
Enriched μ-Calculi Module Checking�

Alessandro Ferrante1 and Aniello Murano2

1 Università di Salerno, Via Ponte don Melillo, 84084 - Fisciano (SA), Italy
2 Università di Napoli Federico II, Via Cintia, 80126 - Napoli, Italy

Abstract. The model checking problem for open finite-state systems
(called module checking) has been intensively studied in the literature
with respect to CTL and CTL∗. In this paper, we focus on module
checking with respect to the fully enriched µ-calculus and some of its
fragments. Fully enriched µ-calculus is the extension of the propositional
µ-calculus with inverse programs, graded modalities, and nominals. The
fragments we consider here are obtained by dropping at least one of
the additional constructs. For the full calculus, we show that module
checking is undecidable by using a reduction from the domino problem.
For its fragments, instead, we show that module checking is decidable
and ExpTime-complete. This result is obtained by using, for the upper
bound, a classical automata-theoretic approach via Forest Enriched Au-
tomata and, for the lower bound, a reduction from the module checking
problem for CTL, known to be ExpTime-hard.

1 Introduction

One of the most significant developments in the area of formal design verification
has been the discovery of the model-checking technique, which is particularly suit-
able for verifying ongoing behaviors of reactive systems ([CE81, QS81, VW86]).
In this verification method, (for a survey, see [CGP99]), the behavior of a system,
formally described by a mathematical model, is checked against a behavioral con-
straint specified by a formula in a suitable temporal logic, which enforces either a
linear model of time (formulas are interpreted over linear sequences correspond-
ing to single computations of the system) or a branching model of time (formulas
are interpreted over infinite trees, which describe all the possible computations of
the system).

In system modeling, we distinguish between closed and open systems [HP85].
For a closed system, the behavior is completely determined by the state of the
system. For an open system, the behavior is affected both by its internal state and
by the ongoing interaction with its environment. Thus, while in a closed system
all the nondeterministic choices are internal, and resolved by the system, in an
open system there are also external nondeterministic choices, which are resolved
by the environment [Hoa85]. Model checking algorithms used for the verification
of closed systems are not appropriate for the verification of open systems. In the
� Work partially supported by MIUR FIRB Project no. RBAU1P5SS and grant ex-

60% 2005, Università di Salerno.

H. Seidl (Ed.): FOSSACS 2007, LNCS 4423, pp. 183–197, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

184 A. Ferrante and A. Murano

latter case, we should check the system with respect to arbitrary environments
and should take into account uncertainty regarding the environment.

In [KVW01], Kupferman, Vardi, and Wolper extend model checking from
closed finite-state systems to open finite-state systems. In such a framework, the
open finite-state system is described by a labeled state-transition graph called
module whose set of states is partitioned into a set of system states (where the
system makes a transition) and a set of environment states (where the envi-
ronment makes a transition). The problem of model checking a module (called
module checking) has two inputs: a module M and a temporal formula ϕ. The
idea is that an open system should satisfy a specification ϕ no matter how the
environment behaves. Let us consider the unwinding of M into an infinite tree,
say TM . Checking whether TM satisfies ϕ, (formally, M |= ϕ) is the usual model-
checking problem [CE81, QS81]. On the other hand, for an open system, TM

describes the interaction of the system with a maximal environment, i.e., an en-
vironment that enables all the external nondeterministic choices. In order to take
into account all the possible behaviors of the environment, we have to consider
all the trees T obtained from TM by pruning subtrees whose root is a successor
of an environment state (pruning these subtrees correspond to disable possible
environment choices). Therefore, a module M satisfies ϕ (formally, M |=r ϕ,
where r stands for “reactively”) if all these trees T satisfy ϕ. The set of all the
trees derived from TM by a legal pruning is denoted by exec(M).

In [KVW01], it has been showed that model checking for open finite-state
systems is ExpTime-complete for specification in CTL and 2ExpTime-complete
for specification in CTL∗. Moreover, the program complexity, i.e., the complexity
of the problem assuming the formula to be fixed, is Ptime-complete. Recently,
module checking has been also extended to infinite–state systems, by considering
open pushdown systems as models [BMP05]. It has been showed that in this
framework module checking is 2ExpTime-complete for specification in CTL and
3ExpTime-complete for specification in CTL∗.

The μ-calculus is a propositional modal logic augmented with least and great-
est fixpoint operators [Koz83]. It is often used as a target formalism for embed-
ding temporal and modal logics with the goal of transferring computational
and model theoretic properties such as the ExpTime upper complexity bound
(see [BS06] for a survey). Fully enriched μ-calculus is the extension of the
propositional μ-calculus with inverse programs, graded modalities, and nominals.
Intuitively, inverse programs allow to travel backwards along accessibility rela-
tions [Var98], nominals are propositional variables interpreted as singleton sets
[SV01], and graded modalities enable statements about the number of succes-
sors and predecessors of a state [KSV02]. In [BP04], Bonatti and Peron showed
that satisfiability is undecidable in the fully enriched μ-calculus. On the other
hand, the satisfiability problem for interesting fragments of the fully enriched μ-
calculus has been showed to be decidable and ExpTime-complete. In particular,
it has been showed for the fragments of the fully enriched μ-calculus obtained by
dropping at least one of graded modalities (fully hybrid μ-calculus)[SV01], nom-
inals (full graded μ-calculus) [BLMV06], and inverse programs (hybrid graded

Enriched µ-Calculi Module Checking 185

Inverse progr. Graded mod. Nominals Complexity

fully enriched µ-calculus x x x undecidable
full graded µ-calculus x x ExpTime
full hybrid µ-calculus x x ExpTime
hybrid graded µ-calculus x x ExpTime

Fig. 1. Enriched µ-calculi and known results

μ-calculus)[BLMV06]. These enriched μ-calculi are shown in Fig. 1 together
with the complexity of their satisfiability problem.

The above decidability results are based on an automata-theoretic approach
via fully enriched automata (FEAs), which run on infinite forests and use a
parity acceptance condition. Intuitively, these automata generalize alternating
automata on infinite trees in a similar way as the fully enriched μ-calculus ex-
tends the standard μ-calculus: FEAs can move up to a node’s predecessor (by
analogy with inverse programs), move down to at least n or all but n successors
(by analogy with graded modalities), and jump directly to the roots of the input
forest (which are the analogues of nominals). The decidability results follow from
the fact that all the above fragments enjoy the forest model property (while some
of them do not enjoy neither the tree model property nor the finite model prop-
erty), and from the fact that the emptiness problem for fully enriched automata
is decidable and ExpTime-complete. Observe that decidability of the emptiness
problem for FEAs does not contradict the undecidability of the fully enriched
μ-calculus: the latter does not enjoy a forest model property [BP04], and hence
satisfiability cannot be decided using forest-based FEAs.

