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Abstract

In this paper we advance the state of the art on the subject of
bisimulations for logics of strategies. Bisimulations are a key
notion to study the expressive power of a modal language,
as well as for applications to system verification. In this con-
tribution we present novel notions of bisimulation for sev-
eral significant fragments of Strategy Logic (SL), and prove
that they preserve the interpretation of formulas in the cor-
responding fragments. In selected cases we are able to prove
that such bisimulations enjoy the Hennessy-Milner property.
Finally, we make use of bisimulations to study the expressive-
ness of the various fragment of SL, including the complexity
of their model checking problems.

1 Introduction
Logics for strategies have acquired preeminence in recent
years in the specification and verification of complex strate-
gic abilities in multi-agent scenarios. Amongst these modal
languages we mention Alternating-time Temporal Logic
(Alur, Henzinger, and Kupferman 2002), Strategy Logic
(Chatterjee, Henzinger, and Piterman 2010; Mogavero et al.
2014), Coalition Logic (Pauly 2002). In combination with
tools and techniques for formal verification by model check-
ing (Kacprzak et al. 2008; Lomuscio, Qu, and Raimondi
2017; Cermák, Lomuscio, and Murano 2015), these logic-
based languages are rightly considered as one of the success
stories in the applications of formal methods to reasoning
about strategic behaviours of autonomous agents in game
structures and multi-agent systems.

As it is the case for any modal language, bisimulation re-
lations are a key notion to study the expressive power of
logics for strategies, beginning with van Benthem’s charac-
terisation of propositional modal logic as the bisimulation-
invariant fragment of first-order logic (van Benthem 1976).
Further, bisimulations are crucial for system verification. In-
deed, whenever we are confronted with a model checking
problem M |= φ that is not amenable to practical verifica-
tion, we might consider to replace model M with a bisimi-
lar, possibly smaller model M ′. Then, we can solve the new
model checking problem M ′ |= φ, and finally transfer the
result thus obtained to the original M in virtue of a preser-
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vation result. Over the years, several abstractions and refine-
ment techniques have appeared to build compact bisimula-
tions efficiently (Clarke et al. 2000; Belardinelli, Lomuscio,
and Michaliszyn 2016).

In this contribution we advance the state of the art on the
subject of bisimulations for several significant fragments of
Strategy Logic, and show the preservation of formulas in the
relevant languages. In selected cases we are able to prove
that such bisimulations enjoy the Hennessy-Milner property.
Then, we make use of bisimulations to study the expressive-
ness of the various fragments of SL, including the complex-
ity of their model checking problems. Finally, we illustrate
the usefulness of our model-theoretic results by showing that
the elimination of dominated strategies, a game-theoretic
notion, generates bisimilar game structures.

Related work. The literature on bisimulations for modal
logics is extensive, a survey of model equivalences for vari-
ous temporal logics appears in (Goltz, Kuiper, and Penczek
1992). The landscape for logics of strategic abilities is com-
paratively more sparse. Alternating bisimulations for ATL∗

were introduced in (Alur et al. 1998), including a proof of
the Hennessy-Milner property. As far as we know, no at-
tempt has been made so far to extend this notion to more
expressive languages such as fragments of Strategy Logic.
Indeed, (Mogavero 2013) shows that Strategy Logic itself is
not preserved by standard bisimulation relations, but rather
by the fairly stronger local isomorphisms. Also (Gutierrez
et al. 2017) studies the preservation of Nash Equilibria by
labeled bisimulation, but does not take into account other
variants of bisimulation (like alternating bisimulation). Note
that our result from Section 4.2 does not compare with the
negative result from (Gutierrez et al. 2017), see the discus-
sion after Lemma 29. In a different direction, there have
been several attempts to extend alternating bisimulations
for ATL∗ to contexts of imperfect information (Ågotnes,
Goranko, and Jamroga 2007; Dastani and Jamroga 2010;
Belardinelli et al. 2017). Differently from these contribu-
tions, here we consider formal languages strictly stronger
than ATL∗, interpreted on systems with perfect information.
To the best of our knowledge, ours are the first results on
bisimulations in such a setting.

Scheme of the paper. In Sec. 2 we introduce Strategy
Logic (SL) and several of its fragments. Then, we provide
them with a semantics in terms of Concurrent Game Struc-



tures (CGS). We compare these fragments w.r.t. the state of
the art. In particular, we prove that fragment SSL− to be
introduced is as expressive as ATL∗ with strategy contexts
(Laroussinie and Markey 2015). In Sec. 3 and 4 we de-
fine novel, truth-preserving bisimulations for all fragments
of SL considered. The key difference here is that, while the
bisimulations in Sec. 3 enjoy the Hennessy-Milner property,
those in Sec. 4 dont’t. Then, in Sec. 5 we analyse the ex-
pressive power of our fragments, as well as the complexity
of their model checking problems. Further, we show that the
elimination of dominated strategies generate bisimilar game
structures. We conclude in Sec. 6 by pointing to future work.

For reasons of space, the lengthier proofs are available in
a separate document submitted with the paper.

2 Logics for Strategies
In this section we introduce Strategy Logic (SL) and its
fragments. These languages are then interpreted on concur-
rent game structures (CGS), as customary. We start with
some notation. For a finite or infinite non-empty sequence
u ∈ Xω ∪ X+ of elements in some set X , we write ui for
the (i+1)-th element of u, i.e., u = u0u1 . . .. For i ≥ 0, u≤i
is the prefix of u of length i+1, i.e., u≤i = u0u1 . . . ui. The
empty sequence is denoted as ε. The length of a finite se-
quence u ∈ X∗ is denoted as |u|, and its last element u|u|−1

as last(u).

2.1 Strategy Logic and its Fragments
For the rest of the paper we fix an infinite set AP of atomic
propositions (atoms), a finite set Ag of agents, and an infinite
set Var of variables x0, x1, . . . for strategies.
Definition 1 (SL (Mogavero et al. 2014)). The formulas
in Strategy Logic defined over AP, Ag, and Var are built as
follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | 〈〈x〉〉ϕ | (x, a)ϕ

where p ∈ AP, x ∈ Var, and a ∈ Ag.
The temporal operators from LTL are next X and un-

til U. The strategy quantifier 〈〈x〉〉 is read as “for some
strategy x, . . . ”, and the binding operator (x, a) intuitively
means that “by using strategy x, agent a can enforce . . . ”.
We use the standard abbreviations, e.g., [[x]]ϕ for ¬〈〈x〉〉¬ϕ.
Further, for any quantifier Qx ∈ {〈〈x〉〉, [[x]]} and A =
{a1, . . . , an} ⊆ Ag, we write Q~x(~x,A)ϕ as a shorthand for
Qx1, . . . , Qxn(x1, a1), . . . , (xn, an)ϕ.

