
Reasoning about Additional Winning Strategies
in Two-Player Games

Vadim Malvone and Aniello Murano

Università degli Studi di Napoli Federico II

Abstract. In game theory, deciding whether a designed player wins a
game corresponds to check whether he has a winning strategy. There are
situations in which it is important to know whether some extra winning
strategy also exists. In this paper we investigate this question over two-
player turn-based games under safety and fairness objectives. We provide
an automata-based technique that allows to decide in polynomial-time
whether the game admits more than one winning strategy.

1 Introduction

Game theory is a powerful framework, usefully applied in computer science to
reason about reactive systems [15]. In recent years, it has been used efficiently to
deal with the strategy reasoning in multi-agent systems [1, 17,22,27,34].

In the basic setting, we consider two-player turn-based games. The configura-
tions (states) of the game are partitioned between the two players, Player0 and
Player1, and a player moves in a state whenever he owns it. Solving a two-player
game amounts to checking whether Player0 has a winning strategy, that is a
complete plan of choices, one for each decision point of the player (i.e. a strategy),
that allows him to satisfy the game objective, no matter how his opponent acts.

In several game settings it is mandatory to have a more precise (quantitative)
information about how many winning strategies a player has at his disposal.
For example, in Nash Equilibrium, such an information amounts to solving the
question of checking whether the equilibrium is unique [2,3, 13,23,24,30]. This
problem impacts on the predictive power of Nash Equilibrium since, in case
there are multiple equilibria, the outcome of the game cannot be uniquely pinned
down [10,31,35].

A recent line of research aiming at addressing uniqueness in Nash Equilibria
(as well as other solution concepts), with goals expressed in LTL, concerns
extending Strategy Logic (a powerful logic able to express Nash Equilibria [27])
with graded modalities [2,3]. This approach however turns out to be less effective
in practice as it requires double exponential-time. Conversely, the problem of
checking the existence of a Nash equilibrium in games with LTL goals is in
PSpace [14]. This has spurred us to look for other and more efficient directions.
In [25,26], we have investigated the existence of additional winning strategies in
two-player finite games under the reachability condition in which the players have
perfect or imperfect information about the moves performed by the opponent. In



this paper we go further and consider as objectives safety and fairness. Precisely,
we consider games in which the states are partitioned between good and bad
states. Under the safety condition, Player0 wins the game if he can induce a
play that never visits a bad state. Under the fairness objective, instead, Player0
wins the game whenever he can induce a play along which a good state is visited
infinitely often.

We solve the problem of checking the existence of additional winning strategy
under safety and fairness objectives by using an automata-theoretic approach.
Precisely, we build an automaton that accepts only trees that are witnesses of
more than one winning strategy for the designed player over the game arena.
Hence, we reduce the addressed quantitative question to the emptiness of this
automaton. This leads to a polynomial-time solution, thus not harder than the
one required for the existence of a winning strategy in safety and fair games [9,16].
As a important consequence of this result we get that checking the uniqueness of
a Nash Equilbrium under safety or fairness objectives can be done in polynomial-
time. This motivates our work.
Related works. Counting strategies has been deeply exploited in the formal
verification of reactive systems by means of specification logics extended with
graded modalities, interpreted over games of infinite duration [2, 3, 5, 7, 11,19, 23,
24, 26]. It is worth recalling that the solution algorithms present in the literature
for graded modalities have been conceived to address complicated scenarios
and, consequently, they usually perform much worse than our algorithm on the
restricted setting we consider.

Finally, we remark that the automata-theoretic solution we provide takes
inspiration from those ones introduced in [4, 6, 11,12,20,25,26,32].

2 Preliminaries

In this section we introduce some preliminary concepts needed to properly define
the game setting under exam as well as to describe the adopted solution approach.
In particular, we introduce trees useful to represent strategies and automata to
collect winning strategies.

Trees. Let Υ be a set. An Υ -tree is a prefix closed subset T ⊆ Υ ∗. The elements
of T are called nodes and the empty word ε is the root of T . For v ∈ T , the set of
children of v (in T ) is child(T, v) = {v · x ∈ T | x ∈ Υ}. Given a node v = y · x,
with y ∈ Υ ∗ and x ∈ Υ , we define prf(v) to be y and last(v) to be x. We also say
that v corresponds to x. The complete Υ -tree is the tree Υ ∗. For v ∈ T , a (full)
path π of T from v is a minimal set π ⊆ T such that v ∈ π and for each v′ ∈ π
such that child(T, v′) 6= ∅, there is exactly one node in child(T, v′) belonging to
π. Note that every word w ∈ Υ ∗ can be thought as a path in the tree Υ ∗, namely
the path containing all the prefixes of w. For an alphabet Σ, a Σ-labeled Υ -tree
is a pair < T, V > where T is an Υ−tree and V : T → Σ maps each node of T
to a symbol in Σ.



