
Solving Parity Games in Scala

Antonio Di Stasio, Aniello Murano, Vincenzo Prignano?, Loredana Sorrentino

Università degli Studi di Napoli Federico II, Napoli, Italy

Abstract. Parity games are two-player games, played on directed graphs,
whose nodes are labeled with priorities. Along a play, the maximal priority
occurring infinitely often determines the winner. In the last two decades,
a variety of algorithms and successive optimizations have been proposed.
The majority of them have been implemented in PGSolver, written in
OCaml, which has been elected by the community as the de facto platform
to solve efficiently parity games as well as evaluate their performance in
several specific cases.

PGSolver includes the Zielonka Recursive Algorithm that has been shown
to perform better than the others in randomly generated games. However,
even for arenas with a few thousand of nodes (especially over dense
graphs), it requires minutes to solve the corresponding game.

In this paper, we deeply revisit the implementation of the recursive
algorithm introducing several improvements and making use of Scala
Programming Language. These choices have been proved to be very
successful, gaining up to two orders of magnitude in running time.

1 Introduction

Parity games [14, 36] are abstract infinite-duration games that represents a
powerful mathematical framework to address fundamental questions in computer
science and mathematics. They are strict connected with other games of infi-
nite duration, such as mean and discounted payoff, stochastic, and multi-agent
games [7, 9, 10, 11].

In formal system design and verification [13, 26], parity games arise as a natural
evaluation machinery to automatically and exhaustively check for reliability of
distributed and reactive systems [1, 3, 27]. More specifically, in formal verification,
model-checking techniques [12, 32] allow to verify whether a system is correct
with respect to a desired behavior by checking whether a mathematical model
of the system meets a formal specification of the expected execution. In case
the latter is given by means of a µ-calculus formula [25], the model checking
problem can be translated, in linear-time, into a parity game [14]. Hence, every
parity game solver can be used in practice as a model checker for a µ-calculus
specification (and vice-versa). Using this approach, liveness and safety properties
can be addressed in a very elegant and easy way [29]. Also, this offers a very
powerful machinery to check for component software reliability [1, 3].

? Contact Author: vincenzo.prignano@gmail.com

In the basic settings, parity games are two-player turn-based games, played on
directed graphs, whose nodes are labeled with priorities (i.e., natural numbers).
The players, named player 0 and player 1, move in turn a token along graph’s
edges. Thus, a play induces an infinite path and player 0 wins the play if the
greatest priority visited infinitely often is even; otherwise, player 1 wins the play.

Condition Complexity

Recursive [36] O(e · nd)

Small Progress Measures [23] O(d · e · (n
d)

d
2)

Strategy Improvement [35] O(2e · n · e)

Dominion Decomposition [24] O(n
√

n)

Big Step [33] O(e · n
1
3
d)

Table 1. Parity algorithms along with their
computational complexities.

The problem of finding a winning
strategy in parity games is known to
be in UPTime ∩ CoUPTime [22] and
deciding whether a polynomial time so-
lution exists or not is a long-standing
open question. Aimed to find the right
complexity of parity games, as well as
come out with solutions working effi-
ciently in practice, several algorithms
have been proposed in the last two
decades. In Table 1, we report the most
common ones along with their known computational complexities, where param-
eters n, e, and d denote the number of nodes, edges, and priorities in the game,
respectively (for more details, see [16, 17]).

All above mentioned algorithms have been implemented in PGSolver, written
in OCaml by Oliver Friedman and Martin Lange [16, 17], a collection of tools to
solve, benchmark and generate parity games. Noteworthy, PGSolver has allowed
to declare the Zielonka Recursive Algorithm as the best performing to solve parity
games in practice, as well as explore some optimizations such as decomposition
into strong connect components, removal of self-cycles on nodes, and priority
compression [2, 23].

Despite the enormous interest in finding efficient algorithms for solving parity
games, less emphasis has been put on the choice of the programming language.
Mainly, the scientific community relies on OCaml as the best performing pro-
gramming language to be used in this setting and PGSolver as an optimal and
the de facto platform to solve parity games. However, starting from graphs with
a few thousand of nodes, even using the Zielonka algorithm, PGSolver would
require minutes to decide the given game, especially on dense graphs. Therefore
a natural question that arises is whether there exists a way to improve the
running time of PGSolver. We identify three research directions to work on,
which specifically involve: the algorithm itself, the way it is implemented, and the
chosen programming language. As a result we introduce, in this paper, a slightly
improved version of the Classic Zielonka Algorithm along with a heavily optimized
implementation in Scala Programming Language [30, 31]. Scala is a high-level
language, proven to be well performing [21], with object and functional oriented
features, that recently has come to the fore with useful applications in several
fields of computer science including formal verification [4]. Our experiments show
that, by using all Scala features extensively, we are able of gaining two order of
magnitude in running time with respect to the implementation of the Zielonka
algorithm in PGSolver.