We now introduce the set free(ϕ) of free agents and vari-
ables appearing in a formula ϕ as standard.
Definition 2 (Free agents and variables). The set free(ϕ) ⊆
Ag ∪ Var of free agents and variables in a formula ϕ is de-
fined as follows:
free(p) = ∅
free(¬ϕ) = free(ϕ)
free(ϕ ∧ ϕ′) = free(ϕ) ∪ free(ϕ′)
free(Xϕ) = Ag ∪ free(ϕ)
free(ϕUϕ′) = Ag ∪ free(ϕ) ∪ free(ϕ′)
free(〈〈x〉〉ϕ) = free(ϕ) \ {x}

free((x, a)ϕ) =

{
free(ϕ) if a /∈ free(ϕ)

(free(ϕ) \ {a}) ∪ {x} otherwise

A sentence is a formula ϕ with free(ϕ) = ∅. Finally, we
define shr(x, ϕ)={a ∈ Ag | (x, a)ψ is a subformula of ϕ}
as the set of agents using strategy x in evaluating ϕ.

Fragments. We now introduce several fragments of SL,
whose relevance will be illustrated and discussed in the rest
of the paper. A binding prefix over a set A ⊆ Ag of agents
and V ⊆ Var of variables is a finite sequence [ ∈ {(x, a) |
a ∈ A and x ∈ V }|A| of length |[| = |A|, such that every
agent a ∈ A occurs exactly once in [. On the other hand,
the same variable x ∈ V can occur several times in [, i.e.,
intutively, the same strategy x can be used by several agents.

A quantification prefix over a set V ⊆ Var of variables is a
finite sequence ℘ ∈ {〈〈x〉〉, [[x]] | x ∈ V }|V | of length |℘| =
|V | such that every variable x ∈ V occurs exactly once in ℘.
Finally, Qnt(V ) = {〈〈x〉〉, [[x]] | x ∈ V }|V | and Bnd(A) =
{(x, a) | a ∈ A and x ∈ Var}|A| denote, respectively, the
sets of all quantification and binding prefixes over variables
in V and agents in A.

We now introduce the well-known One-Goal fragment of
Strategy Logic (Mogavero et al. 2012; 2012).

Definition 3 (SL[1G]). The formulas in SL[1G] defined over
AP, Ag, and Var are built as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ℘[ϕ

where [ ∈ Bnd(Ag) and ℘ ∈ Qnt(free([ϕ)).

Intuitively, in SL[1G] each goal, i.e., each formula ob-
tained by using LTL operators X and U, preceded by a
binding prefix [ for all agents in Ag, and by a quantifica-
tion prefix ℘ for all strategy variables used by the agents.
Because of this feature (as well as the complexity of the
model checking problem), SL[1G] is considered a natural
extension of the Alternating-time Temporal Logic ATL∗

(Alur, Henzinger, and Kupferman 2002) to arbitrary quan-
tification over the agents’ strategies (Mogavero et al. 2012;
Cermák, Lomuscio, and Murano 2015)

Here we extend this idea by allowing arbitrary binding
prefixes in our formulas. Specifically, while SL and SL[1G]
have already appeared in the literature, to the best of our
knowledge none of the following fragments has been con-
sidered yet.

Definition 4 (SSL). The formulas in Strict SL defined over
AP, Ag, and Var are built as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ℘[ϕ

where [∈Bnd(A) for some A⊆Ag and ℘∈Qnt(free([ϕ)).

Strict SL “generalises” SL[1G] in the sense that a binding
prefix [ might refer to a strict subset A of Ag. Differently
from SL, every variable quantified in ℘ is “immediately” as-
signed to some agent in [, similarly to SL[1G].

Further, we introduce the fragment SSL−, for which the
last clause in Def. 4 of SSL is restricted to binding prefixes
[ in which all variables are different. That is, we cannot ex-
press different agents using the same strategy.

Finally, we define fragment SSL−[1G] as the intersection
of SSL− and SL[1G]. That is, Def. 3 is restricted to binding
prefixes [ where all variables are different.
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Figure 1: Inclusions between fragments.

In Fig. 1 we summarize the main language inclusions be-
tween our fragments. We include the nested-goal SL[NG]
and boolean-goal SL[BG] fragments of SL for completeness,
even though we will not prove any result for these. We re-
fer to (Mogavero et al. 2014) for a formal definition. More-
over, we include ATL∗ as operator 〈〈A〉〉 can be expressed as
〈〈~x〉〉(~x,A)[[~y]](~y,Ag \A). Notice that SL[1G] and SSL− are
incomparable. In Sec. 5 we will prove that semantically all
inclusions are strict.

2.2 Concurrent Game Structures
We now provide a semantics to the various fragments of SL
introduced in Sec. 2.1 by means of concurrent game struc-
tures.

Definition 5 (CGS). Given sets Ag of agents and AP
of atoms, a concurrent game structure is a tuple G =
〈Ag,AP, S, s0, {Acta}a∈Ag, τ, L〉 such that

• S is a non-empty finite set of states; s0 ∈ S is the initial
states of G.

• For every agent a ∈ Ag, Acta is a finite non-empty set of
actions. A tuple ~α = (αa)a∈Ag ∈ ACT =

∏
a∈Ag Acta is

called a joint action.
• τ : S × ACT → S is the transition function. We often

write s ~α−→ t for τ(s, ~α) = t.
• L : S → 2AP is the labelling function.

Given a CGS G as above, a path is a (finite or infi-
nite) sequence π ∈ S∗ ∪ Sω such that for every j ≥ 0,

πj
~αj−→ πj+1 for some joint action ~αj . We distinguish be-

tween finite paths, or histories, and infinite paths, or compu-
tations. Recall that for a path π and j ≥ 0, π≤j denotes the
initial history of length j + 1, and last(h) is last element in
history h.

Definition 6 (Strategy). A (memoryful) strategy for an agent
a ∈ Ag, or a-strategy, is a function σ : S+ → Acta.

The set of all strategies, for all agents, is denoted as Σ(G).
Then, an A-strategy is an a-strategy for every a ∈ A ⊆ Ag,
and a joint strategy is a function σAg : Ag → Σ(G) that
associates to every agent a ∈ Ag a strategy for a. We write
σAg(a) = σa. For every h ∈ S+, a joint strategy σAg defines

a unique computation λ(h, σAg) = h
σAg(h)−−−−→ s1

σAg(h·s1)−−−−−−→
s2 . . ., that starts with h and is consistent with σAg.