Automata Theory. An alternating tree automaton (ATA, for short) is a tuple
A =<Σ,D,Q, q0, δ, F >, where Σ is the alphabet, D is a finite set of directions,
Q is the set of states, q0 ∈ Q is the initial state, δ : Q × Σ → B+(D × Q)
is the transition function, where B+(D × Q) is the set of all positive Boolean
combinations of pairs (d, q) with d direction and q state, and F ⊆ Q is the set of
the accepting states. An ATA A recognizes (finite) trees by means of runs. For
a Σ-labeled tree < T, V >, with T = D∗, a run is a (D∗× Q)-labeled N -tree
< Tr, r > such that the root is labeled with (ε, q0) and the labels of each node
and its successors satisfy the transition relation. A run is accepting if all its
leaves are labeled with accepting states. An input tree is accepted if there exists
a corresponding accepting run. By L(A) we denote the set of trees accepted by
A. We say that A is not empty if L(A) 6= ∅.

As a special case of alternating tree automata, we consider nondeterministic
tree automata (NTA, for short), where the concurrency feature is not allowed.
That is, whenever the automaton visits a node x of the input tree, it sends to
each successor (direction) of x at most one copy of itself. More formally, an NTA
is an ATA in which δ is in disjunctive normal form, and in each conjunctive
clause every direction appears at most once.

Finally, Alternating Büchi tree automata (BATA, for short) are ATA accepting
infinite trees. Precisely, a run is accepting if all its branches visit infinitely often
at least one state belonging to F . As before, we also consider nondeterministic
Büchi tree automata (BNTA, for short). We refer to [21] for a formal definition
of BATA.

3 The Game Model

In this section, we introduce two-player turn-based games. Precisely, we consider
games consisting of an arena coupled with an objective. The arena describes the
configurations of the game through a set of states, being partitioned between the
two players. In each state, only the player that owns it can take a move. The
formal definition of the considered game model follows.

Definition 1. A two-player turn-based game ( 2TG, for short), played between
Player0 and Player1, is a tuple G , < St, sI , Ac, tr, W, O >, where St ,
St ∪ St is a finite non-empty set of states, with Sti being the set of states of
Playeri, sI ∈ St is a designated initial state, Ac , Ac0∪Ac1 is the set of actions,
W is a set of target states, O is the objective of Player0, and tr : Sti×Aci → St−i,
for i ∈ {0, 1} is a transition function mapping a state of a player and its action
to a state belonging to the other player.

In a 2TG we only define the objective for Player0 since, the objective for Player1
is the opposite. In the following we only consider as objectives for Player0 safety
and fairness. Regarding the former, Player0 wins the game if he has a strategy
that prevents him from reaching all the states in St \W. For the latter, Player0
wins the game if he can induce plays along which he visits at least a target state
infinitely often. These concepts will be formalized in the sequel.



To properly give the semantics of 2TGs, we now introduce some basic concepts
such as path, track, strategy, and play.

A path is a finite or infinite sequence of states s1, s2, . . . such that s1 = sI and
for all i, if si ∈ St then there exists an action a0 ∈ Ac0 such that si+1 = tr(si, a0),
else there exists an action a1 ∈ Ac1 such that si+1 = tr(si, a1).

A track ρ ∈ St∗ is a finite path. For a track ρ, by (ρ)i we denote the i-st
element of ρ, by ρ≤i we denote the prefix track (ρ)0 . . . (ρ)i, and by last(ρ) we
denote the last element of ρ. By Trk ⊆ St∗, we denote the set of tracks over St.
By Trki we denote the set of tracks ρ in which last(ρ) ∈ Sti.

A strategy represents a scheme for a player containing a precise choice of
actions along an interaction with the other player. It is given as a function over
tracks. Formally, a strategy for Playeri is a function σi : Trki → Aci that maps
a track to an action.