In this paper, we extend the module checking problem for finite-state systems
to the fully enriched μ-calculus and we show that this problem is undecidable.
To gain this result, we use a reduction from the domino problem [Ber66], known
to be undecidable, by extending an idea due to Bonatti and Peron in [BP04].

Moreover, we consider the problem of module checking for the fragments of the
full calculus as listed in Fig. 1. That is, we consider the module checking problem
whit respect to formulas of the fully hybrid, full graded, and hybrid graded μ-
calculus. We show that in all the above frameworks, the module checking problem
is decidable and ExpTime-complete. For the upper bound, we use an automata-
theoretic approach via FEA. In more details, given a model M and a formula ϕ,
we first build a Büchi automaton AM , accepting exec(M). In particular, since
M requires to be unwound in a forest rather then a tree (since all the fragments
we consider enjoy the forest model property, while those including nominals do
not enjoy the tree model property), the set exec(M) is a set of forests, and thus,
AM is a Büchi automaton running on forests (BFA, for short). Then, accordingly
to [SV01] and [BLMV06], we build a FEA A¬ϕ accepting all models of ¬ϕ, with
the intent to check that no models of ¬ϕ are in exec(M). Thus, we check that
M |=r ϕ by checking whether L(AM) ∩ L(A¬ϕ) is empty. The results follow
from the fact that BFAs are a particular case of FEAs, which are closed under
intersection and have the emptiness problem solvable in ExpTime [BLMV06].

186 A. Ferrante and A. Murano

We also show a lower bound matching the obtained upper bound by using a
reduction from the module checking for CTL, known to be ExpTime-hard.

2 Preliminaries

Labeled Forests. For a finite set X , we denote the set of finite words over X
by X∗, the empty word by ε, and with X+ we denote X∗ \ {ε}. Given a word
w in X∗ and a symbol x of X , we use w · x to denote the word wx. Let IN be
the set of positive integers. For n ∈ IN, let N be denote the set {1, 2, . . . , n}.
A forest is a set F ⊆ N

+ such that if x · c ∈ F where x ∈ N
+ and c ∈ N,

then also x ∈ F . The elements of F are called nodes, and the strings consisting
of a single natural number are the roots of F . For each root r ∈ F , the set
T = {r · x | x ∈ N

∗ and r · x ∈ F} is a tree of F (the tree rooted in r). For
every x ∈ F , the nodes x · c ∈ F where c ∈ N are the successors of x, denoted
children(x), and x is their predecessor. The number of successors of a node x is
called the branching degree of x, and is denoted by bd(x). The degree of a forest
is the maximum of the degrees of a node in the forest and the number of roots.

Let F ⊆ N
+ be a forest and x a node in F . As a convention, we take x · ε = x,

(x · c) · −1 = x, and n · −1 as undefined, for n ∈ N. We call x a leaf if it has
no successors. A path π in F is a word π = a1a2 . . . of F such that a1 is a
root of F and for every ai ∈ π, either ai is a leaf (i.e., π ends in ai) or ai is a
predecessor of ai+1. Given two alphabets Σ1 and Σ2, a (Σ1, Σ2)-labeled forest
is a triple 〈F, V, E〉, where F is a forest, V : F → Σ1 maps each node of F to
a letter in Σ1, and E : F × F → Σ2 is a partial function that maps each pair
(x, y), with y ∈ children(x), to a letter in Σ2. As a particular case, we consider
a forest without labels on edges as a Σ1-labeled forest 〈F, V 〉, and a tree as a
forest containing exactly one tree.

A quasi-forest is a forest where each node may also have roots as successors.
Thus, for each node x of a quasi-forest F ⊆ N

+, we denote with successor(x)
the successors of x and children(x) = successor(x)\N. All the other definitions
regarding forests easily extend to quasi-forest. Notice that in a quasi-forest, a
root can also have several predecessors, while every other node has always a
unique one. Clearly, a quasi-forest can be always transformed in a forest by
removing root successors.

Enriched Automata. For a given set Y , let B+(Y) be the set of positive
Boolean formulas over Y (i.e., Boolean formulas built from elements in Y using
∧ and ∨), where we also allow the formulas true and false and ∧ has precedence
over ∨. For a set X ⊆ Y and a formula θ ∈ B+(Y), we say that X satisfies θ
iff assigning true to elements in X and assigning false to elements in Y \ X
makes θ true. For b > 0, let 〈[b]〉 = {〈0〉, 〈1〉, . . . , 〈b〉}, [[b]] = {[0], [1], . . . , [b]},
and Db = 〈[b]〉 ∪ [[b]] ∪ {−1, ε, 〈root〉, [root]}.

A fully enriched automaton is an automaton in which the transition function
δ maps a state q and a letter σ to a formula in B+(Db×Q). Intuitively, an atom
(〈n〉, q) (resp., ([n], q)) means that the automaton sends copies in state q to n+1

Enriched µ-Calculi Module Checking 187

(resp., all but n) different successors of the current node, (ε, q) means that the
automaton sends a copy (in state q) to the current node, (−1, q) means that the
automaton sends a copy to the predecessor of the current node, and (〈root〉, q)
and ([root], q) mean that the automaton sends a copy to some, respectively all
of the roots of the forest. When, for instance, the automaton is in state q, reads
a node x, and δ(q, V (x)) = (−1, q1) ∧ ((〈root〉, q2) ∨ ([root], q3)), it sends a copy
in state q1 to the predecessor and either sends a copy in state q2 to one of the
roots or a copy in state q3 to all roots.