In details, the main goal of this work is the design and development of a
new tool for solving parity games, based on an improved implementation of
the Zielonka Recursive Algorithm, with performance in mind. Classical Zielonka
algorithm requires to decompose the graph game into multiple smaller arenas,
which is done by computing, in every recursive call, the difference between the
current graph and a given set of nodes. This operation (Algorithm in Fig.1, lines
10 and 15) turns out to be quite expensive as it requires to generate a new graph
at each iteration. Somehow such a difference operation has the flavor of the
complicancy of complementing automata in formal verification [34]. Remarkably,
our improved version guarantees that the original arena remains immutable by
tracking the removed nodes in every subsequent call and checking, in constant
time, whether a node needs to be excluded or not. Casting this idea in the
above automata reasoning, it is like enriching the state space with two flags
(removed, ¬removed), instead of performing a complementation.

In this paper we consider and compare four implementations. The Classic
(C) and Improved (I) Recursive (R) algorithms implemented in Scala (S) and
OCaml (O). Using random generated games, we show that IRO gains an order
of magnitude against CRO, as well as CRS against CRO. Remarkably, we show
that these improvements are cumulative by proving that IRS gains two order of
magnitude against CRO.

We have been able to achieve this kind of performance optimization by
deeply studying the way the classic Recursive algorithm has been implemented
in PGSolver and concentrating on the following tasks of the algorithm, which we
have deeply improved: finding the maximal priority, finding all nodes with a given
priority, and removing a node (including related edges) from the graph. Parsing
the graph in Scala, we allocate an Array, whose size is fixed to the number of
nodes of the graph. In addition we populate at the same time the adjacency list
and incidence list for each node, which avoids to build a transposed graph. We
make also use of an open source Java library called Trove that provides a fast
and lightweight implementation of the java.util Collection API.

Finally, we want to remark that, among all programming languages, we have
chosen to investigate Scala as it shares several modern and useful programming
language aspects. Among the others, Scala carries functional and object-oriented
features, compiles its programs for the JVM, is interoperable with Java and
an high-level language with a concise and clear syntax. The results we obtain
strongly support our choice and allow to declare Scala as a clear winner over
OCaml, in terms of performance.

Outline The sequel of the paper is structured as follows. In Section 2, we
give some preliminary concepts about parity games. In Section 3, we describe the
Classic Recursive Zielonka Algorithm. In Section 4, we introduce our improved
algorithm based on the Zielonka algorithm that we implement in Section 5 using
Scala programming language. In Section 6 we study, analyze, and benchmark
the Classic and Improved Algorithms in OCaml (PGSolver) and Scala.

Finally we report that the tool is available as an open source project at
https://github.com/vinceprignano/SPGSolver.

2 Parity Games

In this section we report some basic concepts about parity games including the
Zielonka Recursive Algorithm. For more details we refer to [15, 36].

A parity game is a tuple G = (V, V 0, V1, E,Ω) where (V, E) forms a directed
graph whose set of nodes is partitioned into V = V0 ∪ V1, with V0 ∩ V1 = ∅, and
Ω : V → N is the priority function that assigns to each node a natural number
called the priority of the node. We assume E to be total, i.e. for every node
v ∈ V , there is a node w ∈ V such that (v, w) ∈ E. In the following we also write
vEw in place of (v, w) ∈ E and use vE := {w | vEw}.

Parity games are played between two players called player 0 and player 1.
Starting in a node v ∈ V , both players construct an infinite path (the play)
through the graph as follows. If the construction reaches, at a certain point, a
finite sequence v0...vn and vn ∈ V then player i selects a node w ∈ vnE and
the play continues with the sequence v0...vnw. Every play has a unique winner,
defined by the priority that occurs infinitely often. Precisely, the winner of the
play v0v1v2... is player i iff max{p | ∀j .∃k ≥ j : Ω(vk) = p}mod 2 = i. A strategy
for player i is a partial function σ : V ∗V → V , such that, for all sequences v0...vn
with vj+1 ∈ vjE, with j = 0, ..., n−1, and vn ∈ Vi we have that σ(v0...vn) ∈ vnE.
A play v0v1... conforms to a strategy σ for player i if, for all j we have that, if
vj ∈ Vi then vj+1 = σ(v0...vj). A strategy σ for player i (σi) is a winning strategy
in node v if player i wins every play starting in v that conforms to the strategy σ.
In that case, we say that player i wins the game G starting in v. A strategy σ for
player i is called memoryless if, for all v0...vn ∈ V ∗Vi and for w0...wm ∈ V ∗Vi,
we have that if vn = wm then σ(v0...vn) = σ(w0...wm). That is, the value of the
strategy on a path only depends on the last node on that path. Starting from G
we construct two sets W0,W1 ⊆ V such that Wi is the set of all nodes v such
that player i wins the game G starting in v. Parity games enjoy determinacy
meaning that for every node v either v ∈W0 or v ∈W1 [14].

The problem of solving a given parity game is to compute the sets W0 and W1,
as well as the corresponding memoryless winning strategies, σ0 for player 0 and
σ1 for player 1, on their respective winning regions. The construction procedure
of winning regions makes use of the notion of attractor. Formally, let U ⊆ V and
i ∈ {0, 1}. The i-attractor of U is the least set W s.t. U⊆W and whenever v∈Vi
and vE ∩W 6= ∅ , or v∈V1−i and vE ⊆W then v ∈W . Hence, the i-attractor of
U contains all nodes from which player i can move “towards” U and player 1− i
must move “towards” U . The i-attractor of U is denoted by Attri(G,U). Let A
be an arbitrary attractor set. The game G \A is the game restricted to the nodes
V \A, i.e. G \A = (V \A, V0 \A, V1 \A,E \ (A×V ∪ V×A), Ω|V \A). It is worth
observing that the totality of G \A is ensured from A being an attractor.

