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Abstract: It is generally unknown how to formally determine
whether different neural networks have a similar behaviour. This
question intimately relates to the problem of finding a suitable sim-
ilarity measure to identify bounds on the input-output response dis-
tances of neural networks, which has several interesting theoretical
and computational implications. For example, it can allow one to
speed up the learning processes by restricting the network parameter
space, or to test the robustness of a network with respect to param-
eter variation. In this paper we develop a procedure that allows
to compare neural structures among them. In particular, we con-
sider dynamic networks composed of neural units characterised by
non-linear differential equations, described in terms of autonomous
continuous dynamic systems. The comparison is established by im-
porting and adapting from the formal verification setting the concept
of §—approximate bisimulations techniques for non-linear systems.
We have positively tested the proposed approach over continuous
time recurrent neural networks (CTRNNs).
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1 Introduction

In recent years, a growing number of studies in computational neuroscience has
focused on the question whether, in neural-network models having different pa-
rameters, similar input-output behaviours can be realized (see, for example, Prinz



et al., 2004; Marder and Goaillard, 2006; DiMattina and Zhang, 2010). This ques-
tion naturally leads to the problem of defining a suitable similarity measure to
functionally compare distinct neural networks.

The problem of specifying a computational procedure for a similarity measure
which enables one to identify bounds on the input-output response distances of
distinct neural networks has several interesting theoretical and computational
implications. In the field of computational neuroscience, for example, such a
procedure would allow one to quantitatively compare the network behaviours
resulting from widely differing combinations of intrinsic and synaptic properties
(MacGregor and Tajchman, 1988).

Interestingly, the above question is of great relevance in many engineering
applications such as pattern recognition problems. For example, in supervised
learning approaches (Bishop, 2006), different kinds of algorithms (e.g. gradient
descent and evolutionary optimization techniques) are used to find the network-
parameter values that minimize any functional error on the basis of some given
training data set. Multiple minima give rise to multiple equivalent solutions to
the same problem. Thus, the search for parameters by a supervised learning ap-
proach can often result in an ill-posed problem, insofar as one cannot uniquely
identify a neural network from training the data only. A well-posed problem can
be obtained in some special cases (e.g., standard MLP models): under special as-
sumptions on the neuron output functions, the overall input-output relationship
of the network uniquely determines the values of all network parameters, up to
a permutation of neurons and the regrouping of identical neurons (Albertini and
Sontag, 1993; Albertini et al., 1993; Wu et al., 2006). As a consequence, there are
situations in which one may completely recover, in principle, the entire structure
of a neural network just from the training data (Albertini and Sontag, 1993; Fef-
ferman and Markel, 1994). However, the uniqueness of such results relies on the
assumption that noiseless and potentially unlimited training data are available,
thus restricting their applicability in the modelling of real data. A similarity mea-
sure may enable one to extend this class of well-posed problems insofar as one
may determine classes of parameters which bring to “equivalent” or “sufficiently
similar” neural networks. In this way, a functional mapping between training data
and parameter classes would be possible, thereby turning the search for network
parameters by a supervised approach into a well-posed problem.

In addition to this, a similarity measure would allow one to speed up the learn-
ing processes by restricting the parameter space during the learning phase (Neruda,
2000). Moreover, a similarity measure might be used to test and compare distinct
neural networks (Horne and Giles, 1995) obtained by means of different learning
algorithms. Consequently, this can let one choose between neural networks that
look similar in terms of functionality by means of suitable heuristics over the
complexity of the network architecture and specific requirements of the problem
to solve.

The similarity question about neural-network models could be rephrased in the
formal method framework (see Clarke et al., 2000). Such a framework provides
powerful techniques to automatically and exhaustively check whether a system



satisfies a desired behaviour by checking whether a mathematical model of the
system meets a mathematical representation of the desired behaviour. However,
for complex systems such as non-linear dynamic networks, it is an open issue how
to properly establish such a procedure (see Casagrande et al., 2012).

1.1 Our Contribution

In this paper we develop an effective procedure allowing one to compare differ-
ent given neural structures when the parameters are varied. In particular, we
consider dynamic networks composed of neural units characterised by non-linear
differential equations and describable as autonomous continuous dynamical sys-
tems (Gupta et al., 2003; Munakata, 1997). We emphasize that dynamic networks
are widely used in computational neuroscience as models of brain regions or sub-
sets of biological neurons (Sporns, 2011; Chersi et al., 2013; Pezzulo et al., 2013;
MacGregor, 2012; Izhikevich, 2007).

We collect a series of results in dynamical system theory and bisimulation the-
ory in order to establish a dynamic network similarity (DyNeS) algorithm enabling
one to functionally compare different dynamic networks. The comparison of net-
works is established by finding upper bounds between distance of trajectories,
solutions of the equation of two neural networks. This is obtained by importing
and adapting from formal verification framework §—approximate bisimulations
techniques for non-linear systems (Girard and Pappas, 2005) to dynamic net-
works.

We stress that our approach introduces the bisimulation framework to non-
linear dynamic networks, which results in the possibility of comparing the be-
haviour of different networks by means of the estimation of a bound § between
the systems in investigation. Without loss of generality, the present approach is
tested within the continuous time recurrent neural network (CTRNN) framework,
a popular network model widely deployed both in robotics (see e.g. Birch et al.,
2002; De Falco et al., 2008; Paine and Tani, 2004; Montone et al., 2011) and com-
putational models of biological neuronal phenomena (see e.g. Dunn et al., 2004;
Donnarumma et al., 2010, 2012). Finally, note that the techniques used in this
paper stem from very new research developments in dynamical system theory.
This is the first attempt, to our best knowledge, to specialize bisimulation within
the framework of non-linear dynamic networks.