Further, an assignment is a function χ : Var∪Ag→ Σ(G)
such that for every agent a ∈ Ag, χ(a) is a strategy for a.
For z ∈ Var ∪ Ag and σ ∈ Σ(G), the variant χzσ is the
assignment that maps z to σ and coincides with χ on all
other variables and agents. We often write χAσ as a short-
hand for (. . . (χa1

σ ) . . .)akσ for A = {a1, . . . , ak}. Also, we
write λ(h, χ) for λ(h, χ(Ag)), that is, the unique computa-
tion starting with h and consistent with joint strategy χ(Ag).
Definition 7 (Satisfaction). We inductively define
(G, h, χ) |= ϕ where h is a history, ϕ is a formula,
and χ is an assignment such that for every x ∈ Var, χ(x) is
a strategy for all agents in shr(x, ϕ):
(G, h, χ) |= p iff p ∈ L(last(h))
(G, h, χ) |= ¬ϕ iff (G, h, χ) 6|= ϕ
(G, h, χ) |= ϕ1 ∧ ϕ2 iff (G, h, χ) |= ϕi for i ∈ {1, 2}
(G, h, χ) |= Xϕ iff (G, λ(h, χ)≤|h|+1, χ) |= ϕ
(G, h, χ) |= ϕ1 Uϕ2 iff for some i ≥ |h|, (G, λ(h, χ)≤i, χ) |= ϕ2,

and for all j, |h| ≤ j < i implies
(G, λ(h, χ)≤j , χ) |= ϕ1

(G, h, χ) |= 〈〈x〉〉ϕ iff for some strategy σ for every agent
in shr(x, ϕ), (G, h, χxσ) |= ϕ

(G, h, χ) |= (x, a)ϕ iff (G, h, χaχ(x)) |= ϕ

We write (G, h) |= ϕ to mean that (G, h, χ) |= ϕ for
every assignment χ. In particular, G |= ϕ iff (G, s0) |= ϕ.
Then, CGS G and G′ are logically equivalent (w.r.t. lan-
guage L) if for every formula ϕ ∈ L, G |= ϕ iff G |= ϕ.

We state without proof that the satisfaction of formulas
depends only on their free variables and agents, that is, if
assignments χ and χ′ coincide on free(ϕ), then (G, h, χ) |=
ϕ iff (G, h, χ′) |= ϕ. In particular, if ϕ is a sentence, then
(G, h) |= ϕ iff (G, h, χ) |= ϕ for some assignment χ.
Definition 8. Given two CGS G and G′, we say that G and
G′ are logically equivalent w.r.t. one of the above fragments
of SL iff for any closed formula ϕ and any strategy profiles
χ in G and χ′ in G′, we have that (G, s0, χ) |= ϕ if and
only if (G′, s′0, χ

′) |= ϕ.
Remark 9. Consider the following grammar:

ϕ ::= p | ¬ϕ | ϕ∧ϕ | Xϕ | ϕUϕ | 〈〈x〉〉(x, a1) . . . (x, ak)ϕ

where p ∈ AP, x ∈ Var, and a1, . . . , ak ∈ Ag.
We observe that every formula ϕ in SSL can be rewritten

as an equivalent formula ϕ′ in the grammar above. To check
this fact, notice that any SSL formula ℘[ϕ with

℘ = Qx1 . . . Qxk

[ = (x1, a1,1) . . . (x1, a1,m1) . . . (xk, ak,1) . . . (xk, ak,mk)

is equivalent to

Qx1(x1, a1,1) . . . (x1, a1,m1)

. . . Qxk(xk, ak,1) . . . (xk, ak,mk)ϕ



which is indeed a formula in the grammar above.
As an immediate consequence, every formula ϕ in SSL−

can be rewritten as an equivalent formula ϕ′ in the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | 〈〈x〉〉(x, a)ϕ

Since the two alternative grammars for SSL and SSL− are
equally expressive, we will use them interchangeably in the
rest of the paper, depending on which is more appropriate
for the task at hand (e.g., Def. 14).

The advantage of the present grammar is to show clearly
that in SSL and SSL− strategy variables are immediately
bound (i.e., assigned to agents) after being introduced
through quantification.
Example 10. To illustrate the formal machinery introduced
so far, we recall briefly the notion of game in normal form,
its encoding as a CGS, and the encoding of Nash Equilibria
(NE) in a game in normal form as a model checking problem
for CGS and SSL−.

A game in normal form is a tuple Γ =
(Ag, (Σa)a∈Ag, (va)a∈Ag), where (i) Ag is finite set of
agents, (ii) Σa is a set of actions for agent a ∈ Ag, and (iii)
va :

∏
a∈Ag Σa → Z with va(α) defining the outcome for

agent a of strategy profile α ∈ Σ =
∏
a∈Ag Σa.

Then, the set of (pure) Nash Equilibria (NE) for Γ is given
as

NE(Γ) =
{
α∈Σ | for all βa∈Σa, va(α−a, βa) ≤ va(α)

}
To such a game Γ we associate the following CGS

G(Γ) = 〈Ag,AP, S, s0, {Acta}a∈Ag, τ, L〉 where

• S = {s0} ∪ {(za)a∈Ag ∈ ZAg | for some α ∈
Σ, for all a ∈ Ag, va(α) = za}.

• Acta = Σa ∪ {nop}.
• For all α ∈ Σ, τ(s0, α) =

(
va(α)

)
a∈Ag and τ(v, α) = ∅.

Also, τ(s0, nop) = ∅, and τ(v, nop) = v for all v ∈ S,
v 6= s0.

• AP =
⋃
APa with APa =

{
paj | 2j ≤ KΓ

}
, where KΓ

is the maximal integer representing a state in S.
• For a given boolean combination η =

∧
j p

nj
aj over APa

with nj ∈ {−1, 1}, we denote as int(η) the integer value
with binary encoding pn0

a0 . . . p
nk
ak with k = logKΓ be-

ing the maximal index of atoms in APa. Conversely, for
each integer z we denote as enc(z) the boolean combi-
nation corresponding to the binary encoding of zZ over
k + 1 bits. Then, L(s0) = ∅ and L(z) = {paj |
paj occurs with positive power in enc(v)}.
Consider now the following formula in SSL−:

ϕΓ(~y) ::=
∧

z≤KΓ

enc(z)→
∧
a∈Ag

[[y′]](y′, a)
∨
z′≤z

enc(z′)

We immediately state the following remark:
Remark 11. An assignment χ : ~y 7→ (σa)a∈Ag satisfies for-
mula ϕΓ(~y) in state s0 iff the strategy profile (σa(s0))a∈Ag
is a NE for Γ, i.e.,

NE(Γ) =
{

(σa(s0))a∈Ag | (G(Γ), s0, χ) |= ϕΓ(~y)
}

In particular, fragment SSL− is expressive enough to de-
scribe NE. Incidentally, we observe that formulas ϕΓ(~y) for
NE live in the intersection between SSL− and the boolean-
goal fragment SL[BG]. Note that existence of NE can be en-
coded as SSL− formulas quadratic in the size of the normal-
form game, if integers are represented in unary.

2.3 A Comparison between SSL− and ATL∗sc
Above we said that fragments SSL, SSL−, and SSL−[1G]
have not been considered in the literature to our knowledge.
Actually, in this section we compare SSL− with the logic
ATL∗sc (Brihaye et al. 2009; Costa, Laroussinie, and Markey
2010; Laroussinie and Markey 2015), which is an extension
of the well-known Alternating-time Temporal Logic ATL∗

with strategy contexts. In particular, we prove that SSL− and
ATL∗sc are equally expressive. We follow (Laroussinie and
Markey 2015) in the presentation of ATL∗sc and refer to it
for a detailed discussion of the logic and its motivations.