Formally, for all k ∈ N, the i-attractor is defined as follows:

Attr0i (U) = U ;
Attrk+1

i (U) = Attrki (U)∪{v ∈ Vi | ∃w ∈ Attrki (U) s.t. vEw}
∪ {v ∈ V1−i | ∀w : vEw =⇒ w ∈ Attrki (U)} ;

Attri(U) =
⋃

k∈NAttr
k
i (U) .

3 The Zielonka Recursive Algorithm and its
implemetation in PGSolver

function win (G) :
i f V == ∅ :

(W0,W1) = (∅ , ∅)
else :

d = maximal p r i o r i t y in G
U = { v ∈ V | priority(v) = d }
p = d % 2
j = 1 − p
A = Attrp(U)

(W
′
0 , W

′
1) = win (G \A)

i f W
′
j == ∅ :

Wp = W
′
p ∪A

Wj = ∅
else :

B = Attrj(W
j
1)

(W
′
0 , W

′
1) = win (G \B)

Wp = W
′
p

Wj = W
′
j ∪B

return (W0,W1)

Fig. 1. Zielonka Recursive Algorithm

In this section, we describe the Zielonka
Recursive Algorithm using the basic con-
cepts introduced in the previous sections
and some observations regarding its im-
plementation in PGSolver.

The algorithm to solve parity games
introduced by Zielonka comes from a work
of McNaughton [28]. The Zielonka Recur-
sive Algorithm, as reported in Figure 1,
uses a divide and conquer technique. It
constructs the winning sets for both play-
ers using the solution of subgames. It re-
moves the nodes with the highest priority
from the game, together with all nodes
(and edges) attracted to this set. The al-
gorithm win(G) takes as input a graph
G and, after a number of recursive calls
over ad hoc built subgames, returns the
winning sets (W0,W1) for player 0 and
player 1, respectively. The running time
complexity of the Zielonka Recursive Al-
gorithm is reported in Table 1.

PGSolver turns out to be of a very limited application in several real scenarios.
In more details, even using the Zielonka Recursive Algorithm (that has been
shown to be the best performing in practice), PGSolver would require minutes to
decide games with few thousands of nodes, especially on dense graphs. In this work
we deeply study all main aspects that cause such a bad performance. Specifically,
our investigation beginnings with the way the (Classic) Recursive Algorithm has
been implemented in PGSolver by means of the OCaml programming language.
We start observing that the graph data structure in this framework is represented
as a fixed length Array of tuples. Every tuple has all information that a node
needs, such as the player, the assigned priority and the adjacency list. Before
every recursive call is performed, the program computes the difference between
the graph and the attractor, as well as it builds the transposed graph. In addition
the attractor function makes use of a TreeSet data structure that is not available
in the OCaml’s standard library, but it is imported from TCSlib, a multi-purpose
library for OCaml written by Oliver Friedmann and Martin Lange. Such library
implements this data structure using AVL-Trees that guarantees logarithmic
search, insert, and removal. Also, the same function calculates the number of
successors for the opponent player in every iteration when looping through every
node in the attractor.

4 The Zielonka’s Recursive Improved Implementation

function win (G) :
T = G. t ranspose ()
Removed = {}
return winI (G, T,Removed)

function winI (G, T,Removed) :
i f |V | == |Removed| :

return (∅ , ∅)
W = (∅, ∅)
d = maximal p r i o r i t y in G
U = { v ∈ V | priority(v) = d }
p = d % 2
j = 1 − p

W
′

= (∅, ∅)
A = Attr (G, T,Removed, U, p)

(W
′
0 ,W

′
1) = winI (G, T,Removed,∪A)

i f W
′
j == ∅ :

Wp = W
′
p ∪ A

Wj = ∅
else :

B = Attr (G, T,Removed,W
′
j , j)

(W
′
0 ,W

′
1) = winI (G, T,RemovedcupB)

Wp = W
′
p

Wj = W
′
j ∪ B

return (W0,W1)

Fig. 2. Improved Recursive Pseudocode

In this section we introduce an im-
proved implementation of the Classic
Recursive Algorithm by Zielonka. The
new algorithm is depicted in Figure
2. We also report, In Figure 3, an im-
proved version of the attractor func-
tion that the new algorithm makes use
of.

Let G be a graph. Removing a node
from G and building the transposed
graph takes time Θ(|V | + |E|). Thus
dealing with dense graph such opera-
tion takes Θ(|V |2). In order to reduce
the running time complexity caused
by these graph operations, we intro-
duce an immutability requirement to
the graphG ensuring that every recur-
sive call uses G without applying any
modification to the state space of the
graph. Therefore, to construct the sub-
games, in the recursive calls, we keep
track of each node that is going to be

removed from the graph, adding all of them to a set called Removed.

function Attr (G, T, Removed , A, i) :
tmpMap = []
for x = 0 to |V | :

i f x ∈ A tmpMap = 0
else tmpMap = −1

index = 0
while index < |A| :

for v0 ∈ adj(T,A[index]) :
i f v0 /∈ Removed :

i f tmpMap [v0] == −1:
i f p layer (v0) == i :