1.2 Related Work

In the field of static neural networks a number of results about similarity between
networks are present. It has been proved that the input-output functionality
uniquely determines the network structure (Albertini and Sontag, 1993; Fefferman
and Markel, 1994) in the case of infinite, noiseless data. Moreover, a biologically
inspired method is presented in (DiMattina and Zhang, 2010), which allows to
determine when the structure of a feed forward neural network can be gradually
perturbed while preserving its functionality. This is accomplished by deriving a



differential equation that specifies the conditions under which the parameters of
some given neural network can be continuously modified, while leaving the net-
work functionality unchanged. Works by Amari and colleagues (Wei and Amari,
2008) characterised the behaviour of layered networks near singularities in order
to help avoiding regions of parameters where standard gradient-based learning
methods are stuck in large plateaus, greatly slowing training.

In the field of dynamic networks, a lot of efforts in literature have been de-
voted to establish conditions related to stability (see e.g. Cao et al., 2005; Yu
and Yao, 2007; Chandrasekar et al., 2014): those approaches are linked to the
method developed, in the sense that the similarity we adopted can be seen as a
relaxation of the stability conditions. On the other side, in the formal method
framework, different approximation techniques for extending formal methods to
complex dynamical systems have been proposed (see e.g. Frianzle, 1999; Ratschan,
2010; Girard and Pappas, 2007a; Casagrande et al., 2009; Prabhakar et al., 2009;
Lall et al., 2002). Those techniques are crucial in order to effectively study proper-
ties related to dynamical systems by means of computational procedures. Hybrid
automata with noise are presented by Franzle in (Franzle, 1999). The introduction
of noise in many cases ensures the (semi-)decidability of the reachability problem.
Another result of (semi-)decidability, again related to the concept of perturba-
tion, is given by Ratschan in (Ratschan, 2010). Our approach is based on §-
(bi)simulation (Girard and Pappas, 2005) relations, which essentially corresponds
to relaxations on the infinite precision required by simulation and bisimulation.
Such relations represent a tool capable of removing complexity and undecidabil-
ity issues related to the analysis of the investigated model. Following this last
strategy, Lyapunov-like conditions can be developed in order to find bisimulation
functions, which are used to over-approximate the observational distance between
two polynomial systems, defining the so called §—approximate bisimulations.

Unfortunately, dealing with the standard non-linear form of output function
(e.g., the sigmoidal function), none of these techniques can be straightforwardly
applied to dynamic networks. In this respect, however, it should be noted that a
number of simplified dynamic network models are considered in literature. Stud-
ies reveal that approximation of output functions to cubic non-linearities still
shows shapes, firing rates, and bursting behaviours throughout the physiological
range (see Wilson, 1999). Second order polynomial approximations have also been
considered in literature (see e.g. Rolls et al., 2006), but receiving less attention
on how those models could be related to the non-approximated ones. Lineariz-
ing the non-linear components of the original continuous model, by replacing the
sigmoidal outputs with sign functions (Ghosh and Tomlin, 2001; De Jong et al.,
2004), lets continuous signals turn into discrete off-on signals. Unfortunately, it
is proved that behaviours of those system models differ from the original one.
A more sophisticated approximation of sigmoidals based on a piecewise linear
function is exploited in the development of a hybrid automaton which simulates
a single oscillator (Casagrande et al., 2012). We take a step further by consid-
ering “polynomialized” dynamic networks for which we show the possibility of
computing useful j—approximate bisimulations.



1.3 Work Plan

The rest of the paper is organized as follows. In Section 2, we propose the math-
ematical background of the dynamic network similarity (DyNeS) procedure. The
pseudocode is presented in Subsection 2.3. The remaining subsections are de-
voted to the explanation of the steps of the procedure and include the details on
the systems in use (Subsection 2.2), the polynomial approximation of the output
function of the networks (Subsection 2.4) and the §— approximated bisimulation
(Subsection 2.5). In Section 3, examples of the applications of the method are
given, focusing on a particular model of dynamic networks, i.e. continuous time
recurrent neural networks (CTRNN). Finally, in Section 4, conclusions and future
work on the approach are envisaged.

2  Network Similarity Computation

2.1 Similarity Measure

In this section, we fully describe the computational steps in order to obtain the
network similarity measure for dynamic networks. The pseudo-code of a dynamic
network similarity (DyNeS) procedure is presented in Subsection 2.3. We start
by clarifying the idea underlying our approach and the kind of systems on which
it is performed. To exemplify the idea of similarity measure, we make use of
the popular framework of multi-layered perceptron (MLP) network models (see
Gardner and Dorling, 1998).

Given an MLP network G, it is possible to write its input-output relation in
terms of a functional relation y = f(x,0), where f is a parametric non-linear
function, y = (y!,...,9) is the output of the neurons belonging to the output
layer, x = (x',...,2%) is the input to the network, and 8 = (#',...,0") is the
parameter set encoding the network structure (e.g. synaptic weights and biases).
Given two MLP networks G and G with different structures @ and 6, a neural
network similarity measure should enable one to find §-bounds on their responses,
ie, Vx € D C R? ||f(x7 0) — f(x, é)H < 0, the value of such § expressing a
quantitative measure of how functionally close the networks G and G are. Thus,
the problem of comparing two networks can be reformulated as finding a suitable
¢ that bounds so defined a distance between the two systems.

In the next section, we introduce the framework of continuous dynamic net-
works for which our approach has been developed. In contrast with MLP, con-
tinuous dynamic networks explicitly include the time in the model. Moreover, we
stress that this kind of neural networks model are widely used in neuroscience
literature and engineering applications.

2.2 Dynamic Networks Framework

We consider the framework of continuous dynamic networks in which the evo-
lution of the system is expressed by means of first-order differential equations.
Consequently, it is possible to study them as dynamical systems:



Definition 1. An autonomous continuous dynamic system D is a 3-ple (Q,~,T)
where

e () is a topological space named state space
e T is the time set

e v : (y,t) € @ xT — @Q is the flow given by the solution of the set of
first-order ordinary differential equations (ODE)

dy
A 1
prial A ) (1)
Thus, we refer to continuous dynamic networks when dealing with artificial
neural network models satisfying Definition 1. In order to compare systems with
a different number of variables, in Definition 2 the notion of a continuous dynamic
network with observables is introduced.

