
Hiding Actions in Concurrent Games
Vadim Malvone 1 and Aniello Murano1 and Loredana Sorrentino1

Abstract. We study a class of determined two-player reachability
games, played by Player0 and Player1 under imperfect information.
Precisely, we consider the case in which Player0 wins the game if
Player1 cannot prevent him from reaching a target state. We show that
the problem of deciding such a game is EXPTIME-COMPLETE.

1 Introduction
In this paper we consider two-player reachability games (2CRGI),
played by Player0 and Player1, where both players can have imperfect
information about the actions taken by the other player. Some states of
the game arena are set as target. We consider the game “optimistically”
from the viewpoint of Player0. Precisely, Player0 wins the game if
Player1 does not have a strategy, while adhering to his observability,
to prevent the former to reach a target state. Solving the game amounts
to check whether Player0 wins the game. Notably, 2CRGI result to
be determined, i.e. in every state, either Player0 has a wins the game
or not [3]. We recall that two-player turn-based games are always
determined, while concurrent games are generally not [1].

Technically, to solve a 2CRGI G we look for trees (representing
Player1 strategies) that, at each node and for every possible action
taken by Player0, collect the best possible counter-actions of Player1,
chosen under the visibility constraint. Such a tree is considered "block-
ing" whenever it contains only paths along which no target state is
met. Then, we say that Player0 wins the game if no such a tree exists.
Otherwise, we say that Player0 loses the game. We build in linear
time an alternating tree automaton A collecting all such trees and
thus reduce the problem of solving G to checking for the empti-
ness of A. As the latter can be checked in exponential time [8] and
solving two-player turn-based games with imperfect information is
EXPTIME-HARD [11], we finally get that the problem of solving
2CRGI is EXPTIME-COMPLETE.

2 Game definition
We model the game by means of a classic concurrent game struc-
ture [2] augmented with a set of target states and a set of equivalence
relations over actions, one for each player. Precisely, for a Playeri and
two actions a and b, if a ∼=i bwe say that a and b are indistinguishable
to Playeri. The formal definition of our game model follows.

Definition 2.1 A concurrent two-player reachability game with imper-
fect information (2CRGI) is a tuple G,<St, sI ,P,Ac, tr,W,∼=>
where St is a finite non empty set of states, sI ∈St is a designated ini-
tial state, P,{Player0, Player1} is the set of players, Ac,Ac0∪Ac1
is the set of actions. We assume that Ac0∩Ac1 =∅. W is a set of target
states, tr : St× (Ac0 ×Ac1)→ St is a transition function mapping

1 Università degli Studi di Napoli Federico II, Italy.
Contact author: Aniello Murano, mail:{murano@na.infn.it}.

a tuple of one state and two actions to one state, and ∼=,∼=0 ∪ ∼=1

is a set of equivalence relations on Ac.

By [Aci] we denote the subset of Playeri actions that are distin-
guishable to Player1−i. If two actions are indistinguishable then also
the states reached by using tr are so. A relation∼=i is called an identity
if a ∼=i b iff a = b. A 2CRGI has perfect information if ∼= contains
only identity relations (so, we drop I from the acronym).

To give the semantics of 2CRGIs, we now introduce some basic
concepts such as track, strategy, and play.

A track is a finite sequence of states ρ ∈ St∗ such that, for all
k < |ρ|, there are two actions a0 ∈ Ac0 and a1 ∈ Ac1 such that
(ρ)k+1 = tr((ρ)k, a0, a1), where (ρ)k denotes the k-st element of
ρ. For a track ρ, by ρ≤k we denote the prefix track (ρ)0...(ρ)k. By
Trk ⊆ St∗, we denote the set of tracks over St. For simplicity, we
assume that Trk contains only tracks starting at the initial state sI .

A strategy represents a scheme for a player containing a precise
choice of actions along an interaction with the other player. It is given
as a function over tracks. Formally, a strategy for Playeri in a 2CRGI
is a partial function σi : Trk ⇀ Aci that maps each track to an action.
A strategy σi is total if it is defined on all tracks in Trk. A strategy
is uniform if it adheres on the visibility of the players. Thus uniform
strategies are based on observable actions. In the rest of the paper we
only refer to uniform strategies.

The composition of strategies, one for each player in the game, in-
duces a computation called play. More precisely, assume that Player0
and Player1 take strategies σ0 and σ1, respectively. Their composition
induces a play ρ such that (ρ)0 = sI and for each k ≥ 0 we have that
(ρ)k+1 = tr((ρ)k, σ0(ρ≤k), σ1(ρ≤k)), for all k ∈ N .