A = A ∪ v0
tmpMap [v0] = 0

else :
ad j counte r = −1
for x ∈ adj(G, v0) :

i f (x /∈ Removed) :
ad j counte r += 1

tmpMap [v0] = ad j counte r
i f ad j counte r == 0 :

A = A ∪ v0
else i f (p layer (v0) == j

and tmpMap [v0] > 0) :
tmpMap [v0] −= 1
i f tmpMap [v0] == 0 :

A = A ∪ v0
return A

Fig. 3. Improved Recursive Attractor Pseu-
docode

The improved implementation of
the algorithm is capable of checking
if a given node is excluded or not in
constant time as well as it completely
removes the need for a new graph in
every recursive call. At first glance this
may seem a small improvement with
respect to the Classic Recursive Al-
gorithm. However, it turns out to be
very successful in practice as proved in
the following benchmark section. Fur-
ther evidences that boost the impor-
tance of such improvement can be re-
lated to the fact that the difference
operation has somehow the same com-
plicance of complementing automata
[34]. Using our approach is like avoid-
ing such complementation by adding
constant information to the states, i.e.
a flag (removed, ¬removed). Last but

not least, about the actual implementation, it is also worth mentioning that

general-purpose memory allocators are very expensive as the per-operation cost
floats around one hundred processor cycles [19]. Through these years many efforts
have been made to improve memory allocation writing custom allocators from
scratch, a process known to be difficult and error prone [5, 6].

Our improved implementation of the Recursive Algorithm, listed in Figure
4, does not directly modify the graph data structure (that is represented in
PGSolver as an array of tuples), but rather it uses a set to keep track of removed
nodes.

l e t r ec win game tgraph exc =
l e t w = Array . make 2 InteSe t . empty in
i f (not ((Array . length game) =

(InteSe t . c a rd i na l exc))) then (
l e t (d, u) = (max pr io and set game exc) in
let p = d mod 2 in
let j = 1 − p in
let w1 = Array . make 2 InteSe t . empty in
let (attr, exc1) = a t t r f un game

exc tgraph u p in
let (sol0, sol1) = win game

tgraph exc1 in
w1.(0) <− s o l 0 ;
w1.(1) <− s o l 1 ;
i f (In t eSe t . i s empty w1 . (j)) then (

w. (p) <− (In t eSe t . union w1 . (p) a t t r) ;
w. (j) <− In t eSe t . empty ;

) else (
l e t (attrB , exc2) =
a t t r f un game exc tgraph w1.(j) j in

let (sol0, sol1) = win game
tgraph exc2 in

w1.(0) <− s o l 0 ;
w1.(1) <− s o l 1 ;
w.(p) <− w1.(p) ;
w.(j) <− (In t eSe t . union w1.(j) at t r B) ;

)
) ;
(w.(0), w.(1))

; ;

Fig. 4. Improved Implementation in OCaml

The Improved implemen-
tation of the Recursive
Algorithm, named solver,
takes three parameters: the
Graph, its transposed one,
and a set of excluded nodes.
Our Improved Attractor
function, uses a HashMap,
called tempMap to keep
track of the number of
successors for the oppo-
nent player’s nodes. In addi-
tion, we use a Queue, from
OCaml’s standard library,
to loop over the nodes in
the attractor. Aiming at
performance optimizations,
the attractor function, im-
plemented in PGSolver also
returns the set of excluded
nodes that solver passes to
the next recursive call.

5 Scala Implementation

Scala [30, 31] is the programming language designed by Martin Odersky, the
codesigner of Java Generics and main author of javac compiler. Scala defines itself
as a scalable language, statically typed, a fusion of an object-oriented language
and a functional one. It runs on the Java Virtual Machine (JVM) and supports
every existing Java library. Scala is a purely object-oriented language in which,
like Java and Smalltalk, every value is an object and every operation is a method
call. In addition Scala is a functional language where every function is a first class
object, also is equipped with efficient immutable and mutable data structures,
with a strong selling point given by Java interoperability. However, it is not a
purely functional language as objects may change their states and functions may
have side effects. The functional aspects are perfectly integrated with the object-
oriented features. The combination of both styles makes possible to express new

kinds of patterns and abstractions. All these features make Scala programming
language as a clever choice to solve these tasks, in a strict comparison with other
programming languages available such as C, C++ or Java.

Historically, the first generation of the JVM was entirely an interpreter;
nowadays the JVM uses a Just-In-Time (JIT) compiler, a complex process aimed
to improve performance at runtime. This process can be described in three steps:
(1) source files are compiled by the Scala Compiler into Java Bytecode, that will
be feed to a JVM; (2) the JVM will load the compiled classes at runtime and
execute proper computation using an interpreter; (3) the JVM will analyze the
application method calls and compile the bytecode into native machine code.
This step is done in a lazy manner: the JIT compiles a code path when it knows
that is about to be executed.