Formally, a fully enriched automaton (FEA, for short) is a tuple A = 〈Σ, b,
Q, δ, Q0, F〉, where Σ is the input alphabet, b > 0 is a counting bound, Q is a
finite set of states, δ : Q × Σ → B+(Db × Q) is a transition function, Q0 ⊆ Q
is a set of initial states, and F is the acceptance condition. A run of A on an
input Σ-labeled forest 〈F, V 〉 is a tree 〈Tr, r〉 in which each node is labeled by
an element of F ×Q. Intuitively, a node in Tr labeled by (x, q) describes a copy
of the automaton in state q that reads the node x of F . Runs start in the initial
state and satisfy the transition relation. Thus, a run 〈Tr, r〉 with root z has to
satisfy the following: (i) r(z) = (c, q0) for some root c of F and q0 ∈ Q0 (ii) for
all y ∈ Tr with r(y) = (x, q) and δ(q, V (x)) = θ, there is a (possibly empty) set
S ⊆ Db ×Q, such that S satisfies θ, and for all (d, s) ∈ S, the following hold:

– If d ∈ {−1, ε}, then x · d is defined and there is j ∈ N such that y · j ∈ Tr

and r(y · j) = (x · d, s);
– If d = 〈n〉, then there are distinct i1, . . . , in+1 ∈ N such that for all 1 ≤ j ≤

n+1, there is j′ ∈ N such that y · j′ ∈ Tr, x · ij ∈ F , and r(y · j′) = (x · ij , s);
– If d = [n], then there are distinct i1 . . . , ibd(x)−n ∈ N such that for all 1 ≤ j ≤

bd(x)−n, there is j′ ∈ N such that y·j′ ∈ Tr, x·ij ∈ F , and r(y·j′) = (x·ij , s);
– If d = 〈root〉, then for some root c ∈ F and some j ∈ N such that y · j ∈ Tr,

it holds that r(y · j) = (c, s);
– If d = [root], then for all roots c ∈ F there exists j ∈ N such that y · j ∈ Tr

and r(y · j) = (c, s).

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condi-
tion. We consider here the parity acceptance condition, where F = {F1, . . . , Fk}
is such that F1 ⊆ . . . ⊆ Fk = Q. The number k of sets in F is called the index of
the automaton. Given a run 〈Tr, r〉 and an infinite path π ⊆ Tr, let Inf (π) ⊆ Q be
such that q ∈ Inf (π) iff there are infinitely many y ∈ π for which r(y) ∈ F ×{q}.
A path π satisfies a parity acceptance condition F = {F1, . . . , Fk} iff there is an
even i for which Inf (π)∩Fi �= ∅ and Inf (π)∩Fi−1 = ∅. An automaton accepts a
forest iff there exists an accepting run of the automaton on the forest. We denote
by L(A) the set of all Σ-labeled forests that A accepts. The emptiness problem
for FEAs is to decide, given a FEA A, whether L(A) = ∅. In the following
theorem we recall the exact complexity of this decision problem.

Theorem 1. [BLMV06] The nonemptiness problem for a fully enriched au-
tomaton A = 〈Σ, b, Q, δ, Q0,F〉 can be solved in time linear in the size of Σ
and b, and exponential in the index of the automaton and number of states.

The following results on FEAs will be useful in the rest of the paper.

188 A. Ferrante and A. Murano

Lemma 1. [BLMV06] Given two FEAs A1 and A2, there exists a FEA A such
that L(A) = L(A1) ∩ L(A2) and whose size is linear in the size of A1 and A2.

As a particular case of FEA, we consider nondeterministic Büchi Automata
running on forests (BFA, for short). Formally, a BFA is a tuple A = 〈Σ, D,
Q, δ, Q0, F〉, where Σ, Q, and Q0 are defined as in FEA, D is a finite set
of branching degrees, F ⊆ Q is a Büchi acceptance condition, and δ : Q ×
Σ × D2 → 2Q∗×(Q×Root)∗ is the transition relation satisfying δ(q, σ, d1, d2) ∈
2Qd1×(Q×Root)d2 , for every q ∈ Q, σ ∈ Σ and d1, d2 ∈ D.

A run of A on an input Σ-labeled forest 〈F, V 〉 of branching degree D is a
tree 〈Tr, r〉 in which each node is labeled by an element of F × Q. Formally,
〈Tr, r〉 is a run if r(z) = (Q0, z), for some root z of F and q0 ∈ Q0, and for all
y ∈ Tr labeled with (q, x), having d successors where d2 are roots successors and
d1 are the remaining ones, we have that r(y · i) = 〈qi, x · i〉 for all 1 ≤ i ≤ d1,
r(y · (d1 + i)) = 〈qd1+i, xi〉 for all 1 ≤ i ≤ d2 and 〈〈q1, . . . , qd1〉, 〈r(y · (d1 +
1)), . . . , r(y ·d)〉〉 ∈ δ(q, V (x), d1, d2). A run 〈F, V 〉 of a BFA is accepting if for all
paths π of Tr, we have that Inf(π)∩F �= ∅. Notice that F can be also expressed
as the particular parity condition {∅,F}.

3 Fully Enriched μ-Calculus

Let AP , Var , Prog , and Nom be finite and pairwise disjoint sets of atomic
propositions, propositional variables, atomic programs, and nominals. A program
is an atomic program a or its converse a−. The set of formulas of the fully
enriched μ-calculus is the smallest set such that (i) true and false are formulas;
(ii) p and ¬p, for p ∈ AP ∪ Nom , are formulas; (iii) x ∈ Var is a formula; (iv)
if ϕ1 and ϕ2 are formulas, α is a program, n is a non-negative integer, and y
is a propositional variable, then the following are also formulas: ϕ1 ∨ ϕ2, ϕ1 ∧
ϕ2, 〈n, α〉ϕ1, [n, α]ϕ1, μy.ϕ1(y), and νy.ϕ1(y).

Observe that we use positive normal form, i.e., negation is applied only to
atomic propositions. We call μ and ν fixpoint operators and use λ to denote a
fixpoint operator μ or ν. A propositional variable y occurs free in a formula if it
is not in the scope of a fixpoint operator, and bound otherwise. A sentence is a
formula that contains no free variables. We refer often to the graded modalities
〈n, α〉ϕ1 and [n, α]ϕ1 as atleast formulas and allbut formulas and assume that
the integers in these operators are given in binary coding: the contribution of n
to the length of the formulas 〈n, α〉ϕ and [n, α]ϕ is �log n� rather than n. We
refer to fragments of the fully enriched μ-calculus using the names from Fig. 1.
Hence, we say that a formula ϕ of the fully enriched μ-calculus is also a formula
of the hybrid graded, full hybrid, or full graded μ-calculus if ϕ does not have
inverse programs, graded modalities, or nominals, respectively. If at least one
of the above holds, we also say that ϕ is an enriched μ-calculus formula. To
avoid confusion, we observe that enriched formulas are also formulas of the full
calculus, while the converse is not always true. We recall that enriched formulas
enjoy the forest model property (as showed in [BLMV06] and [SV01]), while fully
enriched formulas does not [BP04].

