Additional Winning Strategies in Reachability Games*†

Vadim Malvone
Università degli Studi di Napoli Federico II
vadim.malvone@unina.it

Aniello Murano
Università degli Studi di Napoli Federico II
murano@na.infn.it

Loredana Sorrentino
Università degli Studi di Napoli Federico II
loredana.sorrentino@unina.it

Abstract. In game theory, deciding whether a designed player wins a game amounts to check whether he has a winning strategy. However, there are several game settings in which knowing whether he has more than a winning strategy is also important. For example, this is crucial in deciding whether a game admits a unique Nash Equilibrium, or in planning a rescue as this would provide a backup plan.

In this paper we study the problem of checking whether, in a two-player reachability game, a designed player has more than a winning strategy. We investigate this question both under perfect and imperfect information about the moves performed by the players. We provide an automata-based solution that results, in the perfect information setting, in a linear-time procedure; in the imperfect information setting, instead, it shows an exponential-time upper bound. In both cases, the results are tight.

Keywords: Additional Strategies; Two-Player Reachability Games; Graded Modalities; Imperfect Information

Address for correspondence: Università di Napoli Federico II, Department DIETI, Via Claudio, n.21, 80125, Napoli, Italy.
*Partially supported by the GNCS 2016 project: Logica, Automi e Giochi per Sistemi Auto-adattivi.
†This is an extended version of the work [1] appearing in the Proc. of CILC 2015, the 30th Italian Conf. on Computational Logic.
1. Introduction

Game theory is a powerful mathematical framework to reason about reactive systems [2]. Over the years, it has been usefully applied in several different domains. In economics, it is used to deal with solution concepts such as Nash equilibrium [3]. In biology, it is used to reason about the phenotypic evolution [4]. In computer science, it is applied to solve problems in robotics, multi-agent system verification, synthesis, and planning [5][6][7].

In the basic setting, a (finite) game consists of two players, conventionally named Player\(_0\) and Player\(_1\), playing a finite number of times, in a turn-based manner, i.e., the moves of the players are interleaved. Technically, the configurations (states) of the game are partitioned between Player\(_0\) and Player\(_1\) and a player moves in a state whenever he owns it. Solving a two-player game amounts to check whether Player\(_0\) has a winning strategy. That is, to check whether he can take a sequence of move actions (a strategy) that allows him to satisfy the game objective, no matter how his opponent plays.

Depending on the visibility the players have over the action moves performed by their opponents, we distinguish between perfect and imperfect information games. In the former case, both players have full knowledge of the evolution of the game, in every moment. This may not be possible in the latter case where players often have to make decisions without having all relevant information at hand. Both settings have been largely investigated in the literature with several real-life applications. A classic approach suitable to model both is to make use of a relation of indistinguishability on the action moves/configurations of the arena [8][9][10][11][12]. In this case, during a play, it may happen that a player cannot tell precisely in which state he is, but rather he observes a set of states. This means that over indistinguishable scenarios a player is forced to use the same strategy. Straightforwardly, the perfect information setting corresponds to just using the identity relation.

In several game settings, it is mandatory to have a more precise (quantitative) information about how many winning strategies a player has at his disposal. For example, in Nash Equilibrium, such an information amounts to solve the challenging question of checking whether the equilibrium is unique [13][14][15][16][17][18][19][20][21]. This problem impacts on the predictive power of Nash Equilibrium since, in case there are multiple equilibria, the outcome of the game cannot be uniquely pinned down [22][23][24]. As another example, consider the setting of robot rescue planning [25][26][27]. It is not hard to imagine situations in which it is vital to know in advance whether a robot team has more than a winning strategy from a critical stage, just to have a backup plan in case an execution of a planned winning strategy cannot be executed anymore. Such a redundancy allows to strengthen the ability of winning the game and, specifically, the rescue capability.

In this paper, we address the quantitative question of checking whether Player\(_0\) has more than a strategy to win a finite two-player game \(G\). We investigate this problem under the reachability objective, i.e. some states of the game arena are declared target. We consider both the cases in which the players have perfect or imperfect information about the moves performed by their opponent. We solve the addressed problem by using an automata-theoretic approach. Precisely, we build an automaton that accepts only trees that are witnesses of more than one winning strategy for the designed player over the game \(G\). Hence, we reduce the addressed quantitative question to the emptiness of this automaton. Our automata solution mainly consists in extending the classic approaches by further individuating a place where Player\(_0\) has the ability to follow two different ways (i.e., strategies) to reach a target state. While this may look simple in the perfect information setting, in the imperfect case it requires some careful thoughts. Furthermore, in support to the technical contribution of our solution we observe the following: (i) it is an use of automata
and an extension of previous approaches never explored before; (ii) it provides an elegant solution; (iii) it is an optimal solution as it gives a tight upper bound, (iv) it is an easy scalable solution, as one can easily inject more sophisticated solution concepts such as safety, fairness, etc.