Definition 12 (ATL∗sc). The state formulas φ and path for-
mulas ψ in ATL∗sc are defined as follows:

φ ::= p | ¬φ | φ ∧ φ | 〈·A·〉ψ | (|A|)φ
ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

where p ∈ AP and A ⊆ Ag.
ATL∗sc is the set of all and only state formulas.

We recall from (Laroussinie and Markey 2015) that for-
mula 〈·A·〉ψ intuitively means that coalition A has a joint
strategy such that, given the joint strategy currently played
by the complement coalition A, the outcome satisfies ψ. On
the other hand, formula (|A|)φ is read as “all outcomes ob-
tained by dropping the joint strategy currently played by
coalition A satisfy φ”.

To provide a formal semantics to ATL∗sc, given a joint
strategy σA for coalition A ⊆ Ag, we define the set
out(h, σA) of the outcomes of σA from history h as the set of
computations λ that start with h and are consistent with σA.
Given joint strategies σA and σB for possibly overlapping
coalitions A and B, the updated profile σA ◦ σB coincides
with σB on agents inB\A and with σA onA; while (σB)\A
denotes the restriction of σB to coalition B \A.

Definition 13 (Satisfaction). Let G be a CGS, λ a com-
putation, n ∈ N, and σB a joint strategy for coalition B.
We define the satisfaction relation |= by induction as fol-
lows (clauses for boolean operators are immediate, and thus
omitted):

(G, λ, n) |=σB p iff p ∈ L(λn)
(G, λ, n) |=σB Xψ iff (G, λ, n+ 1) |=σB ψ
(G, λ, n) |=σB ψUψ′ iff for some i ≥ n, (G, λ, i) |= ψ′, and

for all j, 0 ≤ j < i implies (G, λ, j) |= ψ
(G, λ, n) |=σB 〈·A·〉ψ iff for some joint strategy σA,

for every λ′ ∈ out(λ≤n, σA ◦ σB),
(G, λ′, n) |=σA◦σB ψ

(G, λ, n) |=σB (|A|)φ iff (G, λ, n) |=(σB)\A φ

The main result of this section states that ATL∗sc and SSL−

are actually equivalent formalisms. To prove this, we intro-
duce translations tr1 and tr2.



Definition 14. Consider the following translation functions
tr1 : SSL− → ATL∗sc and tr2 : ATL∗sc → SSL−, that are the
identity function on atoms (i.e., tr1(p) = tr2(p) = p, for p ∈
AP), commute with boolean operators and LTL modalities,
and for A = {a1, . . . , ak},
τ1(〈〈x〉〉(x, a)ϕ) = 〈·{a}·〉τ1(ϕ)
τ2(〈·A·〉ϕ) = 〈〈x1〉〉(x1, a1) . . . 〈〈xk〉〉(xk, ak)τ2(ϕ)
τ2((|A|)ϕ) = [[x1]](x1, a1) . . . [[xk]](xk, ak)τ2(ϕ)

Hereafter, given an assignment χ, σχ is the joint strategy
that assigns strategy χ(a) to each agent a ∈ Ag. Also, given
a joint strategy σA, χσA is any assignment that coincides
with σA on the agents in A.

We can now state the main equivalence result in this sec-
tion, a proof can be found in the accompanying document.

Proposition 15. Let G be a CGS.

1. For every history h, assignment χ, and SSL− formula ϕ,

(G, h, χ) |= ϕ iff (G, λ(h, χ), |h|) |=σχ tr1(ϕ)

2. For every joint strategy σB , computation λ ∈
out(λ≤n), σB), ATL∗sc formula φ, and assignment χσB ,

(G, λ, n) |=σB φ iff (G, λ≤n, χσB ) |= tr2(φ)

By Prop. 15 the logics SSL− and ATL∗sc are essentially
equivalent, and since both translations tr1 and tr2 are poly-
nomial functions, the complexity results available for ATL∗sc
apply to SSL− as well. On the other hand, the peculiar syn-
tax of SSL− makes the relationship with SL apparent, and it
prompts the question for languages between SSL− and SL,
including SSL. In Sec. 5 we will see that SSL is strictly more
expressive than SSL−, and therefore also than ATL∗sc.

3 Bisimulations for SL[1G] and SSL−[1G]
In this section we first introduce bisimulations that preserve
the fragments SL[1G] and SSL−[1G]. In particular, we show
that such bisimulations enjoy the Hennessy-Milner property.
In Sec. 5 we will apply them to the analysis of the expressive
power of these two fragments of SL.

3.1 Bisimulation Relations
We first define bisimulations for SSL−[1G] by
adapting a similar notion appearing in (Mo-
gavero 2013, Def. 3.3). Hereafter G = 〈Ag,AP,
S, s0, {Acta}a∈Ag, τ, L〉 and G′ = 〈Ag,AP, S′, s′0,
{Act′a}a∈Ag, τ ′, L′〉 are CGS defined on the same sets Ag
and AP of agents and atoms.

Definition 16 (SSL−[1G]-bisimulation). Let G and G′ be
CGS defined on the same sets Ag and AP of agents and
atoms. Then, G and G′ are SSL−[1G]-bisimilar iff there ex-
ists one relation ∼⊆ S × S′ between states, called bisimu-
lation relation, and a family of functions g = (ga)a∈Ag with
ga :∼→ 2Acta×Act

′
a , called bisimulation function, such that

1. s0 ∼ s′0;
2. for all s ∈ S, s′ ∈ S′, if s ∼ s′ then

(a) L(s) = L′(s′);

(b) for all a ∈ Ag, α ∈ Acta, there is α′ ∈ Act′a such that
(α, α′) ∈ ga(s, s′);

(c) for all a ∈ Ag, α′ ∈ Act′a, there is α ∈ ActA such that
(α, α′) ∈ ga(s, s′);

(d) for all ~α ∈ ACT , ~α′ ∈ ACT ′, if (~α, ~α′) ∈ ĝ(s, s′)

then τ(s, ~α) ∼ τ ′(s′, ~α′), where ĝ :∼→ 2ACT×ACT
′

is the pointwise lifting of g to joint actions, defined by
(̂g)(s, s′) =

{
(α, α′) | α ∈ ACT,α′ ∈ Act′ and ∀a ∈

Ag, (αa, α′a) ∈ ga(s, s′)
}

.

Hereafter we extend relation ∼ to histories by requiring
that for every h ∈ S+, h′ ∈ S′+, h ∼ h′ if |h| = |h′|
and hi ∼ h′i for all i ≤ |h|. Further, given assignments
χ, and χ′, we write ˆ̂g(χ, χ′) iff for every a ∈ Ag, h ∈
S+, h′ ∈ S′+, h ∼ h′ implies (χ(a)(h), χ′(a)(h′)) ∈
ga(last(h), last(h′)). That is, assignments χ and χ′ are re-
lated by ˆ̂g iff they return ga-related actions on bisimilar his-
tories, for every agent a ∈ Ag.

The following auxiliary lemma is key to prove the main
preservation result.