Enriched µ-Calculi Module Checking 189

The semantics of the fully enriched μ-calculus is defined with respect to a
Kripke structure, i.e., a tuple K = 〈W, W0, R, L〉 where W is a non-empty set
of states, W0 ⊆ W is the set of initial states, R : Prog → 2W×W is a total
function (i.e., for each v ∈ W there is a program a ∈ Prog and a node w such
that (v, w) ∈ R(a)) that assigns to each atomic program a transition relation
over W , and L : AP ∪ Nom → 2W is a labeling function that assigns to each
atomic proposition and nominal a set of states such that the sets assigned to
nominals are singletons and subsets of W0. To deal with inverse programs, we
extend R as follows: for each a ∈ Prog , set R(a−) = {(v, u) : (u, v) ∈ R(a)}.
If (w, w′) ∈ R(α), we say that w′ is an α-successor of w. Informally, an atleast
formula 〈n, α〉ϕ holds at a state w of a Kripke structure K if ϕ holds at least
in n + 1 α-successors of w. Dually, the allbut formula [n, α]ϕ holds in a state w
of a Kripke structure K if ϕ holds in all but at most n α-successors of w. Note
that ¬〈n, α〉ϕ is equivalent to [n, α]¬ϕ, and that the modalities 〈α〉ϕ and [α]ϕ
of the standard μ-calculus can be expressed as 〈0, α〉ϕ and [0, α]ϕ, respectively.

To formalize semantics, we introduce valuations. Given a Kripke structure
K = 〈W, W0, R, L〉 and a set {y1, . . . , yn} of variables in Var , a valuation V :
{y1, . . . , yn} → 2W is an assignment of subsets of W to the variables y1, . . . , yn.
For a valuation V , a variable y, and a set W ′ ⊆ W , we denote by V [y ← W ′]
the valuation obtained from V by assigning W ′ to y. A formula ϕ with free
variables among y1, . . . , yn is interpreted over the structure K as a mapping ϕK

from valuations to 2W , i.e., ϕK(V) denotes the set of points that satisfy ϕ under
valuation V . The mapping ϕK is defined inductively as follows:

– trueK(V) = W and falseK(V) = ∅;
– for p ∈ AP ∪ Nom, we have pK(V) = L(p) and (¬p)K(V) = W \ L(p);
– for y ∈ Var , we have yK(V) = V(y);
– (ϕ1 ∧ ϕ2)K(V) = ϕK

1 (V) ∩ ϕK
2 (V) and (ϕ1 ∨ ϕ2)K(V) = ϕK

1 (V) ∪ ϕK
2 (V);

– (〈n, α〉ϕ)K (V)={w : |{w′ ∈W : (w, w′) ∈ R(α) and w′∈ϕK(V)}| ≥ n + 1};
– ([n, α]ϕ)K(V) = {w : |{w′ ∈ W : (w, w′) ∈ R(α) and w′ �∈ ϕK(V)}| ≤ n};
– (μy.ϕ(y))k(V) =

⋂{W ′ ⊆W : ϕK([y ←W ′]) ⊆W ′};
– (νy.ϕ(y))k(V) =

⋃{W ′ ⊆W : W ′ ⊆ ϕK([y ←W ′])}.
Notice that α used in the previous graded modalities is a program, i.e., α can

be either an atomic program or its converse. Also, notice that no valuation is
required for a sentence. Let K = 〈W, W0, R, L〉 be a Kripke structure and ϕ a
sentence. For a state w ∈W , we say that K satisfies ϕ at w, denoted K, w |= ϕ,
if w ∈ ϕK . K is a model of ϕ if there is a w ∈ W0 such that K, w |= ϕ. In what
follows, a formula ϕ counts up to b if the maximal integer in atleast and allbut
restrictions used in ϕ is b− 1.

Given a formula ϕ of the enriched μ-calculus, accordingly to the forest model
property, we can define a FEA accepting all forest models of ϕ. Before giving
this result, there is a technical difficulty to be overcome: ϕ has quasi-forests
as models, with labels on both edges and nodes, while FEAs can only accept
forests with labels on nodes. This problem can be dealt in the following way.
First, we move the label of each edge to the target node of the edge. For this
purpose, we introduce a new propositional symbol pα for each program α. Thus,

190 A. Ferrante and A. Murano

for each quasi-forest model 〈F, V, E〉, we consider the corresponding quasi-forest
〈F, V ′〉 obtained by removing labeling on the edges and using as labeling of nodes
the extended labeling function V ′(w) = V (w) ∪ {pα | E(v, w) = α}. Then, to
solve the problem of edges to the roots in quasi-forests models, we introduce in
node labels new propositional symbols ↑αo (not occurring in the input formula)
that represent an α-labeled edge from the current node to the (unique) root
node labeled by nominal o. We call the new labeling function V ∗, and with
〈F, V ∗〉 we denote the forest encoding of the quasi-forest model 〈F, V, E〉. A
forest 〈F, V ∗〉 can also be considered as a particular Kripke structure by letting
the total property holding in 〈F, V ∗〉 if all leaves have a propositional symbol ↑αo
in their labels. Now we can give the following result.

Lemma 2. [SV01, BLMV06] Given a sentence ϕ of the enriched μ-calculus
that has � atleast subsentences, counts up to b, and contains k nominals, we
can construct a FEA Aϕ such that it accepts exactly the forest encodings of the
quasi-forest models of ϕ having degree at most max{k + 1, �(b + 1)}, and such
that it has O(|ϕ|2) states, index |ϕ|, and counting bound b.

4 Enriched μ-Calculus Module Checking

In this paper we consider open systems, i.e., systems that interact with their
environment and whose behavior depends on this interaction. The (global) be-
havior of such a system is described by a module M = 〈Ws, We, W0, R, L〉, which
is a Kripke structure where the set of states W = Ws ∪We is partitioned in a
set of system states Ws and a set of environment states We.