Definition 2. An autonomous continuous dynamical system with observables
D =(Q,v,T,h,H) is an autonomous continuous dynamical system D = (Q,~,T)
additionally equipped with

e an observation space H, which is a metric space H along with a metric d

e an observation map h : @ — H, which maps variables of the state space
(@) to the observation space H. The variables in the space H are called
observables.

Accordingly, one can define observable trajectories given by

{t,h(v(y,1) : IyeQ,teT A(y,t)cQ}

From Definition 2, it is clear that a continuous dynamic network with observ-
ables is a continuous dynamic network where a mapping between the state space
and an observation space is introduced. Thus, two dynamic networks with a dif-
ferent number of variables can be compared if one considers the same number of
observable variables from each system and compares their observable trajectories.
In particular, in order to show our approach we focus our attention on a popular
model of dynamic networks.

Definition 3. Continuous time recurrent neural networks (CTRNNs) are net-
works of biologically inspired neurons (nodes) described by the following general
equations (Hopfield and Tank, 1986; Beer, 1995):

kA 1 17 J J 7 .
T = y—l—jz::lw oy +607)+ I ie{l,...,n} (2)
where N is the n_umber of neurons in the network and for Qach neuron i: Ti_ is the
time constant, y* is the potential or activation variable, 6" is the bias, o(y"* + %)



is the mean firing rate, with o(-) the output function, If = Z?LZLH wul s

an external input coming from [ external sources u’, w" is the weight of the
connection coming from the node j.

From Equation (2), it is clear that CTRNN systems satisfy Definition 1 when
networks parameters together with the external inputs I! are time independent.
Usually o(z) is the sigmoidal function o(x). However, one can choose as o(x) any
smooth, monotonic, and bounded activation function; the resulting network being
called additive CTRNN. For example, one may use the parametric form (Tino

et al., 2001)
a

1 +ec?
that has the advantage of reducing to the hyperbolic tangent function by substi-
tuting @ = 2,b = —1, ¢ = 2 in (3) as follows

o(z) = g p,c(2) +b (3)

2 e’ 1l—e T T —e?
TTreme T E Tret e )

02,-1,2(2)

or one may use the standard sigmoid with a =1, b = 0, ¢ = 1, formally obtained
from (3) as follows

B 1
T 1l4e®

o(z) = 01,0,1(x) =o(x).
The sigmoidal output function o(z) is used throughout Section 3.

In the next subsection we will show how it is possible to find a clever ap-
proximation of the sigmoidal output function in order to apply the bisimulation
techniques shown in Subsection 2.5. However, the approach presented here is
quite general, insofar as similar results can be obtained for different activation
functions fulfilling the smoothness, monotonic and boundedness conditions (see
Section 4).

2.3 DyNeS Algorithm

It is possible to formalize in a pseudo-code fashion a similarity measure between
dynamic network behaviours: in Algorithm 1 we present the main steps of the
dynamic network similarity (DyNeS) procedure, which will be deeply clarified in
the rest of this section.

The aim of the algorithm is to produce a §,,,,, between two dynamic networks,
which bounds the trajectories of the two systems in time. This can be done by
specifying a clever approximation of non-linear dynamic networks and then finding
a bisimulation between the systems under investigation, which ensures that the
trajectories have the property of being “sufficiently” close.

In Subsection 2.2 we described the kind of systems for which this procedure
is applied (step 1). We will clarify the successive steps of Algorithm 1 in the rest
of this section. Precisely, in Subsection 2.4 we show the approximation needed to



Algorithm 1 DyNeS Algorithm

Require: Given two continuous dynamic networks systems D, and Do

1: select k neurons from D; and D5 respectively: this selection determines the
comparing subspace on which the similarity will be computed;

2: select a proper polynomial approximation for networks output function on
the basis of the dynamic networks connection weights W,

3: choose a suitable form of a parametric bisimulation function V<(y) : y €
RF xRF — Ve(y) € R withy = {y1,...,y¥,v3,...,y5} being the concatena-
tion of the observable variables of Dy and D and ¢ = {cy,...,cL} a suitable
number L of parameters. This bisimulation function enables one to establish
a bisimilarity between D and Ds, i.e., in a nutshell that the solutions of the
two systems are “sufficiently close”;

4: compute by means of bisimulation function V¢(y) an upper bound 8,4, of
the "distance" between the solutions of D; and Ds.

these systems in order to find the required bisimulation (step 2); in Subsection 2.5
we describe the bisimulation framework that lets us define a superior bound on
measuring the similarity between the systems we compare (steps 3-4).

2.4 Polynomial Approximation of a network output func-
tion

In the presented framework of dynamic networks, it is possible to derive the
following theorem:

Theorem 1. (Funahashi and Nakamura, 1993) Given a Dynamic Network D in
Definition 2 equipped with a sigmoidal output function, there exists C' such that

ly®ll <vn-C
with
C = max{C"},
C* = max{y'(0), M},

[ ] M =N Wmazx + Imaw;

Wmazr = max{wij}ijl’

Iae = maX{Ié}?:l
Proof. We can write the equations as

Py i Fi(y,W, I
ji=—Y Wi ¢)
T T

It is possible to find a constant M such that |F’| < M. In fact,



B =[Sy wtoty + 00+ ] < S ] ot +00)] + 1] <
< Z?:l |wij‘ + |I;’ <N Whaz + Imaag =M

with Wiae = max{!wij‘}ﬁjzl and Ipq, = max{|I{|}_;. Consequently, we can
write:

|y'(8)] < max{|y’(0)], M} = C*
from which the statement directly descends. O

From Theorem 1 it directly derives that the argument of the sigmoidal function
o is bounded in a finite interval depending on the constants [—A, A], where A =
C + 0oz, With 0,4, = max{’9i|}?:1. Thus, it is possible to use the following
well known approximation result.