Lemma 17. For all histories h ∈ S+, h′ ∈ S′+, and assign-
ments χ, χ′, if h ∼ h′ and ˆ̂g(χ, χ′), then for every i ≥ |h|,
λ(h, χ)≤i ∼ λ(h′, χ′)≤i.

By using Lemma 17 we are able to prove the main preser-
vation result of this section.

Theorem 18. Given CGS G and G′, histories h ∈ S+,
h′ ∈ S′+ and assignments χ, χ′, if h ∼ h′ and ˆ̂g(χ, χ′),
then for every formula ϕ in SSL−[1G],

(G′, h′, χ′) |= ϕ iff (G, h, χ) |= ϕ

By Theorem 18 the notion of bisimulation in Def. 16 in-
deed preserves the interpretation of formulas in SSL−[1G].
To preserve the whole of SL[1G] we need to consider the
following strengthening of Def. 16.

Definition 19 (SL[1G]-bisimulation). Let G and G′ be CGS
defined on the same sets Ag and AP of agents and atoms.
Then, G and G′ are SL[1G]-bisimilar iff there are a bisim-
ulation relation ∼⊆ S × S′ between states, and for every
agent a ∈ Ag, a bisimulation function ga :∼→ 2Acta×Act

′
a

such that conditions 1, 2.(a), 2.(d) in Def 16 hold, while
conditions 2.(b) and 2.(c) are substituted by the following:

2. for all s ∈ S, s′ ∈ S′, if s ∼ s′ then
(b′) for all A ⊆ Ag, α ∈

⋂
a∈AActa, there is α′ ∈⋂

a∈AAct
′
a such that (α, α′) ∈ ga(s, s′) for every

a ∈ A;
(c′) for all A ⊆ Ag, α′ ∈

⋂
a∈AAct

′
a, there is α ∈⋂

a∈AActA such that (α, α′) ∈ ga(s, s′) for every
a ∈ A.

The stronger conditions 2.(b′) and 2.(c′) in Def. 19 re-
flect the fact that, differently from SSL−[1G], the syntax
of SL[1G] allows agents to share strategies. By using this
stronger notion of bisimulation we are able to prove the
preservation of formulas in SL[1G]. In particular, 2.(b′) and
2.(c′) are used to deal with formulas of type ϕ = ℘[ϕ′.



Theorem 20. Given CGS G and G′, histories h ∈ S+,
h′ ∈ S′+, and assignments χ, χ′, if h ∼ h′ and ˆ̂g(χ, χ′),
then for every formula ϕ in SL[1G],

(G, h, χ) |= ϕ iff (G′, h′, χ′) |= ϕ

By Theorem 18 and 20, SSL−[1G]- and SL[1G]-
bisimulations are sufficient to preserve the interpretation of
formulas in SSL−[1G] and SL[1G] respectively. In the fol-
lowing section we prove that they are also necessary.

3.2 Bisimulation Games and the HM Property
In this section we define bisimulation games for both SL[1G]
and SSL−[1G], we prove them equivalent to the bisimulation
relations in Def. 16 and 19, and finally we show that both
notions of bisimulation enjoy the Hennessy-Milner property.
Definition 21 (Bisimulation Game for SSL−[1G]). Given
CGS G and G′, defined on the same sets Ag of agents and
AP of atoms, we define the bisimulation game G(G,G′) as
a game between two players, Spoiler S and Duplicator D,
whose initial position is (s0, s

′
0), and in every position (s, s′)

of the game Spoiler and Duplicator play as follows:
1. Check whetherL(s) = L′(s′). If that is the case, the game

proceeds; otherwise, the game terminates and S wins.
2. For some agent a ∈ Ag, S picks either an action αa ∈
Acta or an action α′a ∈ Act′a.

3. If S picked an action in Acta, then D has to reply with
an action β′a ∈ Act′a; otherwise, D replies with an action
βa ∈ Acta

4. S and D continue to pick actions for all agents in Ag.
5. Finally, we end up with joint actions 〈α1, . . . , α|Ag|〉 in G

and 〈α′1, . . . , α′|Ag|〉 in G′. Then, (τ(s, 〈α1, . . . , α|Ag|〉),
τ ′(s′, 〈α′1, . . . , α′|Ag|〉)) is the new position of the game.

If the game does not terminate, then D wins. Otherwise,
the game reaches a position from which D cannot choose as
required, and S wins.

Next we prove that bisimulation relations and games are
equivalent characterisations of CGS.
Theorem 22. CGS G and G′ are bisimilar iff Duplicator
can win the bisimulation game G(G,G′).

Proof. ⇒ If G and G′ are bisimilar, then every position
(s, s′) visited during the game is such that s ∼ s′. This
is true for (s0, s

′
0). Further, at every position (s, s′) D can

match an action αa, for some agent a, with action α′a such
that either (αa, α

′
a) ∈ ga(s, s′) or (α′a, αa) ∈ ga(s, s′).

Such action exists by 2.(b) and 2.(c). Then, we obtain that
the new position (τ(s, ~α), τ ′(s′, ~α′)) of the game also sat-
isfies τ(s, ~α) ∼ τ ′(s′, ~α′) by 2.(d). Hence, D can win the
bisimulation game G(G,G′).
⇐We define a bisimulation relation∼⊆ S×S′ by setting

s ∼ s′ iff “(s, s′) is a winning position for D”, and for every
agent a ∈ Ag, ga is the function such that (α, α′) ∈ ga(s, s′)
iff “in state (s, s′) D can reply with action α (resp. α′) to ac-
tion α′ (resp. α)”. Clearly, all conditions 1 and 2.(a)-(d) on
bisimulation relations and functions are satisfied (otherwise
(s0, s

′
0) would not be a winning position for D), and there-

fore G and G′ are bisimilar.

As a consequence of Theorem 22, we obtain the converse
of Theorem 18.

Corollary 23. Bisimulations for SSL−[1G] enjoy the
Hennessy-Milner property. That is, if CGS G and G′

are logically equivalent w.r.t. SSL−[1G], then they are
SSL−[1G]-bisimilar.

Proof. By Theorem 22 if G and G′ are not bisimilar, then
S can win the game in a finite number of steps. By using
this finite play and reasoning along the lines of (Alur et al.
1998, Theorem 6) we can construct an SSL−[1G] formula
that is true in G but false in G′. Hence, the two CGS are not
logically equivalent.

Furthermore, we observe that bisimulation games can be
defined for SL[1G] as well. These are obtained by modifying
points (2) and (3) in Def. 21 as follows:

2′. For some coalitionA ⊆ Ag, S picks either an action αA ∈⋂
a∈AActa or an action α′A ∈

⋂
a∈AAct

′
a.

3′. If S picked an action in αA ∈
⋂
a∈AActa, then D has

to reply with an action β′A ∈
⋂
a∈AAct

′
a; otherwise, D

picks an action βA ∈
⋂
a∈AActa

Similarly to Theorem 22 and Corollary 23, we can then
prove that the CGS G and G′ are bisimilar for SL[1G] iff
Duplicator wins the bisimulation game G(G,G′). More-
over, bisimulations for SL[1G] also enjoy the Hennessy-
Milner property.