Given a module M , we assume that its states are ordered and the number of
successors of each state w, denoted by bd(w), is finite, and W is considered to be
finite. For each state w ∈ W , we denote by succ(w) the ordered tuple (possibly
empty) of w’s successors. When the module M is in a system state ws, then all
the states in succ(ws) are possible next states. On the other hand, when M is
in an environment state we, then the possible next states (that are in succ(we))
depend on the current environment. Since the behavior of the environment is
not predictable, we have to consider all the possible sub-tuples of succ(we). The
only constraint, since we consider environments that cannot block the system,
is that not all the transitions from we are disabled.

The set of all (maximal) computations of M starting from the initial states W0

is described by a (W, Prog)-labeled quasi-forest 〈FM , VM , EM 〉, called computa-
tion quasi-forest, which is obtained by unwinding M in the usual way. The prob-
lem of deciding, for a given branching-time formula ϕ over AP ∪Nom, whether
〈FM , L ◦VM , EM 〉 satisfies ϕ, denoted M |= ϕ, is the usual model-checking prob-
lem [CE81, QS81]. On the other hand, for an open system, 〈FM , VM , EM 〉 cor-
responds to a very specific environment, i.e., a maximal environment that never
restricts the set of its next states. Therefore, when we examine a branching-time
specification ϕ w.r.t. a module M , ϕ should hold not only in 〈FM , VM , EM 〉,
but in all the quasi forests obtained by pruning from 〈FM , VM , EM 〉 subtrees
whose root is a child (successor) of a node corresponding to an environment

Enriched µ-Calculi Module Checking 191

state, as well as inhibiting some of its jumps to roots, if there are any. The set
of these quasi forests is denoted by exec(M), and is formally defined as follows.
〈F, V, E〉 ∈ exec(M) iff for each wi ∈ W0, we have V (i) = wi, and the following
holds:

– For x ∈ F with V (x) = w ∈ Ws, succ(w) = 〈w1, . . . , wn, wn+1, . . . , wn+m〉,
and succ(w) ∩W0 = 〈wn+1, . . . , wn+m〉, it holds that
• children(x) = {x · 1, . . . , x · n} and for 1 ≤ i ≤ n, V (x · i) = wi, and

E(x, x · i) = α if (w, wi) ∈ R(α);
• for 1 ≤ i ≤ m, let xi ∈ N such that V (xi) = wn+i, it holds that

E(x, xi) = α if (w, wn+i) ∈ R(α);
– For x ∈ F with V (x) = w ∈ We it holds that there exists a sub-tuple

S = 〈wi1 , . . . , wip , wip+1 , . . . , wip+q〉 of succ(w) with p + q ≥ 1, S ∩W0 =
〈wip+1 , . . . , wip+q〉 and such that
• children(x) = {x · 1, . . . , x · p} and for 1 ≤ j ≤ p, V (x · j) = wij , and

E(x, x · j) = α if (w, wij) ∈ R(α);
• for 1 ≤ j ≤ q, let xj ∈ N such that V (xj) = wip+j , it holds that

E(x, xj) = α if (w, wip+j) ∈ R(α);

Intuitively, a quasi-forest in exec(M) corresponds to a different behavior of the
environment. In the following, we consider quasi-forests in exec(M) as (2AP∪Nom,
Prog)-labeled quasi-forests, i.e., taking the label of a node x to be L(V (x)).

For a module M and a formula ϕ of the enriched μ-calculus we say that
M satisfies ϕ, denoted M |=r ϕ, if all the quasi forests in exec(M) satisfy ϕ.
The problem of deciding whether M satisfies ϕ is called module checking, and
extends to forests the analogously problem defined in [KVW01] regarding trees.
Note that M |=r ϕ implies M |= ϕ, but the converse in general does not hold.
Also, note that M �|=r ϕ is not equivalent to M |=r ¬ϕ, since M �|=r ϕ just states
that there is some quasi forest in exec(M) satisfying ¬ϕ.

5 Deciding Enriched μ-Calculus Module Checking

In this section, we solve the module checking problem for the enriched μ-calculus.
In particular, we show that this problem is decidable and ExpTime-complete.
For the upper bound, we give an algorithm based on an automata-theoretic
approach, by extending to forests and idea of [KVW01]. For the lower bound,
we give a reduction from the module checking problem for CTL, known to be
ExpTime-hard. We start with the upper bound.

Let M be a module and ϕ an enriched μ-calculus formula. We decide the
module-checking problem for M against ϕ by building a FEA AM×¬ϕ as the
intersection of two automata. Essentially, the first automaton, denoted by AM ,
is a Büchi automaton that accepts forests encoding of labeled quasi-forests of
exec(M), and the second automaton is a FEA that accepts all the forests encod-
ing of labeled quasi-forests that do not satisfy ϕ. Thus, M |=r ϕ iff L(AM×¬ϕ)
is empty.

192 A. Ferrante and A. Murano

The construction of AM proposed here extends that given in [KVW01] for
solving the module checking problem with respect to CTL and CTL∗. The ex-
tension concerns the handling of forest models instead of trees and formulas
of the enriched μ-calculus. Before starting, there are few technical difficulties
to be overcome. First, we notice that exec(M) contains quasi-forests, with la-
bels on both edges and nodes, while Büchi automata can only accept forests
with labels on nodes. This problem can be dealt as we did in Section 3 by
moving the label of each edge to the target node of the edge (formally us-
ing a new propositional symbol pα, for each program α) and by substituting
edges to roots with new propositional symbols ↑αo (which represent an α-labeled
edge from the current node to the unique root node labeled by nominal o).
Let AP ∗ = AP ∪ {pα | α ∈ Prog} ∪ {↑αo | α ∈ Prog and o ∈ Nom}, we
denote with 〈F, V ∗〉 the 2AP∗∪Nom-labeled forest encoding of a quasi-forest
〈F, V, E〉 ∈ exec(M), obtained using the above transformations.