Theorem 2. [Weierstrass, 1885] For each continuous function f :x € [a,b] = R
defined on the closed and bounded interval [a,b], then Ve > 0 there exists some
polynomial p(x) such that

Ip(z) — fx)] <€

Consequently, for each dynamic network, it is possible to effectively construct
an interval in which to perform a clever approximation, “as good as we want” of
the initial system (see Subsection 3.1). Of course, the better an approximation is,
the more polynomial terms are required, making the search for the bisimulation a
more computationally difficult problem (see Subsection 2.5). Therefore, a trade-
off strategy must be chosen, depending on the specific purpose for which the
procedure is applied (see Section 4 for discussions).

2.5 J¢—approximate bisimulation for Dynamic Networks

The concept of bisimulation, as applied to state transition systems in verification
of hardware and software systems (Clarke et al., 2000), can be used to establish
topological equivalence between dynamical systems (Hale and Kogac, 1991). Here,
we show how to relax bisimulation equivalence in order to perform a functional
similarity measure between continuous dynamic networks.

In (Girard and Pappas, 2005) the concept of d-approximate bisimulation be-
tween transition systems (Clarke et al., 2000) was introduced. This approximate
bisimulation, if established, identifies bounds on the distance between the trajec-
tories of two distinct transition systems. dJ-approximate bisimulations between
two transition systems can be achieved using classes of functions called bisimula-
tion functions. In (Girard and Pappas, 2005) guidelines for identifying parametric
bisimulation functions are proposed and shown to work in some case studies. As
autonomous continuous dynamical systems can be considered as a subclass of the
class of transition systems (Brihaye, 2006), one can specialize the j—approximate
bisimulation method for the purpose of finding bisimulation functions in the Con-
tinuous Dynamic Network framework.



The classical notion of bisimulation reported in Definition 4 (see Clarke et al.,
2000) can be formally seen as an equivalence relation, inducing a partition of the
states of the involved transition systems (Zhang, 1994).

Definition 4. A relation ~ is a bisimulation between two transition systems
Gi = (Qn, %, ) and G2 = (Q2,%, ) such that ¥(q1,¢2) € Q1 X @2, (g1 ~ ¢2)
the following conditions are satisfied:

L Va €DV, € Qila - ap = 33 € Q2] a2 ¢ and (qf ~ ¢5)

2. VaeE,VqéGQlezéq’z = Hqitelql—‘}q’l and (g} ~ ¢b)

Bisimulation in Definition 4 guarantees that two structures have the same
behaviours. In particular, exact bisimulations between two transition systems
entail that their observations are (and remain) identical. Consequently, exact
bisimulations are very difficult to establish for non-linear dynamical systems like
dynamic networks, and like CTRNNs in particular.

The approximate bisimulation approach presented in Definition 5 (see Girard
and Pappas, 2005) is less rigid, as it requires that the observations of approxi-
mately bisimilar systems are (and remain) arbitrarily close to each other.

Definition 5. A relation ~; is a d—approximate bisimulation between two Con-
tinuous Dynamic Networks with observables Dy = (Q1,v1,T,h1, H) and Dy =
(Q2,72,T, ha, H) with a common time space T and observation space H, such
that (V(y1,¥2) € Q1 X Q2, (y1 ~s y2) the following conditions are satisfied:

L d(hi(y1), ha(y2)) <0
2. Vt € T\Vyy = mi(y1,t) € Q1 = Tys = 72(ya,t) € Q2| (y1 ~5 ¥2)
3.Vt € T\Vyy = ya(y2,t) € Q2 = Ty =7(y1,t) € Q1| (y1 ~5 ¥2)

Note. If § = 0, Definition 5 collapses into an exact bisimulation.

In other words, establishing a d—approximate bisimulation between two con-
tinuous dynamic networks guarantees that distances of the trajectories in the
observation space are bounded by a value § as stated by Theorem 3.

Theorem 3. (Girard and Pappas, 2007b) If there exists a —approximate bisim-
ulation between the two continuous dynamical networks Dy and Do, then for all
observable trajectories of Dy there exists a trajectory of Do such that ¥Vt € T,
d(h1(m(y1,t)), ha(12(y2,t)) <6 and viceversa.

The construction of approximate bisimulations between two transition sys-
tems, as well as the evaluation of their precision, can be performed using a class
of functions called bisimulation functions, formally defined in Definition 6, which
are positive functions defined on @1 x @2, bounding the distance between the ob-
servations associated with a pair (y1,y2) and non-increasing under the dynamics
of the systems.

10



Definition 6. A bisimulation function V is a continuous function
V:QixQs— R
with
L V(y1,y2) = d(hi(y1), ha(y2))
2. V(y1,y2) > maxy: —y, (y, o) My, o vy 1) VY1, ¥5)

3. V(Yla Y2) > maXyé:'yQ(yg,t) miny’lz'yl (y1,t) V(y/h yl2)

Note that when restricting our study to the class of autonomous systems, Con-
ditions 2 and 3 of Definition 6 become equivalent, and reduce to a Lyapunov-like
condition. In particular, this can be considered as a weakening of Lyapunov stabil-
ity conditions, in which one of the systems to compare collapses to the fixed-point
solution. Similarly, the concept of bisimulation function is reminiscent of robust
control Lyapunov functions (see Liberzon et al., 2002), though the latter require
stronger conditions than bisimulation functions. Thanks to Theorem 4, the dis-
covery of a bisimulation function is a sufficient condition to find a bisimulation
relation between two systems.