The composition of strategies, one for each player in the game, induces a
computation called play. Precisely, assume Player0 and Player1 take strategies
σ0 and σ1, respectively. Their composition induces a play ρ such that (ρ)0 = sI
and for each i ≥ 0 if (ρ)i ∈ St then (ρ)i+1 = tr((ρ)i, σ0(ρ≤i)), else (ρ)i+1 =
tr((ρ)i, σ1(ρ≤i)). A play ρ satisfies a safety objective, if and only if it contains
only states in W. Conversely, let inf(ρ) the set of states occurring infinitely often
in ρ, the play satisfies the fairness objective if and only if inf(ρ) ∩W 6= ∅.

A strategy is winning for a player if all the plays induced by composing such
strategy with all the strategies of the adversarial player satisfies his objective. If
such a winning strategy exists we say that the player wins the game. The formal
definition of winning condition follows.

Definition 2. Let G be a 2TG. Player0 wins the game G if he has a strategy
such that for all strategies of Player1 the resulting induced play satisfies O.

4 Searching for Additional Winning Strategies

In this section, we show how to check whether Player0 wins the game under
safety and fairness objectives. To proper introduce our solutions procedure we
first need to provide some auxiliary notation. Precisely, we introduce the concepts
of decision tree, strategy tree, and additional strategy tree.

A decision tree simply collects all the tracks that come out from the interplays
between the players. In other words, a decision tree can be seen as an unwinding
of the game structure along with all possible combinations of player actions. The
formal definition follows.

Definition 3. Given a 2TG G, a decision tree is an St-labeled Ac-tree collecting
all tracks over G.

We now introduce strategy trees that allow to collect, for each fixed strategy
for Player0, all possible responding strategies for Player1. Therefore, the strategy
tree is a tree where each node labeled with s ∈ St has an unique successor
determined by the strategy for Player0 and each node labeled with s ∈ St has



all possible successors determined by the actions of Player1. Thus, a strategy
tree is an opportune projection of the decision tree. The formal definition follows.

Definition 4. Given a 2TG and a strategy σ for Player0, a strategy tree for
Player0 is an St-labeled Ac-tree < T, V >, with T ⊂ Ac∗ and V as follows:
(i) V (ε) = sI ; (ii) for all v ∈ T , let ρ = (ρ)0 . . . (ρ)|v|−1 be a track from sI
with (ρ)k = V (v≤k) for each 0 ≤ k ≤ |v| − 1, if V (prf(v)) ∈ St then V (v) =
tr(V (prf(v)), σ(ρ)), otherwise V (v) = tr(V (prf(v)), last(v)).

Following the above definition and Definition 2, given a 2TG G, Player0 wins
the game and Player1 loses it by simply checking the existence of a strategy tree
for Player0, that is a tree such that each path satisfies the objective O. Such a
tree is called a winning-strategy tree for Player0.

In case we want to ensure that at least two winning strategies exist then, at a
certain point along the tree, Player0 must take two successors. Let succ : St→ 2St

to be the function that for each state s ∈ St in G gives the set of its successors,
the formal definition of additional strategy tree follows.

Definition 5. Given a 2TG G, an additional strategy tree for Player0 is an
St-labeled Ac-tree < T, V > that satisfies the following properties:

1. the root node is labeled with the initial state sI of G;
2. for each x ∈ T that is not a leaf and it is labeled with state s of Player0, it

holds that x has as children a non-empty subset of succ(s);
3. for each x ∈ T that is not a leaf and it is labeled with state s of Player1, it

holds that x has as children the set of succ(s);
4. there exists at least one x ∈ T that corresponds to a state of Player0 in G

and it has at least two children.

Note that, the above definition, but item 4, is the classical characterization
of strategy tree. As before, given a 2TG G, Player0 has an additional strategy
to win the game if there is an additional strategy tree for him, that is a tree
such that each path satisfies the objective O. Such a tree is called an additional
winning-strategy tree for Player0.

Now, we have all ingredients to solve 2TG in which the objective is safety or
fairness. For the former we have the following result.

Theorem 1. Given 2TG G with safety objective it is possible to decide in linear
time whether Player0 has more than one strategy to win the game.

Proof. Consider a 2TG G with safety objective. We know that Player0 wins
G iff there exists a strategy for Player0 that for all strategies for Player1 the
induced play does not reach any state in St \W.