Another technical difficulty to handle is relate to the fact that quasi-forests
of exec(M) (and thus their encoding) may not share the same structure, since
they are obtained by pruning some subtrees from the computation quasi-forest
〈FM , VM , EM 〉 of M . Let 〈FM , V ∗

M 〉 the computation forest of M obtained from
〈FM , VM , EM 〉 using the above encoding. By extending an idea of [KVW01], we
solve the technical problem by considering each forest 〈F, V ∗〉, encoding of a
quasi-forest of exec(M), as a 2AP∗∪Nom ∪ {⊥}-labeled forest 〈FM , V ∗∗〉 (where
⊥ is a fresh proposition name not belonging to AP ∪Nom) such that for each
node x ∈ FM , if x ∈ F then V ∗∗(x) = V ∗(x), otherwise V ∗∗(x) = {⊥}. Thus,
we label each node pruned in the 〈FM , V ∗

M 〉 with {⊥} and recursively, we label
with {⊥} its subtrees. In this way, all forests encoding quasi-forests of exec(M)
have the same structure of 〈FM , V ∗

M 〉, and they differ only in their labeling.
Accordingly we can think of an environment as a strategy for placing {⊥} in
〈FM , V ∗∗〉. Moreover, the environment can also disable jumps to roots. This
is performed by removing from enabled environment nodes some of ↑αo labels.
Notice that since we consider environments that do not block the system, each
node associated with an environment state has at least one successor not labeled
by {⊥}, unless it has ↑αo in its label.

Let us denote by êxec(M) the set of all 2AP∗∪Nom ∪ {⊥}-labeled 〈FM , V ∗∗〉
forests obtained from 〈F, V, E〉 ∈ exec(M) in the above described manner.
The required BFA AM must accept all and only the 2AP∗∪Nom ∪ {⊥}-labeled
forests in êxec(M). Formally, let M = 〈Ws, We, W0, R, L〉 be a module, AM =
〈Σ, D, Q, δ, Q0,F〉 is defined as follows:

– Σ = 2AP∗∪Nom ∪ {⊥};
– D =

⋃
w∈W bd(w). That is D contains all the branching degrees in M .

– Q = W × {⊥,�,�}. Thus every node w of M induces three states (w,⊥),
(w,�), and (w,�) in AM . Intuitively, when AM is in state (w,⊥), it can read
only ⊥, in state (w,�), it can read only letters in 2AP∗∪ Nom, and in state
(w,�), then it can read both letters in 2AP∗∪Nom and ⊥. In this last case,
it is left to the environment to decide whether the transition to a state of
the form (w,�) is enabled. The three types of states are used to ensure that

Enriched µ-Calculi Module Checking 193

the environment enables all transitions from enabled system nodes, enables
at least one transition from each enabled environment node, and disables
transitions from disabled nodes.

– Q0 = {〈wi,�〉 | wi ∈W0}.
– The transition function δ : Q × Σ × D2 → 2Q∗×(Q×Root)∗ is defined as

follows. Let x ∈ F such that V (x) = w, succ(w) = 〈w1, . . . , wn, w′
1, . . . , w

′
m〉,

succ(w) ∩W0 = 〈w′
1, . . . , w

′
m〉, and there exist j1, . . . , jm such that V (jh) =

w′
h, for 1 ≤ h ≤ m, then:
• For w ∈We ∪Ws and g ∈ {�,⊥} we have

δ((w, g),⊥, n, 0) = {〈〈(w1,⊥), . . . , (wn,⊥)〉, 〈∅〉〉}

That is, δ((w, g),⊥) contains exactly one n-tuple of all successors of w
without jumps to roots. In this case, all transitions to successors of w
are recursively disabled.
• For w ∈Ws and g ∈ {�,�} we have

δ((w, g), L(w), n, m) = 〈 〈(w1,�), . . . , (wn,�)〉,
〈(〈w′

1, j1〉,�), . . . , (〈w′
m, jm〉,�)〉 〉}.

That is, δ((w, g), m) contains exactly one (n+m)-tuple of all successors of
w, containing m jumps to roots. In this case all transitions to successors
of w are enabled.
• For w ∈ We and g ∈ {�,�}, let J = {↑αo | α ∈ Prog and o ∈ Nom} and

X ⊆ L(w) such that (X \ J) = (L(w) \ J), (i.e., X may have less jumps
to roots of L(w)), we have
∗ For X ∩ J = ∅ we have

δ((w, g), X, n, 0) = { 〈(w1,�), (w2,�), . . . , (wn,�)〉,
〈(w1,�), (w2,�), . . . , (wn,�)〉,

...
〈(w1,�), (w2,�), . . . , (wn,�)〉}.

That is, δ((w, g), X, n, 0) contains n different n-tuples of all succes-
sors of w, without jumps to roots. When AM proceeds according to
the ith tuple, the environment can disable all transitions to succes-
sors of w, except that to wi.
∗ For X ∩ J = {↑α1

o1
, . . . ↑αs

os
} with s ≥ 1, let 〈w′

j1 . . . w′
js
〉 a subtuple of

〈w′
1 . . . w′

m〉 such that oi ∈ L(w′
ji

), we have

δ((w, g), X, n, s) = { 〈 〈(w1,�), . . . , (wn,�)〉,
〈(〈w′

j1 , j1〉,�), . . . , (〈w′
js

, js〉,�)〉 〉

That is, δ((w, g), X, n, s) contains one (n + s)-tuple of successors of
w, where the first n are all not root successors of w and they can be
successively disabled.

194 A. Ferrante and A. Murano

Notice that δ is not defined when n is different from the number of successors of
w that are not jumps to roots, and when the input does not meet the restriction
imposed by the �, �, and ⊥ annotations or by the labeling of w.

The automaton AM has 3 · |W | states, 2|AP |·|R| symbols, and the size of the
transition relation |δ| is bounded by |R|(|W | · 2|R|).

We recall that a node labeled by {⊥} stands for a node that actually does
not exist. Thus, we have to take this into account when we interpret formulas
of the enriched μ-calculus over forests 〈FM , V ∗〉 ∈ êxec(M). In order to achieve
this, as in [KVW01] we define a function f that transforms the input formula
in a formula of the enriched μ-calculus that restricts path quantification to only
paths that never visit a state labeled with {⊥}. The function f we consider
extends that given in [KVW01] and is inductively defined as follows:

– f(true) = true and f(false) = false;
– f(p) = p and f(¬p) = ¬p for all p ∈ AP ∪Nom;
– f(x) = x for all x ∈ V ar;
– f(ϕ1 ∨ϕ2) = f(ϕ1)∨ f(ϕ2) and f(ϕ1 ∧ϕ2) = f(ϕ1)∧ f(ϕ2) for all enriched

μ-calculus formulas ϕ1 and ϕ2;
– f(μx.ϕ(x)) = μx.f(ϕ(x)) and f(νx.ϕ(x)) = νx.f(ϕ(x)) for all x ∈ V ar and

enriched μ-calculus formulas ϕ;
– f(〈n, α〉ϕ) = 〈n, α〉(¬⊥ ∧ f(ϕ)) for n ∈ IN and for all programs α and

enriched μ-calculus formulas ϕ;
– f([n, α]ϕ) = [n, α](¬⊥∧f(ϕ)) for n ∈ IN and for all programs α and enriched

μ-calculus formulas ϕ.