We have now all the ingredients to properly define how to interpret
a game and thus to establish who wins it. The winning condition we
set is based on the reachability condition viewed “optimistically” for
Player0. Precisely, Player0 wins the game if Player1 does not have a
strategy to prevent him to reach a target state. Dually, we have that
Player1 wins the game (and thus Player0 loses it) if, for each strategy
σ0 of Player0, there exists a strategy σ1 for Player1, that can force the
induced play to never reach a target state in W. The latter is the one
we will use in the rest of the paper. Deciding the winner of a game
by looking at the strength of the adversary is quite common in game
theory applied to open system verification, largely investigated in the
two-player turn-based setting. See [5–7, 9] for an argument.

It is worth noting that the winning condition we consider preserves
the determinacy property [3], even under imperfect information 2. The
automata-based solution we propose in the next section will strongly

2 For the sake of clarity, we recall that in the plain two-player reachability
winning condition Player0 wins the game if he has a strategy such that
for all strategies of Player1 the resulting induced play has at least one
state in W. This definition does not guarantee the determinacy property in
the concurrent setting. To be convinced considering the classic two-player
concurrent matching bit game where no one of the player wins the game.

benefit from this fact.
To properly formalize the winning condition we use, we introduce

a tree structure machinery that we call blocking tree. For the lack of
space, we only give the main concepts about trees and refer to [12]
for a proper definition. Let Υ be a set. An Υ-tree is a prefix closed
subset T ⊆ Υ∗. The elements of T are called nodes and the empty
word ε is the root of T . Given a node v = y · x, with y ∈ Υ∗ and
x ∈ Υ, we define prf(v) to be y and last(v) to be x. For an alphabet
Σ, a Σ-labeled Υ-tree is a pair <T, V > where T is an Υ-tree and
V : T → Σ maps each node of T to a symbol in Σ.

Definition 2.2 Given a 2CRGI G, a blocking tree for Playeri is a
{>,⊥}-labeled ([Ac0]× [Ac1])-tree <T, V > with T ⊂ ([Ac0]×
[Ac1])∗ and V as follows: (i) V (ε) = >; (ii) for all v ∈ T let
ρ = (ρ)0...(ρ)|v|−1 be a track from sI such that for each k < |v|
we have that (ρ)k = tr((ρ)k−1, last(v≤k)(i), last(v≤k)(1− i)). If
last(v)(1− i) = σ(ρ) then V (v) = >, otherwise V (v) = ⊥.

Directly from the definition of blocking tree, the definition of win-
ning condition follows.

Definition 2.3 LetG be a 2CRGI and W ⊆ St a set of target states.
Player0 wins the game G, under the reachability condition, if there is
no blocking tree for Player0.

3 Automata theoretic solution
For the solution side, we use an automata-approach via alternat-
ing tree automata (ATA). Specifically, an ATA is a tuple A ,<
Σ, D,Q, q0, δ, F >, where Σ is the alphabet, D is a finite set
of directions, Q is the set of states, q0 ∈ Q is the initial state,
δ : Q×Σ→ B+(D×Q) is the transition function, whereB+(D×Q)
is the set of all positive Boolean combinations of pairs (d, q) with d
direction and q state, and F ⊆ Q is the set of accepting states. An
ATA A recognizes (finite) trees by means of runs. For a Σ-labeled
tree <T, V >, with T = D∗, a run is a (D∗× Q)-labeled N -tree
<Tr, r> such that the root is labeled with (ε, q0) and the labels of
each node and its successors satisfy the transition relation. A run is
accepting if all its leaves are labeled with accepting states. An input
tree is accepted if it admits an accepting run. By L(A) we denote the
set of trees accepted by A. We say that A is not empty if L(A) 6= ∅.

The solution we propose is to read a {>,⊥}-labeled full ([Ac0]×
Ac1)-tree such that more copies of the automaton are sent to the same
directions along the class of equivalence over [Ac0]. These trees are
taken with depth greater than the number of states; so if no state in W
is reached in |St| step, then there is a loop over the states in the game
model that forbids to reach states in W.

Theorem 1 Given a 2CRGI G the problem of deciding whether
Player0 wins the game is in EXPTIME-COMPLETE.