Theorem 4. (Girard and Pappas, 2007b) If V is a bisimulation function, then
Vo > 0 the set

Bs = {(y1,y2) € Q1 X Q2,V(y1,y2) <6}

s a d-approximate bisimulation between dynamical networks D1 and Ds.

In other words, Theorem 4 suggests the possibility of comparing observable
trajectories of two continuous dynamic networks if one is able to describe a pro-
cedure to systematically compute suitable bisimulation functions for them.

Let us consider the case of two continuous dynamic networks D, with observ-
ables, where ¢ € {1,2}, with equations y, = f;(y;) where y, € R™, and with
observation maps h;, respectively. Let us further assume the hypotheses that
D; and D, have the same observation space R, equipped with the euclidean
distance.

Now, by letting y = [y1;y2] be an (n; + n2) x 1 column vector, f(y) =
[ fi(y1)if2(y2) ] an (1 4 7n2) x 1 column vector, and h(y) = hi(y1) — ha(y2) a
p X 1 column vector, one can state the following important theorem (see Girard
and Pappas, 2005):

Theorem 5. Let p : R™ x R"2 — RT be a differentiable function with Vp its
gradient. If for all y € R™ ™2 we have that p(y) satisfies

p(y) = h(y)"h(y) (4)

Vp(y)"f(y) <0 (5)
then V = \/p(y) is a bisimulation function.

11



Thus, Theorem 5 ensures that finding a function p(y) satisfying Conditions
(4) and (5) lets us obtain a bisimulation function. Although this is a difficult task
(Parrilo, 2003), there are techniques in semidefinite programming that allow one
to find a sum of square form for p(y) — h(y)h(y) and —Vp(y)Tf(y), resulting in
a much simpler problem!. However, note that this approach restricts the possible
solutions, insofar as a sum of squares condition implies a positive condition, but
the converse is not true. We, indeed, reduce the space of the functions, in which
solutions are searched, to a subspace in which this search is more tractable.

Accordingly, it is possible to write a simpler formulation of Theorem 5, if one
assumes that the vector fields fi(y) and f5(y) are expressed by polynomials.

Theorem 6. (Girard and Pappas, 2005) Assuming the hypotheses that the au-
tonomous vector fields £, and fo and the observation maps hy and hy are vectors
of polynomials, then the conditions

p(y) —h(y)Th(y) is a sum of squares (6)

—Vp(y) f(y) is a sum of squares (7)
imply that V(y) = /p(y) is a bisimulation function where p(y) is a multivariate

polynomial.

With Theorem 6 the task of finding p(y) satisfying Conditions (6) and (7)
becomes manageable, and the bisimulation function can be computed in semidef-
inite programming?. Thus one can rewrite the steps 3-4 of Algorithm 1 in the
light of this theorem:

3a* choose a sum of squares form p®(y)
3b* find ¢’ that minimizes p°(y) satisfying Theorem 6
4* find 6,0, = maxy /p® (y)

In the next section, we apply this DyNeS procedure to CTRNN equations, and
show that this measure enables one to capture the error it is possible to tolerate
in order to consider CTRNN systems as functionally bisimilar systems.

3 CTRNN comparison by DyNeS measure

In this section, we prepare and test systems whose functional equivalence is go-
ing to be evaluated by means of J—approximate bisimulation. First of all, we
need a polynomial approximation of a CTRNN, due the fact that one cannot ap-
ply the bisumulation method explained in Subsection 2.5 directly to equations of

Tt has been shown (see Parrilo, 2003) that the condition “p(x) is a sum of squares” is
computationally more tractable than p(x) > 0.

2In particular, the algorithm subsumed by Theorem 6, SOSTOOLS Matlab toolbox (Prajna
et al., 2002) will be deployed.

12



CTRNNs whose flows are not polynomials. Following Subsection 2.4, this prob-
lem can be addressed by applying a machine learning procedure enabling one
to approximate the CTRNN sigmoid function in a finite interval. In this way,
in Subsection 3.1 we obtain a “polynomialized” version of the CTRNN system,
which approximates the original one. Then, in Subsection 3.2 we prepared sys-
tems of one neuron networks, for which it is possible to theoretically characterize
the space of the solutions when varying their parameters, in order to illustrate
d-approximate bisimulation search. Finally, we test the procedure scalability on
two and three neuron networks.

3.1 A polynomial approximation for CTRNN flows

The possibility of comparing two continuous dynamical networks by using ap-
proximate bisimulation was illustrated in Section 2.5. However, the application
of Theorem 6 affords a comparison procedure only in the presence of polynomial
flows of the system. Thus, the sigmoid output function prevents one from directly
searching a bisimulation between CTRNN systems. On the other hand, a poly-
nomial approximation of the sigmoidal function, "as good as we want" can be
computed (see Subsection 2.4). More specifically, in this section we use regular-
ized least square (see Bishop, 2006) in order to obtain a polynomial approximation
for the sigmoid function

M
o(x) ~ Z ¢i-x™ = Poly(x)
m=0

which, in turn, enables one to obtain a polynomialized version of the CTRNN
Equations (2):

i N

T’LCZ :—ylﬂ—Zw”POlM(yj—ej)-l-Ié 26{177N} (8)

J=1

This procedure, given a suitable polynomial order M, allows one to approx-
imate, to any desired precision, the behaviour of the sigmoid function in some
given interval. In order to apply the regression algorithm, input-output pairs
of the sigmoid function o(z) in a fixed interval [Zin, Tmas] are prepared. The
coefficients found for a Polys are searched in an interval [—30,30]. Fig. 1 shows
the behaviour of this approximation for M = 1, M = 3, M = 8 compared to
the sigmoid function o(z). Table 1 shows that the mean errors E corresponding
to different Poly; decreases with the order of the polynomial. In the application
of the bisimilarity procedure we choose M = 8 and the corresponding Polg(z).
The two systems are comparable as long as each neuron activation value y; of
the CTRNNS is in [Zmin, Tmaz|. However, if the solution of the systems lets the
activations range on values outside this interval, then it is possible to regress a
new Polys(x) which approximates o(x) in a wider range.
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(M ] 1 2 3 4 5 6 7 8
E ]0.1845 | 0.1845 [ 0.1160 | 0.1160 [ 0.0831 | 0.0831 | 0.0630 | 0.0630
dev | 0.0133 | 0.0133 | 0.0077 | 0.0077 | 0.0046 | 0.0046 | 0.0029 | 0.0029

Table 1: Mean error E and standard deviation dev for Poly;.