Note that the programs α in the previous definition of f can be either an
atomic program a ∈ Prog or its converse a−. By definition of f , it follows that
for each formula ϕ and 〈F, V 〉 ∈ êxec(M), 〈F, V 〉 satisfies f(ϕ) iff the 2AP∗∪Nom-
labeled tree obtained from 〈F, V 〉 removing all the nodes labeled by {⊥} satisfies
ϕ. Therefore, the module checking problem of M against an enriched μ-calculus
formula ϕ is reduced to check the existence of a forest 〈F, V 〉 ∈ êxec(M) =
L(AM) satisfying f(¬ϕ) (note that |f(¬ϕ)| = O(|¬ϕ|)). We reduce the latter
to check the emptiness of a FEA AM×¬ϕ that is defined as the intersection of
the BFA AM with a FEA A¬ϕ accepting exactly the 2AP∗∪Nom ∪ {⊥} forests
encodings of quasi-forest models of f(¬ϕ). By Lemma 2, if ϕ is an enriched μ-
calculus formula, then A¬ϕ has O(|ϕ|2) states, index |ϕ|, and counting bound
b. Therefore, by Lemma 1, AM×¬ϕ has O(|W | + |ϕ|2) states, index |ϕ|, and
counting bound b. We recall that, by Theorem 1, given a FEA, the emptiness
is exponential only in its number of states and index, thus we have algorithm
to decide the module checking problem for enriched μ-calculus formulas that is
exponential both in the size of the module and the size of the formula.

To show a tight lower bound we recall that CTL module checking is ExpTime-
hard [KVW01] and every CTL formula can be linearly transformed in a modal
μ-calculus formula [Zap02]. This leads to the module checking problem w.r.t.
modal μ-calculus formulas to be ExpTime-hard and thus to the following result

Theorem 2. The module checking problem with respect to enriched μ-calculus
formulas is ExpTime-complete.

Enriched µ-Calculi Module Checking 195

6 Fully Enriched μ-Calculus Module Checking

In this section, we deal with the module checking problem for the fully enriched
μ-calculus and we show that it is undecidable.

Let us note that, since the fully enriched μ-calculus does not enjoy the forest
model property [BP04], we cannot unwind a Kripke structure in a forest. How-
ever, it is always possible to unwind it in an equivalent acyclic graph that we
call computation graph. In order to take into account all the possible behaviors
of the environment, we consider all the possible subgraphs of the computation
graph obtained disabling some transitions from environment nodes but one. We
denote with graphs(M) the set of this graphs. Given a fully enriched μ-calculus
formula ϕ, we have that M |=r ϕ iff K |= ϕ for all K ∈ graphs(M).

To show the undecidability of the addressed problem, we need some further
definitions. An (infinite) grid is a tuple G = 〈IN2, h, v〉 such that h and v are
defined as h(〈x, y〉) = 〈x + 1, y〉 and v(〈x, y〉) = 〈x, y + 1〉. Given a finite set of
types T , we will call tiling on T a function ρ̂ : IN2 → T that associates a type
from T to each vertex of an infinite grid G, and we call tiled infinite grid the
tuple 〈G, T, ρ̂〉. A grid model is an infinite Kripke structure K = 〈W, {w0}, R, L〉,
on the set of atomic programs Prog = {l−, v}, such that K can be mapped on
a grid in such a way that w0 corresponds to the vertex 〈0, 0〉, R(v) corresponds
to v and R(l−) corresponds to h. We say that a grid model K “corresponds” to
a tiled infinite grid 〈G, T, ρ̂〉 if every state of K is labeled with only one atomic
proposition (and zero or more nominals) and there exists a bijective function
ρ : T → AP such that, if wx,y is the state of K corresponding with the node
〈x, y〉 of G, then ρ(ρ̂(〈x, y〉)) ∈ L(wx,y).

Theorem 3. The module checking problem for fully enriched μ-calculus is un-
decidable.

Proof sketch. To show the result, we use a reduction from the domino problem,
known to be undecidable [Ber66]. The domino problem is defined as follows.

Let T be a finite set of types, and H, V ⊆ T 2 be two relations describing the
types that cannot be vertically and horizontally adjacent in an infinite grid. The
domino problem is to decide whether there exists a tiled infinite grid 〈G, T, ρ̂〉
such that ρ̂ preserves the relations H and V . We call such a tiling function a
legal tiling for G on T .

In [BP04], Bonatti and Peron showed undecidability for the satisfiability prob-
lem for fully enriched μ-calculus by also using a reduction from the domino
problem. Hence, given a set of types T and relations H and V , they build a
(alternation free) fully enriched μ-calculus formula ϕ such that ϕ is satisfiable
iff the domino problem has a solution in a tiled infinite grid, with a legal tiling
ρ on T (with respect to H and V). In particular, the formula they build can be
only satisfiable on a grid model K corresponding to a tiled infinite grid with a
legal tiling ρ on T . In the reduction we propose here, we use the formula ϕ used
in [BP04]. It remains to define the module.

Let {G1, G2, . . .} be the set of all the infinite tiled grids on T (i.e., Gi =
〈G, T, ρ̂i〉), we build a module M such that graphs(M) contains, for each i ≥ 1,

196 A. Ferrante and A. Murano

a grid models corresponding to Gi. Therefore, we can decide the domino problem
by checking whether M |=r ¬ϕ. Indeed, if M |=r ¬ϕ, then all grid models
corresponding to Gi do not satisfy ϕ and, therefore, there is no solution for the
domino problem. On the other side, if M �|=r ¬ϕ, then there exists a model for
ϕ; since ϕ can be satisfied only on a grid model corresponding to a tiled infinite
grid with a legal tiling on T with respect to H and V , we have that the domino
problem has a solution.