def win (G: GraphWithSets)
: (ArrayBuffer [Int] ,

ArrayBuffer [Int]) = {
va l W =

Array (ArrayBuffer . empty [Int] ,
ArrayBuffer . empty [Int])

va l d = G. max pr io r i ty ()
i f (d > −1) {

va l U = G. prior ityMap . get (d)
. f i l t e r (p => !G. exc lude (p))

va l p = d % 2
val j = 1 − p
va l W1 =
Array (ArrayBuffer . empty [Int] ,
ArrayBuffer . empty [Int])

va l A = Attr (G, U, p)
va l r e s = win (G −− A)
W1(0) = re s . 1
W1(1) = re s . 2
i f (W(j) . s i z e == 0) {
W(p) = W1(p) ++= A
W(j) = ArrayBuffer . empty [Int]
} else {

va l B = Attr (G, W1(j) , j)
va l r e s2 = win (G −− B)
W1(0) = re s2 . 1
W1(1) = re s2 . 2
W(p) = W1(p)
W(j) = W1(j) ++= B
}

}
(W(0) , W(1))

}

Fig. 5. Improved Algorithm in Scala

JIT removed the overhead of inter-
pretation and allows programs to start
up quickly, in addition this kind of com-
pilation has to be fast to prevent influ-
encing the actual performance of the
program. Another interesting aspect of
the JVM is that it verifies every class file
after loading them. This makes sure that
the execution step does not violate some
defined safety properties. The checks are
performed by the verifier that includes
a complete type checking of the entire
program. The JVM is also available on
all major platforms and compiled Java
executables can run on all of them with
no need for recompilation.

The Scala compiler scalac compiles a
Scala program into Java class files. The
compiler is organized in a sequence of
successive steps. The first one is called
the front-end step and performs an anal-
ysis of the input file, makes sure that is
a valid Scala program and produces an
attributed abstract syntax tree (AST);

the back-end step simplifies the AST and proceeds to the generation phase where
it produces the actual class files, which constitute the final output. Targeting the
JVM, the Scala Compiler checks that the produced code is type-correct in order
to be accepted by the JVM bytecode verifier.

In [21], published by Google, Scala even being an high level language, performs
just 2.5x slower than C++ machine optimized code. In particular it has been
proved to be even faster than Java. As the paper notes: “While the benchmark
itself is simple and compact, it employs many language features, in particular

high level data structures, a few algorithms, iterations over collection types, some
object oriented features and interesting memory allocation patterns”.

In this section we introduce our improved implementation in Scala, listed as
Figure 5 and Figure 6.

Aiming at performance optimizations we use a priority HashMap where every
key is a certain priority and a value is a set of each node v where priority(v) = key.
As fast and JVM-Optimized HashMaps and ArrayLists we use the ones included
in the open source library Trove. In addition, using the well known strategy
pattern [18] we open the framework for further extentions and improvements. The
intended purpose of our algorithm is to assert that the performance of existing
tools for solving parity games can be improved using the improved algorithm
and choosing Scala as the programming language.

def Attr (G: GraphWithSets ,
A: ArrayBuffer [Int] , i : Int)
: ArrayBuffer [Int] = {

va l tmpMap = Array
. f i l l [Int] (G. nodes . s i z e)(−1)

var index = 0
A. fo r each (tmpMap() = 0)
while (index < A. s i z e) {

G. nodes (A(index))
.<∼ . f o r each (v0 => {

i f (!G. exc lude (v0)) {
va l f l a g = G. nodes (v0) . p layer == i
i f (tmpMap(v0) == −1) {

i f (f l a g) {
A += v0
tmpMap(v0) = 0

} else {
va l tmp = G. nodes (v0)
.∼>
. count (x => !G. exc lude (x)) − 1

tmpMap(v0) = tmp
i f (tmp == 0) A += v0

}
} else i f (! f l a g && tmpMap(v0) > 0){

tmpMap(v0) −= 1
i f (tmpMap(v0) == 0) A += v0

}
}

})
index += 1

}
A

}

Fig. 6. Improved Implementation in Scala

We rely on Scala’s inter-
nal features and standard
library making heavy use
of the dynamic ArrayBuffer
data structure. In order to
store the arena we use an
array of Node objects. The
Node class contains: a list of
adjacent nodes, a list of inci-
dent nodes, its priority and
the player; the data struc-
ture also implements a fac-
tory method called “− −
(set : ArrayBuffer[Int])”
that takes an ArrayBuffer
of integers as input, flags
all the nodes in the array
as excluded, and returns
the reference to the new
graph. In addition, there
is also a method called
max priority() that will re-
turn the maximal priority
in the graph and the set of
nodes with that priority.

The Attractor function makes deeply use of an array of integers named
tmpMap that is preallocated using the number of nodes in the graph with a
negative integer as default value; we use tmpMap when looping through every
node in the set A given as parameter, to keep track of the number of successors for
the opponent player. We add a node v ∈ V to the attractor set when its counter
(stored in tmpMap[v]) reaches 0 (adj(v) ⊆ A and v ∈ Vopponent) or if v ∈ Vplayer;
using an array of integers, or an HashMap, to serve this purpose, guarantees a
constant time check if a node was already visited and ensures that the count for

the opponent’s node adjacency list takes place one time only. These functions
are inside a singleton object called ImprovedRecursiveSolver that extends the
Solver interface.

6 Benchmarks

In this section we study, analyze and evaluate the running time of our four
implementations: Classic Recursive in OCaml (CRO), Classic Recursive in Scala
(CRS), Improved implementation of the Recursive in OCaml (IRO) and Improved
implementation of the Recursive in Scala (IRS).

