent along the model checking procedure. We leave open the question
whether this blow-up is avoidable as done in [6].

References

1. Benjamin Aminof, Vadim Malvone, Aniello Murano, and Sasha Rubin. Graded
modalities in strategy logic. Information and Computation, 261:634 — 649, 2018.
4th International Workshop on Strategic Reasoning (SR 2016).

2. Benjamin Aminof, Aniello Murano, and Sasha Rubin. CTL* with graded path
modalities. Information and Computation, 2018.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Everardo Barcenas, Edgard Benitez-Guerrero, and Jests Lavalle. On the model
checking of the graded p-calculus on trees. In Grigori Sidorov and Soffa N. Galicia-
Haro, editors, Advances in Artificial Intelligence and Soft Computing - 14th Mexican
International Conference on Artificial Intelligence, MICAI 2015, Cuernavaca, More-
los, Mexico, October 25-31, 2015, Proceedings, Part I, volume 9413 of Lecture Notes
in Computer Science, pages 178—189. Springer, 2015.

Francesco Belardinelli, Alessio Lomuscio, Aniello Murano, and Sasha Rubin.
Alternating-time temporal logic on finite traces. In International Joint Conference
on Artificial Intelligence, pages 77-83, 2018.

A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic. In
Logic in Computer Science’09, pages 342-351. IEEE Computer Society, 2009.

A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic. Trans-
actions On Computational Logic, 13(3):25:1-53, 2012.

P.A. Bonatti, C. Lutz, A. Murano, and M.Y. Vardi. The Complexity of Enriched
muCalculi. Logical Methods in Computer Science, 4(3):1-27, 2008.

E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic. In Logic of Programs’81, LNCS 131, pages
52-71. Springer, 1981.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2002.

. Giuseppe De Giacomo, Riccardo De Masellis, and Marco Montali. Reasoning on

LTL on finite traces: Insensitivity to infiniteness. In AAAI pages 1027-1033, 2014.
Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear
dynamic logic on finite traces. In Francesca Rossi, editor, IJCAI 2013, Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, pages 854-860. IJCAI/AAAI, 2013.

Giuseppe De Giacomo and Moshe Y. Vardi. Synthesis for LTL and LDL on
finite traces. In Qiang Yang and Michael Wooldridge, editors, Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, pages 1558—1564. AAAT Press,
2015.

Giuseppe De Giacomo and Moshe Y. Vardi. LTL¢ and LDL¢ synthesis under partial
observability. In Subbarao Kambhampati, editor, Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9-15 July 2016, pages 1044-1050. IJCAI/AAAI Press, 2016.

E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On
Branching Versus Linear Time. Journal of the ACM, 33(1):151-178, 1986.

A. Ferrante, A. Murano, and M. Parente. Enriched Mu-Calculi Module Checking.
Logical Methods in Computer Science, 4(3):1-21, 2008.

A. Ferrante, M. Napoli, and M. Parente. Model Checking for Graded CTL. Funda-
menta Informaticae, 96(3):323-339, 2009.

M. Kaminski, S. Schneider, and G. Smolka. Terminating tableaux for graded hybrid
logic with global modalities and role hierarchies. LMCS,7(1), 2011.

Yevgeny Kazakov and Ian Pratt-Hartmann. A note on the complexity of the
satisfiability problem for graded modal logics. In Symposium on Logic in Computer
Science, pages 407-416, 2009.

Jeremy Kong and Alessio Lomuscio. Model checking multi-agent systems against
LDLK specifications on finite traces. In Elisabeth André, Sven Koenig, Mehdi
Dastani, and Gita Sukthankar, editors, Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm,
Sweden, July 10-15, 2018, pages 166—174. International Foundation for Autonomous
Agents and Multiagent Systems Richland, SC, USA / ACM, 2018.

20

21.

22.

23.

24.

25.

26.

27.

28.

. O. Kupferman, U. Sattler, and M.Y. Vardi. The Complexity of the Graded mu-
Calculus. In Conference on Automated Deduction’02, LNCS 2392, pages 423-437.
Springer, 2002.

O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to
Branching-Time Model Checking. Journal of the ACM, 47(2):312-360, 2000.
Vadim Malvone, Fabio Mogavero, Aniello Murano, and Loredana Sorrentino. Rea-
soning about graded strategy quantifiers. Information and Computation, 259:390
— 411, 2018. 22nd International Symposium on Temporal Representation and
Reasoning.

Vadim Malvone, Aniello Murano, and Loredana Sorrentino. Additional winning
strategies in reachability games. Fundam. Inform., 159(1-2):175-195, 2018.

A. Pnueli. The Temporal Logic of Programs. In Foundation of Computer Science’77,
pages 46-57. IEEE Computer Society, 1977.

J.P. Queille and J. Sifakis. Specification and Verification of Concurrent Programs
in Cesar. In Symposium on Programming’81, LNCS 137, pages 337-351. Springer,
1981.

S. Tobies. PSPACE Reasoning for Graded Modal Logics. Journal of Logic and
Computation, 11(1):85-106, 2001.

M. Y. Vardi and L. Stockmeyer. Lower bound in full (2EXPTIME-hardness for
CTL-SAT). 1985.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. Comput.,
115(1):1-37, 1994.

	Graded CTL* over finite paths
	Aniello Murano, Sasha Rubin, Loredana Sorrentino