Sigmoid function

Sigmoid Polynomial regression, M=1
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Sigmoid Polynomial regression, M=3
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Sigmoid Polynomial regression, M=8
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Figure 1: Sigmoid Function o(z) versus the polynomial approximations Pol;(x),
Pol3(x) and Polg(x).
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3.2 Methods explained for simple CTRNNs

In this section we built different examples in order to show how to compare two
CTRNNs by means of the DyNeS measure. In the first set of tests, we consider
simple systems made up of a single neuron:

y=—-y+tw-oly+6)+1 (9)

where for simplicity we set the time constant 7 = 1. Notice that no elementary
expression for the solution of (9) exists. By contrast, it is possible to achieve
a complete qualitative description of its dynamics (Beer, 1995). Specifically, one
can describe the limit sets of (9), including their stability and their dependence on
the parameters, as well as the bifurcations that can occur as the parameters are
varied (see Fig. 2). Such system has a cusp point (Hale and Kogac, 1991). This

cusp point (12), I ) is the only bifurcation point in which the system undergoes

a pitchfork bifurcation (Hale and Kogac, 1991). All other bifurcation points are
saddle-node bifurcations. R ~
Thus, let us consider the two one-neuron systems Dy and Do

Di={pn = —-p+w-oy)+I
and B
Do={5 = —yp1+ws-o(y)+1

In order to apply Theorem 6 the flows of the system have to be vectors of
polynomials. Thus, we “polynomialize” the CTRNN equations as shown in the
previous section, obtaining the new systems

D —{ 91 = —yi+wi-Poly(yr) +1
1 g
hi = 1
and )
D —{ Yo = —yi+wz- Poly(y2) +1
2:
ha = 1o

We choose the identity functions as the observation maps: this means that we
are going to directly compare activations y; and y, of the two systems. In this
case the term h(y)Th(y) in Condition 6 turns into (y; —y2)?. This suggests that
the polynomial form of the bisimulation function must be at least of the second
order. We choose quite a general form, including terms up to the second order:

V(y1,y2, {Ci}?:o) = \/P(y1,y2) = \/Co +eiyr ey ey -y +ea- (Y1)? 4 cs - (y2)?

Let us firstly consider the case in which there is a global stable equilibrium
point in the equation, so that, for any of the initial conditions of the variables
y1 and yo, the asymptotic solution is unique. Consequently, we set I = 0 for
both Dy and D, the weight w; = —15 for system D;, and for Dy we choose

15



1 Stable Fixed Point

Figure 2: The two branches of the cusp of Equation 9 (where 6 is set to 0), in the
parameter space (w, I). Outside two cusp branches, the system has a global stable
equilibrium point. Inside the branches there are three equilibria: an unstable one
and two stable ones.
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[we [ [ & [ e | s [ea | e ]
16 0.04 | —0.27 | 0.26 | —5.56 | 2.83 | 2.74
~17 [ 0.08 | —0.24 | 0.5 | —5.23 | 2.69 | 2.55
18 | 0.30 | —0.90 | 0.91 | —7.07 | 3.73 | 3.36
~19 [ 050 | —1.05 | 1.17 | —7.18 | 3.86 | 3.35
90 | 0.76 | —1.38 | 1.41 | —6.82 | 3.71 | 3.164

Table 2: The parameters of the bisimulation function V (y1,y2, {c;}2_, between
D; and five versions of system Dy with we € {—16,—17,—-18,—19, —20}. We
consider the case in which the initial conditions of the observable variables are
identical (y) = ¢9) and are in the closed and bounded interval [—1,1].

wy | —16 | =17 | =18 | =19 | —20
Omax | 0.20 | 0.32 | 0.58 | 0.75 | 0.92

Table 3: dnax Obtained for the bisimulation function with parameter values in
Table 2. Increasing values of d,.x are found, as long as system D5 behaves “more
differently” with respect to D;.

wsy belonging to the set {—16,—17,—18,—19, —20}, thus obtaining five different
versions of Ds, one for each wy value. We compare the D; system so obtained
with the five different versions of system Ds. Thus minimizing the condition of
V(y1, Y2, {ci}?_o) under which the initial conditions of the observable variables are
identical (y§ = 49), and in the closed interval [—1, 1], we obtain the parameters c;
of the bisimulation function for each system D,. Table 2 shows the values of the
identified parameters, while in Table 3 the corresponding values of the similarity
measure are shown. Note that, as we expected, increasing values of {y,.x are
found, as long as system D> behaves “more differently” with respect to D;.

In Fig. 3 numerical simulations of the original system D; versus the different
versions of system Dy are shown. As it was expected, the errors on trajectories
shown are completely consistent with the dy,.y error in Table 3. In fact, Subfig-
ure 3a shows sample trajectories solutions of the compared systems, Subfigure 3b
shows that solutions of Dy depicted with their d,,.c-area include solutions of D;.
Furthermore, we simulated 500 different solutions for each D5 system, with dif-
ferent initial conditions fulfilling (y? = %9). Thus, at each time we computed

. 500
an experimental ey (t) = max{’yl (t) — ygz)(t)‘}k . In Subfigure 3c the ratio
=1

(Omax — Oexp(t))/Omax is plotted, resulting in values greater than zero, meaning
that the d,.x bound is never crossed.