We have run our experiments on multiple instances of random parity games.
We want to note that IRS does not apply any preprocessing steps to the arena
before solving. All tests have been run on an Intel(R) Xeon(R) CPU E5620 @
2.40GHz, with 16GB of Ram (with no Swap available) running Ubuntu 14.04.
Precisely, we have used 100 random arenas generated using PGSolver of each
of the following types, given N = i× 1000 with i integer and 1 ≤ i ≤ 10 and a
timeout set at 600 seconds.

Fig. 7. Random Games Chart in Logarithmic Scale

In the following, we report six tables in which we show the running time of
all experiments under fixed parameters. Throughout this section we define aboT
when the program has been aborted due to excessive time and aboM when the
program has been killed by the Operating System due to memory consumption. In
Figure 7 we also report the trends of the four implementations using a logarithmic
scale with respect to seconds. This figure is based on the averages of all results
reported in the tables below.

N nodes, N colors, adj(N
2 , N) N nodes, N colors, adj(1, N)

N IRS CRO CRS IRO

1× 103 0.204 1.99 0.505 0.752

2× 103 0.456 13.208 1.918 3.664

3× 103 1.031 41.493 2.656 6.147

4× 103 1.879 96.847 6.728 15.966

5× 103 2.977 183.589 12.616 27.272

6× 103 3.993 306.104 19.032 41.051

7× 103 4.989 486.368 27.05 50.367

8× 103 6.103 aboT 36.597 70.972

9× 103 7.287 aboT 55.171 97.216

10× 103 8.468 aboT 68.303 113.36

N IRS CRO CRS IRO

1× 103 0.179 1.21 0.454 0.583

2× 103 0.389 8.075 1.173 2.366

3× 103 0.868 25.097 2.656 6.147

4× 103 1.279 57.186 4.23 10.452

5× 103 2.273 108.983 9.206 20.377

6× 103 2.772 183.884 12.562 27.489

7× 103 3.748 291.077 17.942 37.521

8× 103 3.942 418.377 22.105 47.502

9× 103 4.989 593.721 23.93 61.593

10× 103 6.413 aboT 42.408 80.508

N nodes, 2 colors, adj(N
2 , N) N nodes, 2 colors, adj(1, N)

N IRS CRO CRS IRO

1× 103 0.189 1.98 0.481 0.702

2× 103 0.469 12.941 1.55 3.17

3× 103 1.046 41.584 3.995 7.428

4× 103 1.712 96.545 5.378 13.823

5× 103 2.414 181.225 11.273 22.575

6× 103 3.458 307.233 16.472 35.269

7× 103 4.612 484.159 26.448 49.311

8× 103 6.003 aboT 28.968 65.674

9× 103 7.03 aboT 43.666 85.909

10× 103 8.938 aboT 57.18 110.814

N IRS CRO CRS IRO

1× 103 0.159 1.226 0.385 0.468

2× 103 0.341 7.965 1.004 2.162

3× 103 0.797 25.114 2.305 6.014

4× 103 1.123 56.422 3.699 9.421

5× 103 1.704 108.584 6.12 14.971

6× 103 2.243 182.935 10.099 22.621

7× 103 3.324 286.503 13.898 32.335

8× 103 3.95 430.265 19.743 44.281

9× 103 4.597 aboT 28.742 56.81

10× 103 5.651 aboT 33.639 71.434

N nodes,
√
N colors, adj(N

2 , N) N nodes,
√
N colors, adj(1, N)

N IRS CRO CRS IRO

1× 103 0.204 1.978 0.468 0.71

2× 103 0.456 13.114 1.575 3.203

3× 103 1.031 41.493 3.868 7.492

4× 103 1.621 96.55 5.744 13.97

5× 103 2.439 183.589 10.72 22.98

6× 103 3.372 307.426 15.978 34.78

7× 103 4.662 485.826 26.432 48.875

8× 103 6.499 aboT 34.741 66.423

9× 103 7.147 aboT 48.915 86.645

10× 103 8.988 aboT 56.656 111.492

N IRS CRO CRS IRO

1× 103 0.162 1.218 0.384 0.475

2× 103 0.344 7.947 1.034 2.195

3× 103 0.788 25.029 2.406 5.944

4× 103 1.105 57.307 3.835 9.608

5× 103 1.678 108.623 6.34 15.165

6× 103 2.281 182.154 9.871 22.859

7× 103 3.193 285.28 14.338 32.536

8× 103 4.185 422.74 20.362 44.515

9× 103 5.009 599.071 24.347 57.022

10× 103 5.76 aboT 35.024 72.291

6.1 Trends Analysis for Random Arenas

Fig. 8. Trends Chart

The speedup obtained by our im-
proved implementation is in most cases
quite noticeable. Figure 8 shows the
running time trend for improved and
classic implementation of the algo-
rithm on each platform. The seconds
are limited to [0, 100] and are showed
on the Y Axis while on the X Axis
we report the number of nodes. The
chart is based on the results achieved
above. As a result we show that even
with all preprocessing steps enabled in
PGSolver, IRS is capable of gaining
two orders of magnitude in running time.

6.2 Trends Analysis for Special Games

Focusing on Classic Recursive in PGSolver and our improved version, here
we show the running times for non-random games generated by PGSolver. In
particular, we use four types of non-random games, that are Clique[n] game,
Ladder[n] game, Model Checker Ladder[n] and, Jurdzinski[n, m] game.