4 Bisimulations for SSL and SSL−

Here we put forward notions of bisimulation for SSL and
SSL−, then prove that they indeed preserve the interpreta-
tion of formulas in the relevant fragment. Differently from
the previous section, these bisimulations do not enjoy the
Hennessy-Milner property.

4.1 Bisimulation Relations
We start with the bisimulations for SSL−. Hereafter, given a
bisimulation relation ∼⊆ S×S′, let ∼ (s) = {s′ ∈ S | s ∼
s′} and ∼−1 (s′) = {s ∈ S | s ∼ s′}.

Definition 24 (SSL−-bisimulation). Let G and G′ be CGS
defined on the same sets Ag and AP of agents and atoms.
Then, G and G′ are SSL−-bisimilar iff there are a bisim-
ulation relation ∼⊆ S × S′ between states, and for every
agent a ∈ Ag, a bisimulation function ga :∼→ 2Act×Act

′

such that conditions 1, 2.(a), 2.(d) in Def 16 hold, while
conditions 2.(b) and 2.(c) are substituted by the following:

2. for all s ∈ S and s′ ∈ S′, if s ∼ s′ then
(b′′) For all a ∈ Ag, for all tuples 〈α1, . . . , α|∼−1(s′)|〉 ∈

Act
|∼−1(s′)|
a , there is α′ ∈ Act′a such that (αi, α

′) ∈
ga(si, s

′) for every i ≤ | ∼−1 (s′)|;
(c′′) For all a ∈ Ag, for all tuples 〈α′1, . . . , α′|∼(s)|〉 ∈

Act
′|∼(s)|
a , there is α ∈ Acta such that (α, α′i) ∈

ga(s, s′i) for every i ≤ | ∼ (s)|.



Def. 24 differs from Def. 16 as regards conditions 2.(b)
and 2.(c). In particular, we here require that if state s is
bisimilar with several states s1, . . . , sn, then for any choice
of actions α1, . . . , αn in s1, . . . , sn, there is a single action α
in s mimicking such a choice. This condition is key to prove
Lemma 25 below. Clearly, all CGS bisimilar according to
Def. 24 are also bisimilar for Def. 16. In particular, notice
that Lemma 17 still holds.

Lemma 25. If CGS G and G′ are SSL−-bisimilar, then for
every a-strategy σ in G there exists an a-strategy σ′ in G′

s.t. ˆ̂g(σ, σ′), and viceversa.

By Lemma 25 we are able to prove the main preservation
result of this section.

Theorem 26. Given CGS G and G′, histories h ∈ S+,
h′ ∈ S′+, and assignments χ, χ′, if h ∼ h′ and ˆ̂g(χ, χ′),
then for every formula ϕ in SSL−,

(G, h, χ) |= ϕ iff (G′, h′, χ′) |= ϕ

By Theorem 26 the bisimulations in Def. 24 preserve the
formulas in SSL−. We can now extend this result to SSL.

Definition 27 (SSL-bisimulation). Let G and G′ be CGS
defined on the same sets Ag and AP of agents and atoms.
Then, G′ and G are SSL-bisimilar iff there are a bisimula-
tion relation ∼⊆ S × S′, and for every agent a ∈ Ag, a
bisimulation function ga :∼→ 2Acta×Act

′
a such that condi-

tions 1, 2.(a), 2.(d) in Def 16 hold, while conditions 2.(b)
and 2.(c) are substituted by the following:

2. for all s ∈ S, s′ ∈ S′, if s ∼ s′ then
(b′′′) for all A ⊆ Ag, for all α1, . . . , α|∼−1(s′)| ∈⋂

a∈AActa, there is α′ ∈
⋂
a∈AAct

′
a such that

(αi, α
′) ∈ ga(si, s

′) for every a ∈ A, i ≤ | ∼−1 (s′)|;
(c′′′) for all A ⊆ Ag, for all α′1, . . . , α

′
|∼(s)| ∈

⋂
a∈AAct

′
a,

there is α ∈
⋂
a∈AActa such that (α, α′i) ∈ ga(s, s′i)

for every a ∈ A, i ≤ | ∼ (s)|.
As it was the case for Def. 19, the stronger conditions

2.(b′′′) and 2.(c′′′) in Def. 27 reflect the fact that, differently
from SSL−, the syntax of SSL allows agents to share strate-
gies. For this (stronger) notion of bisimulation we are able
to prove a version of Theorem 26 extended to SSL. In par-
ticular, conditions 2.(b′′′) and 2.(c′′′) are used to deal with
formulas of type ϕ = ℘[ϕ′.

Theorem 28. Given CGS G and G′, histories h ∈ S+,
h′ ∈ S′+, and assignments χ, χ′, if h ∼ h′ and ˆ̂g(χ, χ′),
then for every formula ϕ in SSL,

(G, h, χ) |= ϕ iff (G′, h′, χ′) |= ϕ

By Theorem 26 and 28, SSL−- and SSL-bisimulations
preserve formulas in SSL− and SSL respectively.

4.2 Failure of the HM Property
We now prove that, differently from the bisimulations in
Sec. 3, bisimulations for SSL and SSL− do not enjoy the
full Hennessy-Milner property, that is, the following holds.

s0

s1

s2p s3p

β

α1 α2

∗ ∗

s′0

s′1 s′′1

s′2p s′3p

β′ β′′

α′1

α′2

α′2

α′1

∗ ∗

Figure 2: the CGS G and G′ used in the proof of Lemma 29.

Lemma 29. There exists CGS that are logically equiva-
lent w.r.t. SSL (resp. SSL−), but are not bisimilar for SSL
(resp. SSL−).

Proof. First notice that for a single agent, the syntax of SSL
(and a fortiori SSL−) coincides with SSL−[1G]. Then, con-
sider the CGS depicted in Fig. 2 for Ag = {1}, and define re-
lation ∼= {(s0, s

′
0), (s1, s

′
1), (s1, s

′′
1), (s2, s

′
2), (s3, s

′
3)} on

S × S′, and function g1 :∼→ 2Act1×Act
′
1 such that

g1(s0, s
′
0) = {(β, β′), (β, β′′)}

g1(s1, s
′
1) = g1(s1, s

′′
1) = {(α1, α

′
1), (α2, α

′
2)}

g1(s2, s
′
2) = g1(s3, s

′
3) = {(∗, ∗)}

Clearly, ∼ is a bisimulation relation on S × S′ and g1

is a bisimulation function for agent 1 according to Def. 16.
Hence, by Theorem 18 the same formulas in SSL−[1G] are
true in s0 and s′0, and therefore in SSL (and SSL−), as all
these logics coincide for the single agent case.

However, CGS G and G′ are not bisimilar for SSL− (and
a fortiori for SSL). Specifically, notice that s1 ∼ s′1 and
s1 ∼ s′′1 . But there is no α ∈ Act1 such that both (α, α′1) ∈
g1(s1, s

′
1) and (α, α′2) ∈ g1(s1, s

′′
1).