By means of the automata-theoretic approach, one can also check for other “forms” of additional winning conditions. For example one can check whether Player\(_0\) can win against all but one Player\(_1\) strategies. This is intimately related to the concept of almost surely-winning in probabilistic games [28]. As a practical application, this is useful in game design as it can highlight the presence of a unique undesired behavior of the adversarial player and possibly suggest a way to prevent it. Similarly, it is useful in security; for example it can highlight a flow in a firewall (a successful attack coming from the environment) and suggest a way to correct it. Technically, the solution to the question “Does Player\(_0\) beat all Player\(_1\) strategies but one?” reduces to first build an automaton that collects all tree strategies for Player\(_0\) that, except for one path, they correspond to winning strategies, and then check for its non-emptiness.

In a broader vision, the importance of our work resides on the fact that it can be seen as a core engine and as a first step through the efficient solution of important problems in computer science and AI. Among the others, we mention checking the uniqueness of Nash Equilibrium under imperfect information for reachability targets. This field has received much attention recently and some results can be found in top venues such as [29, 30]. However, all the approaches used in the mentioned papers lead to a non-elementary complexity, as they are shaped for very reach strategic formalisms to represent the solution concepts, and thus far beyond the tight complexity we achieve instead in this work.

Along the paper we make use of some cooperative and adversarial game examples that will help to better explain the specific game setting we are studying and the solution approaches we provide.

Related works. Counting strategies has been deeply exploited in the formal verification of reactive systems by means of specification logics extended with graded modalities, interpreted over games of infinite duration [31, 32, 20, 21]. However, our work is the first to consider additional winning strategies in the imperfect information setting. Also, it is worth recalling that, on the perfect information side, the solution algorithms present in the literature for graded modalities [20, 21] have been conceived to address complicated scenarios and, consequently, they usually perform much worse (w.r.t. the asymptotic complexity) than our algorithm on the restricted setting we consider. Clearly one can express with graded modalities the existence of additional strategies in a game. To see how this is possible we refer to [21] for an example in the perfect information setting.

graded \(\mu \)CALCULUS has been introduced in order to express and evaluate statements about a given number of immediately accessible worlds. Successively in [41], the notion of graded modalities have been extended to deal with number of paths. Among the others graded CTL (GCTL, for short) has been introduced with a suitable axiomatization of counting [41]. That work has been recently extended in [42] to address GCTL\(^*\), a graded extension of CTL\(^*\).

In this work we analyze and compare different strategies in two-player games. The comparison
between strategies is a problematic that has been intensively investigated in other works. Among the others, we mention [43], where the concept of permissive strategies has been introduced. However, the aim of that paper is to compare strategies in order to come up with a single strategy that allows to represent all of them by one.

In multi-player system verification, we also witness several specific approaches to count strategies. Chronologically, we first mention module checking for graded μCALCULUS [32], where the counting is restricted to moves in a two-player setting. Then, in [20, 21], motivated by counting Nash equilibria, two different graded extension of Strategy Logic have been considered. We finally remark that the automata-theoretic solution we provide takes inspiration from the ones used in [8, 32, 41, 44, 45]. In details, in [8] such a technique is used to show that the problem is ExpTime-complete w.r.t. CTL formulas and 2ExpTime-complete w.r.t. CTL* formulas. In [32], an automata-theoretic approach is used to show that the same problem over pushdown structures and graded μCALCULUS formulas is 2ExpTime-complete. In [41], automata are used to show that graded CTL formulas are satisfiable in exponential time. In [44], efficient algorithms for the emptiness problem of word and tree automata are provided. Finally, in [45], alternating tree automata are used in the imperfect information case on the synthesis problem. However, our solution is much more efficient since it is directly constructed for the simpler setting of two-player turn-based games of finite duration, played with respect to the reachability objective.

Outline. The sequel of the paper is structured as follows. In Section 2 we introduce some preliminary concepts. In Section 3 we describe two examples that are useful to introduce our game setting. In Section 4 we introduce the definition of game under perfect information and in Section 5 we solve the additional winning strategies problem by means of an automata-theoretic approach. In Section 6 we consider imperfect information and in Section 7 we give some solutions for this game setting. We conclude with Section 8 in which we report some discussions and suggest some directions for future work.

2. Preliminaries

In this section we introduce some preliminary concepts needed to properly define the game setting under exam as well as to describe the adopted solution approach. In particular, we introduce trees useful to represent strategies and automata to collect winning strategies.

