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1 Extended Abstract
Multi-agent systems recently emerged as a new paradigm for better understanding distributed systems [Woo01,
FHMV95]. In multi-agent systems, different processes can have different goals and the interactions between
them may be adversarial or cooperative. Interactions between processes in multi-agent systems can thus be seen
as games in the classical framework of game theory, with adversarial coalitions [OR94]. Classical branching-
time temporal logics, such as CTL* [EH86], turn out to be of limited power when applied to multi-agent systems.
For example, consider the property Prop: “processes 1 and 2 cooperate to ensure that a system (having more
than two processes) never enters a fail state”. It is well known that CTL* cannot express Prop [AHK02]. Rather,
CTL* can only say whether the set of all agents can or cannot prevent the system from entering a fail state.

To allow the temporal-logic framework to work within the setting of multi-agent systems, Alur, Henzinger,
and Kupferman introduced Alternating-Time Temporal Logic (ATL*, for short) [AHK02]. This is a generaliza-
tion of CTL* obtained by replacing the path quantifiers, “E” (there exists) and “A” (for all), with “cooperation
modalities” of the form 〈〈A〉〉 and [[A]], where A is a set of agents, which can be used to represent the power that a
coalition of agents has to achieve certain results. In particular, these modalities express selective quantifications
over those paths that can be effected as outcomes of infinite games between the coalition and its complement.
ATL* formulas are interpreted over game structures, which model a set of interacting processes. Given a game
structure G and a set A of agents, the ATL* formula 〈〈A〉〉ψ is satisfied at a state s iff there is a strategy for the
agents in A such that, no matter the strategy that is executed by agents not in A, the resulting outcome of the
interaction satisfies ψ at s. Coming back to the previous example, one can see that the property Prop can be
expressed by the ATL* formula 〈〈{1,2}〉〉G¬fail, where G is the classical temporal modality “globally”.

Traditionally, temporal logics are memoryless: once a path in the underlying structure (usually a computa-
tion tree) is quantified at a given state, the computation that led to that state is forgotten [KV06]. In the case of
ATL*, we have even more: the logic is also “relentless”, in the sense that the agents are not able to formulate
their strategies depending on the history of the computation; when 〈〈A〉〉ψ is asserted in a state s, its truth is
independent of the path that led to s. Inspired by a work on strong cyclic planning [DTV00], Pistore and Vardi
proposed a logic that can express the spectrum between the strong goal Aψ and the weak goal Eψ in planning
[PV07]. A novel aspect of the Pistore-Vardi logic is that it is “memoryful”, in the sense that the satisfiability of
a formula at a state s depends on the future as well as on the past, i.e., the trace starting from the initial state
and leading to s. Nevertheless, this logic does not have a standard temporal logical syntax (for example, it is not
closed under conjunction and disjunction). Also, it is less expressive than CTL*. This has lead Kupferman and
Vardi [KV06] to introduce a memoryful variant of CTL* (mCTL*, for short), which unifies in a common frame-
work both CTL* and the Pistore-Vardi logic. Syntactically, mCTL* is obtained from CTL* by simply adding
a special proposition present, which is needed to emulate the ability of CTL* to talk about the “present” time.
Semantically, mCTL* is obtained from CTL* by reinterpreting the path quantifiers of the logic to be memoryful.

Recently, ATL* has become very popular in the context of multi-agent system planning [vdHW02, Jam04].
In such a framework, a memoryful enhancement of ATL* enables “relentful” planning, that is, agents can relent
and change their goals, depending on their history3. That is, when a specific goal at a certain state is checked,
agents may learn from the past to change their goals. Note that this does not mean that agents change their
strategy, but that they can choose a strategy that allows them to change their goals. For example, consider the
ATL* formula 〈〈 /0〉〉G 〈〈A〉〉ψ. In the memoryful framework, this formula is satisfied by a game structure G (at
its starting node) iff for each possible trace (history) ρ the agents in A can ensure that the evolution of G that
extends ρ satisfies ψ from the start state.