Proof sketch. Let G be a 2CRGI . For the lower bound, we re-
call that two-player turn-based games with imperfect information
is EXPTIME-HARD [11]. For the upper bound, we can build in lin-
ear time an automaton accepting all blocking trees for Player0. The
automaton uses as set of states Q = St × St × {>,⊥} × {0, 1}
and alphabet Σ = {>,⊥}. Note that, we use in Q a duplication of
game states as we want to remember the game state associated to
the parent node while traversing the tree. For the initial state we
set q0 = (sI , sI ,>, 0), i.e. for simplicity the parent game state
associated to the root of the tree is the game state itself. The flag
f ∈ {0, 1} indicates whether along a path we have entered a target

state, in that case we move f from 0 to 1. The transition relation is de-
fined as: δ((p, q,>, f),>) =

∧
a0∈Ac0

∧
a1∈Ac1

(d, (q, q′, t′, f ′)),
δ((p, q, t′, f),⊥) = true, δ((p, q,⊥, f),>) = false; where q′ =
tr(q, a0, a1), t′ ∈ {>,⊥}, d = [Ac0]×[Ac1], and f ′ = 1 if q′ ∈W
otherwise f ′ = f . The set of accepted states is F = {(p, q, t, f) :
p, q ∈ St ∧ t = > ∧ f = 0}. Recall that an input tree is accepted if
there exists a run whose leaves are all labeled with accepting states. In
our setting this means that an input tree simulates a blocking tree for
Player0. So, if the automaton is empty then Player0 wins the game,
i.e., does not exists a blocking tree for him. The required computa-
tional complexity of the solution follows by considering that: (i) the
size of the automaton is polynomial in the size of the game, (ii) to
check its emptiness can be performed in exponential time [4, 8].�

4 Discussion and future work
Game theory is a useful framework largely applied in AI [13]. Worth
of mentioning are the contributions in open-system verification, where
the goal is to check whether a system can avoid to reach a bad state no
matter how the unpredictable environment behaves, while acting under
perfect or imperfect information [7, 9]. Along this line of research,
we have considered in this paper the case in which the two players,
Player0 and Player1, move concurrently, under partial visibility. The
reachability condition is interpreted by looking at the ability of Player1
to prevent Player0 to reach a target state. In this case Player0 loses the
game (and wins otherwise). We have proved that this can be checked
in EXPTIME and showed that this result is tight.

Our game setting is very useful in multi-agent open-system ver-
ification. In particular, it would be useful to consider the case of
multiple players along with some reacher acceptance condition, such
as a logic for the strategic reasoning (ATL* [2], Strategy Logic [10],
and like). Of course one has to consider some restrictions as the im-
perfect information immediately let the decision problem to jump to
nonelementary or even undecidability.

References
[1] L. De Alfaro and T.A. Henzinger, ‘Concurrent omega-regular games’,

in LCS’00, pp. 141–154. IEEE, (2000).
[2] R. Alur, T.A. Henzinger, and O. Kupferman, ‘Alternating-Time Tempo-

ral Logic.’, JACM, 49(5), 672–713, (2002).
[3] J.R. Buchi and L.H. Landweber, Solving sequential conditions by finite-

state strategies, Springer, 1990.
[4] E.A. Emerson and C.S. Jutla, ‘The Complexity of Tree Automata and

Logics of Programs (Extended Abstract).’, in FOCS’88, pp. 328–337.
IEEE Computer Society, (1988).

[5] W. Jamroga and A. Murano, ‘On Module Checking and Strategies.’, in
AAMAS’14, pp. 701–708. IFAAMAS, (2014).

[6] W. Jamroga and A. Murano, ‘Module checking of strategic ability’, in
AAMAS’15, pp. 227–235. IFAAMAS, (2015).

[7] O. Kupferman and M. Y. Vardi, ‘Module checking revisited’, in CAV’97,
volume 1254 of LNCS, pp. 36–47. Springer, (1997).

[8] O. Kupferman, M.Y. Vardi, and P. Wolper, ‘An Automata Theoretic
Approach to Branching-Time Model Checking.’, JACM, 47(2), 312–360,
(2000).

[9] O. Kupferman, M.Y. Vardi, and P. Wolper, ‘Module Checking.’, IC,
164(2), 322–344, (2001).

[10] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi, ‘Reasoning About
Strategies: On the Model-Checking Problem.’, TOCL, 15(4), 34:1–42,
(2014).

[11] John H. Reif, ‘The complexity of two-player games of incomplete infor-
mation’, J. Comput. Syst. Sci., 29(2), 274–301, (1984).

[12] Wolfgang Thomas, ‘Infinite trees and automaton definable relations over
omega-words’, 263–277, (1990).

[13] M. Wooldridge, An Introduction to Multi Agent Systems, John Wiley &
Sons, 2002.

	Introduction
	Game definition
	Automata theoretic solution
	Discussion and future work