Remark 30. Note that this negative result is not related with
Theorem 3 from (Gutierrez et al. 2017), which is about la-
beled bisimilarity. To see this, note that the two CGS in Fig. 2
are labeled bisimilar in the sense of (Gutierrez et al. 2017).

5 Expressivity and Verification
We now make use of the bisimulations introduced in Sec. 3
and 4 to analyse the expressive power of the various frag-
ments of SL. We first introduce a notion of being at least as
expressive as for logics.

Definition 31 (at least as expressive as). A logic L is at least
as expressive as a logic L′, or L′ ≤ L, iff for every ϕ′ ∈ L′
there exists ϕ ∈ L such that ϕ and ϕ′ are logically equiva-
lent.

Logics L and L′ are equally expressive, or L ≡ L′, iff
L ≤ L′ and L′ ≤ L. Finally, L is strictly more expressive
than L′, or L′ < L, iff L′ ≤ L but L′ 6≡ L. Clearly, ≤
and < are a partial and strict order respectively (hence the
notation).
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Figure 3: the CGS G3 and G4 in the proof of Lemma 32.1.

5.1 Inclusions
Hereafter we show that for all fragments of SL but the
nested- and boolean-goal fragments, relation < matches the
syntactic inclusions in Fig. 1, as reported in Fig. 4. We do
not state results for the nested- and boolean-goal fragments,
as these are outside the scope of the present paper.

We first show that SL[1G] is strictly more expressive than
SSL−[1G], and SSL− < SSL < SL.
Lemma 32. The following holds:

1. SSL−[1G] < SL[1G]

2. SSL < SL

3. SSL− < SSL

Proof. (1) Clearly, SSL−[1G] ≤ SL[1G], so we
prove that SL[1G] 6≤ SSL−[1G]. Consider the
CGS G3 = 〈Ag,AP, S, s0, {Acta}a∈Ag, τ3, L〉 and
G4 = 〈Ag,AP, S, s0, {Acta}a∈Ag, τ4, L〉 in Fig. 3, with
Ag = {1, 2}, AP = {p}, Act0 = Act1 = {α, β},
S = {s0, s1, s

′
1}, and L(s1) = {p}, L(s) = ∅ for all other

s ∈ S.
We can see that G3 and G4 are SSL−[1G]-bisimilar by as-

suming ∼ {(s, s) | s ∈ S}, g1(s, s) = {(c, c) | c ∈ Act1 =
Act2}, for every s ∈ S, and g2(s0, s0) = {(α, β), (β, α)}.
Hence, by Theorem 20, G3 and G4 satisfy the same formu-
las in SSL−[1G]. However, G3 satisfies the SL[1G]-formula
ψ = 〈〈x〉〉(x, 1)(x, 2)X p, while G4 does not. Thus, ψ has
no equivalent in SSL−[1G].

(2) The inclusion SSL ≤ SL is immediate. To prove that
SL 6≤ SSL, consider the following formula in SL:

φ = 〈〈x〉〉
(
〈〈y〉〉(y, a)X(x, a)X p ∧ 〈〈y〉〉(y, a)X(x, a)X¬p

)
Then, consider again the single-agent CGS in Fig. 2, which
were proved to be SSL−[1G]-isomorphic in the proof of
Lemma 29. In particular, the same formulas in SSL are
true in s0 and s′0, as SSL−[1G] and SSL coincide syntacti-
cally for the single-agent case. However, we can check that
(G, s0) 6|= φ, but (G′, s′0) |= φ. As to the latter, substi-
tute variable x with strategy σ such that σ(s′1) = α′1 et
σ(s′′1) = α′2. As a result, φ has no equivalent formula in
SSL.

(3) Again, SSL− ≤ SSL. As regards SSL 6≤ SSL−, ob-
serve that the CGS G3 and G4 in Fig. 3 are SSL−-bisimilar
as well, but as remarked above, they satisfy different formu-
las in SL[1G], and therefore in SSL.

Next we state that logics SL[1G] and SSL− are incom-
parable. A formal proof can be found in the accompanying
document.

SL
Tower-c

(Mogavero et al. 2014)
SSL
SSL− (Laroussinie and Markey 2015)
SL[1G] 2EXPTIME-c (Mogavero et al. 2014)
SSL−[1G]

Table 1: Complexity results for the model checking problem.

Lemma 33. The following holds:
1. SL[1G] 6≤ SSL−

2. SSL− 6≤ SL[1G]

The results of this section allow us to answer two funda-
mental questions left open for years about Strategy Logic.
Firstly, the main difference between the two versions of
Strategy Logic introduced in (Chatterjee, Henzinger, and
Piterman 2010) and (Mogavero et al. 2014) respectively is
that the former does not allow the sharing of strategies, while
the latter instead does. A natural question is: does this fea-
ture really add expressive power to SL? here we answered
positively this question as regards fragments SL[1G] and
SSL− = ATL∗sc.

Secondly, ATL∗sc and SL share similar capabilities (e.g.,
they can both express Nash Equilibria) and complexity re-
sults regarding the model checking and the satisfiability
problems (Laroussinie and Markey 2015). For a long time
there has been a discussion as to whether SL is more expres-
sive than ATL∗sc. The results in this section answer positively
also this second question.

5.2 The Model Checking Problem
We now analyse the model checking problem in the light of
the expressivity results in the previous section. First of all,
we state formally this problem for a logic L.

Definition 34 (Model-checking for L). Given a CGS G and
a formula φ in L, determine whether G |= φ.

We recall that model checking both SL and ATL∗sc is
Tower-complete (Mogavero et al. 2014; Laroussinie and
Markey 2015). Given the (linear) translations between
ATL∗sc and SSL− in Sec. 2.3, it follows that also the model
checking problems for SSL− and SSL are Tower-complete.

Further, in (Mogavero et al. 2014) the verification of
SL[1G] is shown to be 2EXPTIME-complete, and above
we remaked that SSL−[1G] is at least as expressive as
ATL∗, since the strategic operator 〈〈A〉〉 can be translated as
〈〈~x〉〉(~x,A)[[~y]](~y,Ag \ A). As a consequence, model check-
ing SSL−[1G] is 2EXPTIME-complete as well (Alur, Hen-
zinger, and Kupferman 2002).

We summarize these complexity results for the model
checking problem in Table 1. As a consequence, we obtain
that there is no truth-preserving translation from SSL− to
SSL−[1G], neither from SSL to SL[1G]. Hence, we have the
following immediate corollary on expressivity:

Corollary 35. SSL−[1G] < SSL− and SL[1G] < SSL

Finally, we summarize the expressity results for the var-
ious fragments of SL in Fig. 4. Notice that the (strict) or-
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SSL

SL[1G] SSL−

SSL−[1G]

Figure 4: the partial order < for fragments of SL.

der between fragments mimicks the syntactic inclusions in
Fig. 1.