A second test is made on the same D5 system, but now searching for an initial
condition of the observable variables 49 # 39 in the same interval [—1,1]. In this
case the minimization is run in order to find parameters that a posteriori minimize
the bisimulation function V(y1,92,{c;}?_;) on any possible initial conditions in
[-1,1]. The parameters for the bisimulation function are shown in Table 4. In
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Figure 3: In Panel (a) some numerical simulations of system D, versus different
versions of the system Dy are shown. D; and D, are one-neuron CTRNNs. In
Panel (b), each solution of Dy is depicted as a dax-coloured area with values in
Table 3. As an example the area of Dg with wy = —20 includes all areas with
wy > —20. All the areas of D5 include the solution of D;. That means that the
shown distance between trajectories of Dy and Dy are completely contained, as
it was expected, in the dpax error. In Panel (c), the ratio (dmax — Oewp)/Omax 1S
shown: again, as expected, values greater than zero mean that the bound sy is
never overcome. Please see text for more details.
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(w2 [ o [ o [ o[ s | ea [0 |
—16 | 0.29 | —0.66 | 0.75 | —2.85 | 1.37 | 1.49
—17 [ 0.50 | —1.14 | 1.28 | —3.48 | 1.66 | 1.83
—18 [ 0.38 | —1.21 | 1.25 | —4.50 | 2.25 | 2.25
—19 [ 0.59 | —1.42 | 1.48 | —4.50 | 2.28 | 2.23
—20 [ 0.86 | —1.63 | 1.72 | —4.48 | 2.29 | 2.21

Table 4: The parameters of the bisimulation function V (y1,y2, {c;}2_, between
D; and five versions of system Dy with wy € {—16,—17,—18,—19,—20}. Here
the case in which the initial conditions of the observable variables are different
(y9 # 99) and are in the closed and bounded interval [—1,1] is considered.

wy | —16 | =17 | =18 | =19 | —20
Omax | 2.73 | 3.14 | 3.44 | 3.53 | 3.63

Table 5: dmax Obtained for the bisimulation function with parameters in Table 4.
Again, increasing values of .« are found, as long as system D, behaves “more
differently” with respect to D;. The values of the upper bound given by d,,., are
bigger than the ones in Table 3. This is again expected, insofar as we considered
more general initial conditions for y; and ys.

Table 5, dmax values obtained for the bisimulation function with parameters in
Table 4 are shown. Again, increasing values of .. are found, as long as system
D5 behaves “more differently” with respect to D;. The values of the upper bound
given by dn.x are bigger than the ones in Table 3. Note that this is again expected,
insofar as we considered more general initial conditions for y; and ys.

In Fig. 4, numerical simulations of the original system D; versus the different
version of system Dy are shown. Coherently, even with different initial conditions,
the error on trajectories shown are completely consistent with the 0.y error in
Table 5. Now, we consider the case of parameters (I,w) (see Fig 2) in which
there are three equilibrium points. In this case, by considering different initial
conditions one may end up with systems that are more different with respect to
the one in the global stable equilibrium point zone we have considered until now.
We run the search for parameters of the bisimulation function in two illustrative
cases: in the first one we set I = —2.5, w; = 6, wy = 7 and in the second
I = —5,w; =10, wy = 11. In the two examples the initial conditions are different,
y{ # 99, and considered in the interval [—1,1]. Table 6 shows the results for this
bisimulation function search and the relative d,,,,. In this case d,,,x measures the
variability of the observable trajectories (in this case higher with respect to the
previous example), and increases consistently with the greater numerical values
of the distance between the stable equilibrium points. The numerical simulations
shown in Fig. 5 are coherent with the d,,,x bound found.

Finally, in the last session of tests, we explore the scalability of the proposed
approach on systems of multiple neurons. We prepared two system comparisons
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Figure 4: In Panel (a), numerical simulations of system Dy versus the different
versions of system Dg were tested. Dl and ﬁg are one-neuron CTRNNs. In
Panel (b), areas of d-solutions of Dy are shown (see Fig. 3). Note that in this
example areas are larger in order to bound all the different initial conditions we
subsumed in the computation. In Panel (c), values (0ax —0€xp)/dmax are plotted:
as a result, the error on trajectories shown are completely contained, as it was
expected, in the d,.x error in Table 5.
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Figure 5: In Panels (a) and (b), numerical simulations of system Dy versus the
different versions of system D in the 3—equilibria zone are shown. In Panel (c),
(Omax — Oewp)/Omax is shown: the errors on trajectories shown are completely

contained, as it was expected, in the ., error in Table 6.
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D1 and Do Co 1 Co C3 Ca \ cs \ Omax ‘
I=-25w =6wy, =7 | 42.30 119.89 | —85.61 | —131.06 | 93.63 | 46.27 | 22.76
I =—-5w; =10,we =11 | 200.23 | —377.25 | —82.88 92.49 278.14 | 10.25 | 32.26

Table 6: Parameters for the bisimulation function and the relative d,,,x between
systems D; and Dy. Two cases are presented: in the first we set I = —2.5, w; = 6,
wo = 7 and in the second I = —5, wy = 10, wy = 11. In the two examples the
initial conditions are different, y{ # y9, and considered in the interval [—1,1]. In
this case dmax measures the variability of the observable trajectories (in this case
higher with respect to the previous example), and increases consistently with the
greater numerical values of the distance between the stable equilibrium points.

e a comparison between networks with two neurons each D{*° and D5
e a comparison between networks with three neurons each D{"7¢¢ and Dyree