Trees. Let Υ be a set. An Υ-tree is a prefix closed subset $T \subseteq \Upsilon^*$. The elements of T are called nodes and the empty word ε is the root of T. For $v \in T$, the set of children of v (in T) is $\text{child}(T, v) = \{v \cdot x \in T \mid x \in \Upsilon\}$. Given a node $v = y \cdot x$, with $y \in \Upsilon^*$ and $x \in \Upsilon$, we define $\text{anc}(v)$ to be y, i.e., the ancestors of v, and $\text{last}(v)$ to be x. We also say that v corresponds to x. The complete Υ-tree is the tree Υ^*. For $v \in T$, a (full) path π of T from v is a minimal set $\pi \subseteq T$ such that $v \in \pi$ and for each $v' \in \pi$ such that $\text{child}(T, v') \neq \emptyset$, there is exactly one node in $\text{child}(T, v')$ belonging to π. Note that every word $w \in \Upsilon^*$ can be thought of as a path in the tree Υ^*, namely the path containing all the prefixes of w. For an alphabet Σ, a Σ-labeled Υ-tree is a pair $<T, V>$ where T is an Υ-tree and $V : T \rightarrow \Sigma$ maps each node of T to a symbol in Σ.
Automata Theory. We now recall the definition of alternating tree automata and its special case of nondeterministic tree automata [46, 47, 48].

Definition 2.1. An alternating tree automaton (ATA, for short) is a tuple \(A = < \Sigma, D, Q, q_0, \delta, F > \), where \(\Sigma \) is the alphabet, \(D \) is a finite set of directions, \(Q \) is the set of states, \(q_0 \in Q \) is the initial state, \(\delta : Q \times \Sigma \rightarrow \mathcal{B}^+(D \times Q) \) is the transition function, where \(\mathcal{B}^+(D \times Q) \) is the set of all positive Boolean combinations of pairs \((d, q)\) with \(d\) direction and \(q\) state, and \(F \subseteq Q \) is the set of the accepting states.

An ATA \(A \) recognizes (finite) trees by means of (finite) runs. For a \(\Sigma \)-labeled tree \(< T, V > \), with \(T = D^* \), a run is a \((D^* \times Q)\)-labeled \(N \)-tree \(< T_r, r > \) such that the root is labeled with \((\varepsilon, q_0)\) and the labels of each node and its successors satisfy the transition relation.

For example, assume that \(A \), being in a state \(q \), is reading a node \(x \) of the input tree labeled by \(\xi \). Assume also that \(\delta(q, \xi) = ((0, q_1) \lor (1, q_2)) \land (1, q_1) \). Then, there are two ways along which the construction of the run can proceed. In the first option, one copy of the automaton proceeds in direction 0 to state \(q_1 \) and one copy proceeds in direction 1 to state \(q_1 \). In the second option, two copies of \(A \) proceed in direction 1, one to state \(q_1 \) and the other to state \(q_2 \). Hence, \(\lor \) and \(\land \) in \(\delta(q, \xi) \) represent, respectively, choice and concurrency. A run is accepting if all its leaves are labeled with accepting states. An input tree is accepted if there exists a corresponding accepting run. By \(L(A) \) we denote the set of trees accepted by \(A \). We say that \(A \) is not empty if \(L(A) \neq \emptyset \).

As a special case of alternating tree automata, we consider nondeterministic tree automata (NTA, for short), where the concurrency feature is not allowed. That is, whenever the automaton visits a node \(x \) of the input tree, it sends to each successor (direction) of \(x \) at most one copy of itself. More formally, an NTA is an ATA in which \(\delta \) is in disjunctive normal form, and in each conjunctive clause every direction appears at most once.

3. Case Studies

In this section we introduce two different case studies of two-player games. In the first case the players behave adversarial. In the second one, they are cooperative. These running examples are useful to better understand some technical parts of our work.

3.1. Cop and Robber Game.

Assume we have a maze where a cop aims to catch a robber, while the latter, playing adversarial, aims for the opposite. For simplicity, we assume the maze to be a grid divided in rooms, each of them named by its coordinates in the plane (see Figure 1). Each room can have one or more doors that allow the robber and the cop to move from one room to another. Each door has associated a direction along with it can be crossed. Both the cop and the robber can enter in every room. The cop, being in a room, can physically block only one of its doors or can move in another room. The robber can move in another room if there is a non-blocked door he can take, placed between the two rooms, with the right direction. The robber wins the game if he can reach one of the safe places (EXIT) situated in the four corners of the maze. Otherwise, the robber is blocked in a room or he can never reach a safe place, and thus the cop wins the game. We assume that both the cop and the robber are initially sitting in the middle of the maze, that is in the room \((1, 1)\). It important to note that the game is played in a turn-based manner, and the cop is the first player.
that can moves. Starting from the maze depicted in Figure 1 one can see that the robber has only one strategy to win the game. In fact, if the cop blocks the door d_7 (resp., d_9), the robber can choose the door d_9 (resp., d_7), then the cop can go in the room $(1, 2)$ (resp., $(2, 1)$), and finally the robber can choose the door d_{12} (resp., d_{10}) and then wins the game. Consider now two orthogonal variations of the maze. For the first one, consider flipping the direction of the door d_{12}. In this case, the robber loses the game. As second variation, consider flipping the direction of the door d_6. Then the robber wins the game and he has now two strategies to accomplish it.