In this paper, we introduce and study the logic mATL*, a memoryful extension of ATL*. Thus, mATL*
can be thought of as a fusion of mCTL* and ATL* in a common framework. Similarly to mCTL*, the syntax of
mATL* is obtained from ATL* by simply adding a special proposition present. Semantically, mATL* is obtained
from ATL* by reinterpreting the path quantifiers of the logic to be memoryful. More specifically, for a game

? An extended version of this paper is going to appear in the proceedings of LPAR-16 2010 [MMV10].
3 In Middle English to relent means to melt. In modern English it is used only in the combination of “relentless”.



2 F. Mogavero, A. Murano, M.Y. Vardi

structure G , the mATL* formula 〈〈A〉〉ψ holds at a state s of G if there is a strategy for agents in A such that, no
matter which is the strategy of the agents not in A, the outcome of the game, obtained by extending the execution
trace of the system ending in s, satisfies ψ. As an example, consider the situation in which the agents in a set A
have the goal to satisfy p until q holds, unless they see r in which case they change their goal to satisfy u until
v holds from the start of the computation. This is difficult to handle in ATL*, since the specification depends
on the past. On the other hand, it can be easily handled in mATL*, with the formula 〈〈A〉〉((p U (q∨ r))∧G f ),
where f is r→ 〈〈A〉〉(uU v).

In the paper, we also consider an extension of mATL* with past operators (mpATL*, for short). As for clas-
sical temporal logics, past operators allow reasoning about the past in a computation [LPZ85]. In mpATL*, we
can further require that coalitions of agents had a memoryful goal in the past. In more details, we can write a
formula whose satisfaction, at a state s, depends on the trace starting from the initial state and leading to a state
s′ occurring before s. Coming back to the previous example, by using P as the dual of F , we can change the
alternative goal f of agents in A to be r→ P (h∧〈〈A〉〉(uUv)), which requires that once r occurs at a state s, at a
previous state s′ of s in which h holds, the subformula u until v from the start of the computation must be true.

An important contribution of this work is to show for the first time a clear and complete picture of the rela-
tionships among ATL* and its extensions with memoryful quantification and past modalities, which goes beyond
the expressiveness results obtained in [KV06] for mCTL*. Since memoryfulness refers to behavior from the start
of the computation, which occurred in the past, memoryfulness is intimately connected to the past. Indeed, we
prove this formally. We study the expressive power and the succinctness of mATL* w.r.t. ATL*, as well as the
memoryless fragment of mpATL* (i.e., the extension of ATL* with past modalities), which we call pATL*. We
show that the three logics have the same expressive power, but both mATL* and pATL* are at least exponen-
tially more succinct than ATL*. As for m−ATL* (where the minus stands for the variant of the logic without the
“present” proposition but the path interpretation is still memoryful), we prove that it is strictly less expressive
than ATL*. Conversely, we prove that pATL* is equivalent to p−ATL*, but exponentially more succinct.

From an algorithmic point of view, we examine two decision problems for mpATL*, model checking and
satisfiability. We show that model checking is not easier than satisfiability and in particular that both are
2EXPTIME-COMPLETE, as for ATL*. We recall that this is not the case for mCTL*, where the model check-
ing is EXPSPACE-COMPLETE, while satisfiability is 2EXPTIME-COMPLETE. For upper bounds, we follow an
automata-theoretic approach [KVW00]. To this aim, we introduce a new automaton model, the agent-action tree
automata with satellites (AGCTAS, for short), which extends both automata over concurrent game structures in
[SF06] and alternating automata with satellites in [KV06], in a common setting. Then we reduce the decision
problems for mpATL* to the emptiness problem of such automata. For technical convenience, AGCTAS states
are partitioned into states regarding the satellite and those regarding the rest of the automaton, which we call the
main automaton. The complexity results then come from the fact that mpATL* formulas can be translated into
an AGCTAS with an exponential number of states for the main automaton and doubly exponential number of
states for the satellite, and from the fact that the emptiness problem for AGCTAS is solvable in EXPTIME w.r.t.
both the size of the main automaton and the logarithm of the size of the satellite.
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