Formally, let T = {t1, . . . , tm} be the set of types, the module M = 〈Ws, We,
W0, R, L〉 with respect to atomic programs Prog = {l−, v}, atomic propositions
AP = T , and nominals Nom = {o1, . . . , om}, is defined as follows:

• Ws = ∅, We = {x1, . . . , xm, y1, . . . , ym} and W0 = {x1, . . . , xm};
• for all i ∈ {1, . . .m}, L(ti) = {xi, yi} and L(oi) = {xi};
• R(v) = {〈xi, xj〉|i, j ∈ {1, . . . , m}}∪ {〈yi, yj〉|i, j ∈ {1, . . . , m}} and R(l−) =
{〈xi, yj〉|i, j ∈ {1, . . . , m}} ∪ {〈yi, xj〉|i, j ∈ {1, . . . , m}}

Notice that we duplicate the set of nodes labeled with tiles since we cannot
have pairs of nodes in M labeled with more than one atomic program (in our
case, with both v and l−). Moreover the choice of labeling nodes xi with nominals
is arbitrary. Finally, from the fact that the module contains only environment
nodes, it immediately follows that, for each i, the grid model corresponding to
the infinite tiled grid Gi is contained in graphs(M). ��

7 Conclusions

In [KVW01], module checking has been introduced as a useful framework for the
verification of open finite-state systems. There, it has been shown that while for
LTL the complexity of the model checking problem coincides with that of mod-
ule checking (i.e., it is Pspace-complete), for the branching time paradigm the
problem of module checking is much harder. In fact, CTL (resp., CTL∗) mod-
ule checking is ExpTime-complete (resp., 2ExpTime-complete), while model
checking is solvable in linear time (resp., exponential time).

In this paper, we have extended the framework of module checking problem
for finite-state systems to formulas of the fully enriched μ-calculus and showed
that this problem becomes undecidable in this setting. Also, we have investigated
this problem with respect to formulas of interesting fragments of the full calcu-
lus and, specifically, those belonging to the full hybrid, full graded, and hybrid
graded μ-calculus, and showed, in all cases, that module checking is decidable
and ExpTime-complete. In particular, for the upper bound we have proposed
an algorithm that is exponential in both the size of the model and the formula.
Since module checking for μ-calculus subsumes that for CTL and for the latter
the program complexity (i.e., the complexity of the problem w.r.t. a fixed for-
mula) is polynomial, it remains as an open problem to decide the exact program
complexity of module checking for the considered fragments of the full calculus.

Finally, we recall that model checking for modal μ-calculus is in UP∩co-
UP (see [Zap02] for a survey). Since we have proved that module checking for

Enriched µ-Calculi Module Checking 197

modal μ-calculus is ExpTime-hard, we conclude that also for this logic module
checking is harder than model checking. Moreover, the model checking algorithm
considered in [Zap02] for modal μ-calculus can be easily extended to deal with
formulas of the fully enriched μ-calculus, showing that also for this logic the
model checking problem is in UP∩co-UP. Using this conjecture, we can extend
to the full calculus and its fragments all the previous observations regarding the
modal μ-calculus.

References

[Ber66] R. Berger, The undecidability of the domino problem, Mem. AMS 66
(1966), 1–72.

[BLMV06] P.A. Bonatti, C. Lutz, A. Murano, and M.Y. Vardi, The complexity of
enriched mu-calculi, ICALP’06, LNCS 4052, 2006, pp. 540–551.

[BMP05] Laura Bozzelli, Aniello Murano, and Adriano Peron, Pushdown module
checking., LPAR, 2005, pp. 504–518.

[BP04] P.A. Bonatti and A. Peron, On the undecidability of logics with converse,
nominals, recursion and counting, Artificial Intelligence 158 (2004), no. 1,
75–96.

[BS06] J. Bradfield and C. Stirling, Modal µ-calculi, Handbook of Modal Logic
(Blackburn, Wolter, and van Benthem, eds.), Elsevier, 2006, pp. 722–756.

[CE81] E.M. Clarke and E.A. Emerson, Design and synthesis of synchronization
skeletons using branching time temporal logic, Proc. of Work. on Logic of
Programs, LNCS 131, 1981, pp. 52–71.

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled, Model checking, MIT Press,
Cambridge, MA, USA, 1999.

[Hoa85] C.A.R. Hoare, Communicating sequential processes, Prentice-Hall Interna-
tional. Upper Saddle River, NJ, USA, 1985.

[HP85] D. Harel and A. Pnueli, On the development of reactive systems, Logics
and Models of Concurrent Systems, NATO Advanced Summer Institutes,
vol. F-13, Springer-Verlag, 1985, pp. 477–498.

[Koz83] D. Kozen, Results on the propositional mu-calculus., Theoretical Computer
Science 27 (1983), 333–354.

[KSV02] O. Kupferman, U. Sattler, and M.Y. Vardi, The complexity of the graded
µ-calculus, CADE’02, LNAI 2392, 2002, pp. 423–437.

[KVW01] O. Kupferman, M.Y. Vardi, and P. Wolper, Module checking, Information
and Computation 164 (2001), 322–344.

[QS81] J.P. Queille and J. Sifakis, Specification and verification of concurrent sys-
tems in cesar, Proc. of 5th Int. Symposium on Programming, LNCS 137,
1981, pp. 337–351.

[SV01] U. Sattler and M.Y. Vardi, The hybrid mu-calculus, IJCAR’01, LNAI 2083,
2001, pp. 76–91.

[Var98] M.Y. Vardi, Reasoning about the past with two-way automata, ICALP’98,
LNCS 1443, 1998, pp. 628–641.

[VW86] M.Y. Vardi and P. Wolper, An automata-theoretic approach to automatic
program verification (preliminary report), LICS ’86, 1986, pp. 332–344.

[Zap02] J. Zappe, Modal µ-calculus and alternating tree automata, Automata, Log-
ics, and Infinite Games (E. Grädel, W. Thomas, and T. Wilke, eds.),
LNCS, vol. 2500, Springer, 2002, pp. 171–184.

	Introduction
	Preliminaries
	Fully Enriched -Calculus
	Enriched -Calculus Module Checking
	Deciding Enriched -Calculus Module Checking
	Fully Enriched -Calculus Module Checking
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