All experiments have been run against PGSolver using the Classic Recursive
Algorithm with all optimizations disabled and all solutions were matched to
ensure correctness. Special games require modifications to the parser in order
to be loaded correctly, for this reason we only provide support for our improved
version in Scala.

Fig. 9. Clique Trends

Clique[n] games are fully connected games without self-loops, where n is
the number of nodes. The set of nodes is partitioned into V0 and V1 having
the same size. For all v ∈ Vp, priority(v) % 2 = p. For these experiments we
set n = 2kwhere 8 ≤ k ≤ 14. Table below reports the running time for our
experiments and these results are drawn in Figure 9.

n 28 29 210 211 212 213 214

IRS 0.05 0.07 0.12 0.46 1.18 4.87 17.39

CRO 0.09 0.61 4.37 29.58 229.78 aboT aboM

In Ladder[n] game, every node in V0 has priority 2 and every node in V1
has priority 1. In addition, each node v ∈ V has two successors: one in V0 and
one in V1, which form a node pair. Every pair is connected to the next pair
forming a ladder of pairs. Finally, the last pair is connected to the top. The
parameter n specifies the number of node pairs. For these tests, we set n = 2k

where 7 ≤ k ≤ 19 and report our experiments in the table below whose trend is
drawn in Figure 10.

Figure 10 shows better performance for CRO than IRS using low-scaled values
as input parameter. This behaviour is not surprising as there is a warming-up
time required by the Java Virtual Machine.

n 27 28 29 210 211 212 213 214 215 216 217 218 219

IRS 0.01 0.02 0.03 0.05 0.08 0.11 0.13 0.15 0.19 0.25 0.38 0.48 0.93

CRO 0.00 0.00 0.01 0.01 0.03 0.06 0.13 0.3 0.65 1.39 2.93 6.21 11.71

Fig. 10. Ladder Trends

Model Checker Ladder[n] consists of overlapping blocks of four nodes, where
the parameter n specifies the number of desired blocks. Every node is owned by
player 1, V1 = V and V0 = ∅, and the nodes are connected such that every cycle
passes through a single point of colour 0. As before, for our tests we set n = 2k

where 7 ≤ k ≤ 19 and we report the experiments in the table below and draw
the trends in Figure 11.

n 27 28 29 210 211 212 213 214 215 216 217 218 219

IRS 0.01 0.02 0.03 0.04 0.07 0.12 0.14 0.16 0.19 0.21 0.26 0.39 0.65

CRO 0.00 0.00 0.01 0.01 0.02 0.05 0.10 0.22 0.47 0.99 2.12 4.16 8.31

Fig. 11. Model Checker Ladder Trends

Jurdzinski[n, m] games are designed to generate the worst-case behaviour for
the Small Progress Measure Solver [23]. The parameter n is the number of layers,
where each layer has m repeating blocks that are inter-connected as described in
[23]. As this game takes two parameters, in our test we ran two experiments: one
where n is fixed to 10 and m = 10× 2k, for k = 1, 2, 3, 4, 5 and one where m is
fixed to 10 and n = 10× 2k, for k = 1, 2, 3, 4, 5. The results of our expreriments
are reported in the tables below. The trends are drawn in Figure 12 and Figure 13.

m 10× 21 10× 22 10× 23 10× 24 10× 25

IRS 0.21 0.48 1.54 4.55 15.31

CRO 0.23 0.79 3.14 15.77 65.85

n 10× 21 10× 22 10× 23 10× 24 10× 25

IRS 0.28 0.77 3.02 30.02 232.24

CRO 0.42 2.94 22.69 184.12 aboT

Fig. 12. Jurdiznski Trends

Fig. 13. Jurdiznski Trends

7 Discussion and Conclusions

PGSolver is a well-stablished framework that collects multiple algorithms to
decide parity games. For several years now this platform has been the only
one available to solve and benchmark in practice. Given PGSolver’s limitations
addressing huge graphs, several attempts of improvement have been carried out
recently. Some of them have been implemented as preprocessing steps in the tool
itself (such as priority compression or SCC decomposition and the like), while
others chose parallelism techniques, such as Cuda [20], applied to the algorithms.
However these improvements often do not show the desired performance.

In this paper we started from scratch by revisiting the Zielonka Recursive
Algorithm, implemented an improved and the classic versions in Scala and OCaml,
comparing among them. The choice of Scala as a programming language has been
not casual, but rather it comes out from a deep study focused on performance
and simplicity. Scala is interoperable with Java libraries, has a concise and clear
syntax, functional and object oriented features, runs on the Java Virtual Machine
and has been proven to be high performing.

The main contribution of this paper is a new and faster tool for solving parity
games, capable of gaining up to two orders of magnitude in running time. This
result has several practical implications as parity games solver are central and
the most expensive step in many model checking, satisfiability checking, and
synthesis algorithms [1, 3, 13, 14, 26, 27, 8]. We believe that the importance of
our result does not reside only in the improvement of the Zielonka Algorithm,
but rather in the starting of an ambitious line of research, which has as a final
target the rewriting of full PGSolver framework in Scala. Clearly, a lot of work
needs to be done along this issue, as PGSolver includes several algorithms,
specific improvements and functionalities, which all need to be reproduced in
our framework as well. Our conjecture is that all algorithms that have been
implemented in PGSolver can benefit of the improvements we adopted for the
Zielonka algorithm. We leave all of this as future work. Another orthogonal
question to which we plan to devote some work is whether other programming
languages can perform better than Scala under specific settings.