We build an NTA A that accepts all additional winning-strategy for Player0
over G. The automaton A uses Q = St× {ok, split, bad} as set of states, where
ok and split are flags and the latter is used to remember that along the tree
Player0 has to ensure the existence of two winning strategies by opportunely
choosing a point where to "split", and bad is used when a state s ∈ St \W is



occurred. We set as alphabet Σ = St and initial state q0 = (sI , split). For the
transitions, starting from a state q = (s, flag) and reading the symbol a, we have
that:

δ(q, a) =



(s′, bad) if s ∈ St \W;

(s′, ok) if s = a ∧ s ∈ St ∧ flag = ok;

((s′, ok) ∧ (s′′, ok)) ∨ (s′, split) if s = a ∧ s ∈ St ∧ flag = split;

succ(s)× {ok} if s = a ∧ s ∈ St ∧ flag = ok;

(s1, f1) ∧ · · · ∧ (sn, fn) if s = a ∧ s ∈ St ∧ flag = split;

∅ otherwise.

where s′, s′′ ∈ succ(s) with s′ 6= s′′, {s1, . . . , sn} = succ(s), and f1, . . . , fn are
flags in which there exists 1 ≤ i ≤ n such that fi = split and for all j 6= i, we
have fj = ok. The set of accepting states is W × {ok}.

The automaton checks if each path of an input tree does not reach a bad
state. It is not hard to see that the automaton only needs to check the tree up
to a depth of |St|+ 1. Indeed, if a bad state does not occur within this bound,
Player0 can pump good states forever through some cycles in the game. To limit
the automaton to check up to such a bound it is sufficient to use a binary counter
along its states. For the sake of readability we omit this part. Finally, it is not
hard to see that if A is not empty then Player0 has at least two strategies to
win G.

Since, the size of the automaton A is just linear in the size of the game and
checking its emptiness can be performed in linear time (from [32]), the desired
complexity result follows. 2

Theorem 2. Given 2TG G with fairness objective it is possible to decide in
quadratic time whether Player0 has more than one strategy to win the game.

Proof. Consider a 2TG G with fairness objective. We know that Player0 wins
G iff there exists a strategy for Player0 that for all strategies for Player1 the
induced play reaches infinitely often a state in W. In particular, now to handle
the winning condition we need a non-deterministic Büchi tree automaton.

We build a BNTA B that accepts all trees that are witnesses of more than a
winning strategy for Player0 over G. The automaton A uses Q = St×{ok, split}
as set of states, Σ = St as alphabet, and q0 = (sI , split) as initial state. For the
transitions, starting from q = (s, flag) and reading the symbol a, we have that:

δ(q, a) =



(s′, ok) if s = a ∧ s ∈ St ∧ flag = ok;

((s′, ok) ∧ (s′′, ok)) ∨ (s′, split) if s = a ∧ s ∈ St ∧ flag = split;

succ(s)× {ok} if s = a ∧ s ∈ St ∧ flag = ok;

(s1, f1) ∧ · · · ∧ (sn, fn) if s = a ∧ s ∈ St ∧ flag = split;

∅ otherwise.



where s′, s′′ ∈ succ(s) with s′ 6= s′′, {s1, . . . , sn} = succ(s), and f1, . . . , fn are
flags in which there exists 1 ≤ i ≤ n such that fi = split and for all j 6= i, we
have fj = ok. The set of accepting states is W × {ok}. Hence, if B is not empty
then Player0 has at least two strategies to win G.

Since, the size of the automaton B is just linear in the size of the game and
checking its emptiness can be performed in quadratic time (from [33]), the desired
complexity result follows. 2

5 Conclusion and Future Work

In this paper we have introduced a simple but effective automata-based methodol-
ogy to check whether a player has more than one winning strategy in a two-player
game under safety and fairness objectives. We believe that the solution algorithm
we have conceived in this paper can be used as core engine to count strategies effi-
ciently in more involved game scenarios and in many solution concepts reasoning
as we plan to investigate as a continuation of this paper.

This work opens to several interesting questions and extensions, which we plan
to investigate. An interesting direction is to consider the counting of strategies
in multi-agent concurrent games. This kind of games have several interesting
applications in artificial intelligence [34]. As another direction of work, one can
consider some kind of hybrid game, where one can opportunely combine teams of
players working concurrently with some others playing in a turn-based manner
as in [17, 18, 29]. These games arise for example in case the interaction among
the players behaves in a recursive way [8, 28].
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