5.3 Elimination of Dominated Strategies
We conclude this section by providing an application of our
model-theoretic results on bisimulations to a game-theoretic
context. Hereafter we prove that the elimination of strictly
dominated strategies generates SSL−-bisimilar game struc-
tures. Since Nash Equilibria are expressible in SSL− (Ex-
ample 10), we obtain a new, model-theoretic proof of the
well-known result on the preservation of Nash Equilibria un-
der the elimination of strictly dominated strategies (Osborne
2004, Lemma 60.1). We fist show that payoffs in games in
normal form can be encoded in a “canonical” representation.

Recall that, given a game in normal form Γ =
(Ag, (Σa)a∈Ag, (va)a∈Ag) and, for some agent a ∈ Ag, two
strategies αa, βa ∈ Σa, we say that αa is dominated by βa
if for any strategy profile γ ∈

∏
a∈Ag Σa, with γa = αa,

we have that va(γ) < va(γ−a, βa), where (γ−a, βa) is the
strategy profile obtained by substituting αa with βa in γ.
Lemma 36. Let Γ = (Ag, (Σa)a∈Ag, (va)a∈Ag) be a game
in normal form, where every va is strictly positive and
there are actions βa, γa such that βa is strictly dominated
by γa. Then, consider the game in normal form Γ′ =
(Ag, (Σa)a∈Ag, (v

′
a)a∈Ag), where v′a(α) = 2 · va(α) + 1

for every α ∈ Σ =
∏
a∈Ag Σa such that αa 6= βa, and

v′a(α) = 2 ·va(α) for αa = βa. Then, the Nash Equilibria of
both games Γ and Γ′ are the same, i.e., NE(Γ) = NE(Γ′).

The main result of this section is the following:
Proposition 37. Consider game Γ′, obtained from game
Γ as per Lemma 36, and the corresponding CGS G(Γ′)
defined as in Example 10. Define further game G′′ =
〈Ag,AP, S′′, s0, {Act′′a}a∈Ag, τ

′′, L′′〉 with S′′ = S \ {v ∈
S | v is odd }, Act′′b = Σb ∪ {nop} for every b 6= a, and
Act′′a = (Σa ∪{nop}) \ {βa}; and let τ ′′, L′′ be the restric-
tions of τ , L on G′′.

Now consider the tuple (∼, (ga)a∈Ag) defined as follows:

• s0 ∼ s0, v ∼ v for each v ∈ S ∩S′′, and 2v+ 1 ∼ 2v for
each integer v such that 2v, 2v + 1 ∈ S′′.

• For every s ∈ S, b ∈ Ag, gb(s, s) = diag(Actb), i.e.,
the identity relation on ACTb; and ga(2v + 1, 2v) =
{(βa, βa), (γa, βa)}.

• AP ′′ = {pbj | b = a implies j ≥ 1}.

Then, (∼, (ga)a∈Ag) is an SSL−-bisimulation over the set
AP ′′ of atoms.

Intuitively, Prop. 37 states that, in the CGS G(Γ′) cor-
responding to the modified game Γ′, the dominated action
γa can be removed by identifying it with βa, and redirect-
ing each transition which leaves s0 with a joint action α,
for αa = γa, to the state representing the value v + 1,
where v = va(α). This is consistent, as in Γ′ we have
va(α−a, βa) = v + 1 by construction.

The proof works by a simple verification of the condi-
tions on SSL−-bisimulations in Definition 24. We here pro-
vide a sketch. Note that the bisimulation relation ∼ is in-
deed the identity, except for the case of tuples (2v + 1, 2v)
of states, which corresponds to the outcomes of tuples of
actions containing βa, resp. γa. By construction, these tu-
ples (2v + 1, 2v) are identically labeled over AP ′′, since
the least significant bit in the base 2 expansion of 2v, resp.
2v+ 1, is ignored. Hence, all the other bits of the two base 2
expansions are identical. Property 2.(d) only needs check-
ing for the case (βa, γa), which holds since by construc-
tion, τ(s0, (α−a, βa)) = 2v + 1 ∼ 2v = τ(s0, (α−a, γa).
Condition 2.(b”) holds trivially, and condition 2.(c”) only
needs to be checked for tuple (βa, γa), which is the only
case when some ∼−1 (s′) is not a singleton. For such cases
2.(c”) holds since we have both (βa, γa) ∈ g(s0, s0) and
(γa, γa) ∈ g(s0, s0).

As a result, G(Γ) and G′′ are bisimilar and they satisfy
the same formulas in SSL−. Since Nash Equilibria are ex-
pressible in SSL−, in particular NE(G(Γ)) = NE(G′′).
That is, Nash Equilibria are indeed preserved by the elimina-
tion of strictly dominated strategies (Osborne 2004, Lemma
60.1).

6 Conclusions
In this paper we contributed to the model theory of logics for
strategies, which is a topic of growing interest in the commu-
nity on formal verification of multi-agent systems. Specifi-
cally, we provided a unified framework for several relevant
fragments of Strategy Logic, some of which have already
been considered in the literature (SL[1G]), while others were
introduced here for the first time (SSL, SSL−, SSL−[1G]).
For all these fragments we defined notions of bisimulation
and proved that they preserve the interpretation of formu-
las in the corresponding fragment. We also showed that the
bisimulations for SL[1G] and SSL−[1G] enjoy the Hennessy-
Milner property; while for SSL and SSL− it fails. Then, we
applied these theoretical results to the analysis of the expres-
sive power of the fragments of SL, including their model
checking problems. We showed that SSL− is the fragment
of Strategy Logic equivalent to Alternating-time Temporal
Logic with strategy contexts (ATL∗sc). In general, we proved
that the relative expressivity matches language inclusions,
and that the complexity of model checking splits our family
of logics in two: SSL and SSL− are Tower-complete, while
SL[1G] and SSL−[1G] are 2EXPTIME-complete. In partic-
ular, there seems to be a relation between the complexity
of model checking and the failure of the Hennessy-Milner
property. Finally, we illustrated the usefulness of our model-



theoretic results by proving that the elimination of domi-
nated strategies, a game-theoretic notion, generates SSL−-
bisimilar game structures. Results along this line might point
to interesting relationships between Game Theory and logics
for strategies.

In future work we plan to address the issue of bisimu-
lations for fragments of Strategy Logic between SL and
SL[1G], including the nested- and boolean-goal fragments
SL[NG] and SL[BG]. Also, it is of interest to refine our
notions of bisimulation for SSL and SSL−, in order to obtain
the Hennessy-Milner property, or to identify fragments be-
tween SSL− and SSL−[1G] for which it holds, possibly with
an elementary model checking problem. We expect that
these notions of bisimulation, together with the appropriate
Hennessy-Milner properties, help identifying fragments
in which the existence of a Nash Equilibrium cannot be
expressed. Further, we plan to study the bisimulation for
SL in the context of imperfect information, in both cases of
perfect and imperfect recall (Belardinelli et al. 2017; 2017;
Berthon et al. 2017; Cermák et al. 2018). Finally, we aim
at developing abstraction and refinement techniques for
application to system verification.
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