In both cases the networks are fully-connected. On the second system we put
a fixed input signal I that acts as a perturbation. For example, in the case of
systems D{%° and D.%° we consider

vl = —y} +w - Pola(y}) + w'? - Polu ()
Do =3 52 = —yi+w'- Poly(yl) +w? - Poly(y?)
h,; (Y1) = ¥
and
i = —yd+w' - Polp(yd) + w2 Polp(y3) + 1
Diwe ={ 42 = —y3 +w'?- Poly(yh) + w* - Polu(y3) + 1
hz(}’z) = Y2

To run the experiments we consider a quadratic form for the bisimulation function
in all the variables, as we did previously. Furthermore to simplify the computation
we set equal initial conditions for all the observation variables {y1,y2} and in the
interval [0, 1]. To calculate each dnax, we randomly choose a set of weights in [0, 1]
and perturb the second system with a fixed input I € {0.1,1,10}. We repeat this
computation for 30 times and compute the mean value for d,,. and its standard
deviation. From the results in Table 7 and in Fig. 6, it is possible to appreciate
the coherence of the measure with respect to the perturbation of the input signals
and the increase in the number of neurons.

4 Conclusions
We have presented the dynamic network similarity (DyNeS) Algorithm, i.e., a pro-

cedure enabling one to compare the behaviour of neural networks, by introducing
for the first time the bisimulation method to the non-linear dinamic network
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Figure 6: In Panels (a) and (b), the ratio (dmax —
Diwe versus system DE%° and for system D?7¢¢ versus system Di""¢¢, respectively,
with different inputs I € {0.1,1,10}. Again, as expected, values greater than zero

mean that the bound §,,,« 1S never overcome.
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Diwe vs Diwe ‘ Omax ‘ o ‘

I1=10 14.7 1.9
I=1 1.9 0.3
I1=0.1 0.19 | 0.16
Dilfhree vs Déhree ‘ 5mam ‘ o
I1=10 36 3
I=1 20 9
I1=0.1 13 8

Table 7: Mean value for 0.« and standard deviation computed on set of random
weights for bisimulation between D{"° vs D{¥° and D%""¢¢ vs D¢, The systems
to be compared are identical except for a perturbation with a fixed input signal
I€{0.1,1,10}.

framework. To do this, we have imported theorems from dynamical system the-
ory and formal methods and adapted them to dynamic networks. We, then, have
selected a particular model of dynamic networks, namely continuous time recur-
rent neural networks (CTRNN), and showed the applicability of our algorithm to
them. A first step in the proposed procedure is the approximation of the dynamic
network with a polynomial version with a behaviour as close as possible to the
“original” network. To do this, a machine learning procedure is applied. Conse-
quently, we have shown how to found upper bounds on the distances between the
trajectories of two distinct CTRNNs by computing approximate bisimulations on
their “polynomialized” versions (Tables 3, 5, 6 and 7). Then, we have confirmed
the upper bound validity by numerically integrating the chosen CTRNNs. The
results showed in Figures 3, 4, and 5 confirm that the distances between the trajec-
tories are inferior or equal to the predicted theoretical upper bounds. Notice that
the DyNeS Algorithm can be performed on a wider class of networks with respect
to the one we have selected in our experiments. For example, as a consequence
of the work in (Haschke, 2004; Beer, 2006), all results obtained in this paper for
the CTRNN models with neuron output function o(z) can be easily transferred
to any CTRNN with neuron output function o, . shown in Section 2, since for
each CTRNN with neuron output function o4 . it is possible to construct an
equivalent CTRNN with neuron output function o(x).

4.1 Discussion and Future Works

Although these preliminary results suggest that the application of the DyNeS Al-
gorithm might be a viable effective approach for comparing dynamic networks,
several issues raise in different directions, underlying the need of achieving further
progress on them. Firstly, the more the polynomial approximation is improved
leading to indistinguishable behaviour between approximate and “original” net-
works, the more complex the needed polynomial is, and the computational cost
raises, especially when dealing with the argument of the sigmoidal function spread-
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ing in large intervals. However, one can also directly use “polynomialized” versions
of CTRNNs as models of neural circuits per se, as well as other dynamic neural
models have been used in a “polynomialized” version (see e.g. Wilson, 1999).

Another research line concerns finding a subclass of dynamic networks for
which an effective € error of the polynomial approximation can be combined with
the 0 of the bisimulation, thus constructing a unique theoretical upper bound for
the entire procedure. Furthermore, in case the search for the bisimulation fails,
we cannot establish a measure of similarity, but at the same time we cannot assert
that a bisimulation does not exist, because of 1) the arbitrariness of the construc-
tion of the Lyapunov-like bisimulation function and 2) the fact that we are trying
to satisfy the sum of square conditions in Theorem 6, which implies the positive
condition of Theorem 5, while the converse is not true. Thus, a critical aspect
of the DyNeS Algorithm is related to the search of the appropriate bisimulation
function, together with the computation of the coefficients of the polynomial. In
order to simplify the search and construction of the proper Lyapunov-like func-
tion, effective matrix measure approaches could be imported from the field of
synchronisation of chaotic neural networks (He and Cao, 2009; Cao and Wan,
2014; Chandrasekar et al., 2014). Interestingly, the network similarity problem
specified in Section 2 can be expressed in a very general way for different models
of static and dynamic neural networks. In particular, the presented DyNeS Algo-
rithm is designed to work with CTRNNs but in principle could also be extended
in order to encompass more general dynamic neural networks, thus establishing
a similarity measure able to compare dynamic behaviours of different type of dy-
namic neural networks models. Finally, we put further emphasis on how this kind
of approach paves the way to interesting possibilities for neuroscientists: for exam-
ple, the introduction of formal logics “talking about” trajectories (see e.g. Fainekos
et al., 2007) could enable one to ask more complex questions about dynamic net-
work behaviours. Thus, also for those aspects, although in all the experiments
described in this paper the similarity could be successfully accomplished by the
computation of the coefficients of the proper bisimulation function, there are sev-
eral issues for which additional theoretical and experimental investigations are
needed.
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