In conclusion we state that there is place for a faster and better framework
to solve parity games and this work is a starting point raising several interesting
questions. For example, what if one implements the other known algorithms to
solve parity games in Scala? PGSolver showed that Zielonka’s algorithm is the
best performing. Can one reproduce the same results in Scala? We leave all these
questions as future work.

Bibliography

[1] B. Aminof, F. Mogavero, and A. Murano. Synthesis of hierarchical systems. Science
of Comp. Program., 83:56–79, 2013.

[2] A. Antonik, N. Charlton, and M. Huth. Polynomial-time under-approximation of
winning regions in parity games. ENTCS, 225:115–139, 2009.

[3] B. Aminof and O. Kupferman and A. Murano. Improved model checking of
hierarchical systems. Inf. Comput., 210:68–86, 2012.

[4] H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace analysis.
Springer, 2011.

[5] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing high-performance
memory allocators. In ACM SIGPLAN Notices, volume 36, pages 114–124. ACM,
2001.

[6] E. D. Berger, B. G. Zorn, and K. S. McKinley. Oopsla 2002: Reconsidering custom
memory allocation. ACM SIGPLAN Notices, 48(4):46–57, 2013.

[7] D. Berwanger. Admissibility in infinite games. In STACS’07, pages 188–199, 2007.
[8] P. Bonatti, C. Lutz, A. Murano, and M. Vardi. The Complexity of Enriched

Mu-Calculi. LMCS, 4(3):1–27, 2008.
[9] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Generalized mean-

payoff and energy games. In FSTTCS’10, LIPIcs 8, pages 505–516, 2010.
[10] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Mean-payoff parity games. In

LICS’05, pages 178–187, 2005.
[11] K. Chatterjee, M. Jurdzinski, and T. A. Henzinger. Quantitative stochastic parity

games. In SODA’04, pages 121–130, 2004.
[12] E. Clarke and E. Emerson. Design and Synthesis of Synchronization Skeletons

Using Branching-Time Temporal Logic. In LP’81, LNCS 131, pages 52–71, 1981.
[13] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2002.
[14] E. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In FOCS’91,

pages 368–377, 1991.
[15] O. Friedmann. Recursive algorithm for parity games requires exponential time.

RAIRO-Theoretical Informatics and Applications, 45(04):449–457, 2011.
[16] O. Friedmann and M. Lange. The pgsolver collection of parity game solvers.

University of Munich, 2009.
[17] O. Friedmann and M. Lange. Solving parity games in practice. In ATVA’09, LNCS

5799, pages 182–196. Springer, 2009.
[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of

reusable object-oriented software. Pearson Education, 1994.
[19] D. Gay and A. Aiken. Memory management with explicit regions, volume 33. ACM,

1998.
[20] P. Hoffmann and M. Luttenberger. Solving parity games on the gpu. In Automated

Technology for Verification and Analysis, pages 455–459. Springer, 2013.
[21] R. Hundt. Loop recognition in c++/java/go/scala. Proceedings of Scala Days,

2011, 2011.
[22] M. Jurdzinski. Deciding the winner in parity games is in up ∩ co-up. Inf. Process.

Lett., 68(3):119–124, 1998.
[23] M. Jurdzinski. Small progress measures for solving parity games. In STACS’00,

volume 1770 of Lecture Notes in Computer Science, pages 290–301. Springer, 2000.

[24] M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential algo-
rithm for solving parity games. SIAM J. Comput., 38(4):1519–1532, 2008.

[25] D. Kozen. Results on the Propositional mu-Calculus. TCS, 27(3):333–354, 1983.
[26] O. Kupferman, M. Vardi, and P. Wolper. An Automata Theoretic Approach to

Branching-Time Model Checking. JACM, 47(2):312–360, 2000.
[27] O. Kupferman, M. Vardi, and P. Wolper. Module Checking. IC,164(2):322–344,

2001.
[28] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and

Applied Logic, 65(2):149–184, 1993.
[29] F. Mogavero, A. Murano, and L. Sorrentino. On promptness in parity games. In

LPAR’13, LNCS 8312, pages 601–618. Springer, 2013.
[30] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,

M. Schinz, E. Stenman, and M. Zenger. An overview of the scala programming
language. 2004.

[31] M. Odersky, L. Spoon, and B. Venners. Programming in scala. Artima Inc, 2008.
[32] J. Queille and J. Sifakis. Specification and Verification of Concurrent Programs in

Cesar. In SP’81, LNCS 137, pages 337–351, 1981.
[33] S. Schewe. Solving parity games in big steps. In FSTTCS’07, LNCS 4855, pages

449–460. Springer, 2007.
[34] W. Thomas. Automata on Infinite Objects. In Handbook of Theoretical Computer

Science (vol. B), pages 133–191. MIT Press, 1990.
[35] J. Vöge and M. Jurdzinski. A discrete strategy improvement algorithm for solving

parity games. In CAV’00, LNCS 1855, pages 202–215. Springer, 2000.
[36] W. Zielonka. Infinite games on finitely coloured graphs with applications to

automata on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