3.2. Escape Game.

Assume we have an arena similar to the one described in the previous example, but now with a cooperative interaction between two players, a human and a controller, aiming at the same target. Precisely, consider the arena depicted in Figure 1 representing a building where a fire is occurring. The building consists of rooms and, as before, each room has one-way doors and its position is determined by its coordinates. We assume that there is only one exit in the corner $(2, 2)$. One can think of this game as a simplified version of an automatic control station that starts working after an alarm fire occurs and all doors have been closed. Accordingly, we assume that the two players play in turn and at the starting moment all doors are closed. At each control turn, he opens one door of the room in which the human is staying. The human turn consists of taking one of the doors left open if its direction is in accordance with the move. We assume that there is no communication between the players. We start the game with the human sitting in the room $(0, 0)$ and the controller moving first. It is not hard to see that the human can reach the exit through the doors d_1, d_4, d_7, d_{10} opened by the controller. Actually, this is the only possible way the human has to reach the exit. Conversely, if we consider the scenario in which the direction of the door d_3 is flipped, then there are two strategies to let the human to reach the exit. Therefore, the latter scenario can be considered as better (i.e., more robust) than the former. Clearly, this extra information can be used to improve an exit fire plan at its designing level.
4. The Game Model

In this section, we consider two-player turn-based games that are suitable to represent the case studies we have introduced in the previous section. Precisely, we consider games consisting of an arena and a target. The arena describes the configurations of the game through a set of states, being partitioned between the two players. In each state, only the player that owns it can take a move. This kind of interaction is also known as token-passing. About the target, we consider the reachability objective, that is some states are declared target. The formal definition of the considered game model follows.

Definition 4.1. A turn-based two-player reachability game (2TRG, for short), played between Player$_0$ and Player$_1$, is a tuple $G \triangleq <St, s_I, Ac, tr, W>$, where $St \triangleq St_0 \cup St_1$ is a finite non-empty set of states, with St_i being the set of states of Player$_i$, $s_I \in St$ is a designated initial state, $Ac \triangleq Ac_0 \cup Ac_1$ is the set of actions, W is a set of target states, and $tr : St_i \times Ac_i \rightarrow St_{1-i}$, for $i \in \{0, 1\}$ is a transition function mapping a state of a player and its action to a state belonging to the other player.

To give the semantics of 2TRGs, we now introduce some basic concepts such as track, strategy and play. Intuitively, tracks are legal sequences of reachable states in a game that can be seen as descriptions of possible outcomes of the game.

Definition 4.2. A track is a finite sequence of states $\rho \in St^*$ such that, for all $i \in [0, |\rho - 1|]$, if $(\rho)_i \in St_0$ then there exists an action $a_0 \in Ac_0$ such that $(\rho)_{i+1} = tr((\rho)_i, a_0)$, else there exists an action $a_1 \in Ac_1$ such that $(\rho)_{i+1} = tr((\rho)_i, a_1)$, where $(\rho)_i$ denotes the i-st element of ρ. For a track ρ, by last(ρ) we denote the last element of ρ and by $\rho_{\leq i}$ we denote the prefix track $(\rho)_0 \ldots (\rho)_i$. By $Trk \subseteq St^*$, we denote the set of tracks over St. By Trk_i we denote the set of tracks ρ in which last(ρ) $\in St_i$. For simplicity, we assume that Trk contains only tracks starting at the initial state $s_I \in St$.

A strategy represents a scheme for a player containing a precise choice of actions along an interaction with the other player. It is given as a function over tracks. The formal definition follows.

Definition 4.3. A strategy for Player$_i$ in a 2TRG G is a function $\sigma_i : Trk_i \rightarrow Ac_i$ that maps a track to an action.
The composition of strategies, one for each player in the game, induces a computation called play. More precisely, assume Player$_0$ and Player$_1$ take strategies σ_0 and σ_1, respectively. Their composition induces a play ρ such that $(\rho)_0 = s_I$ and for each $i \geq 0$ if $(\rho)_i \in \text{St}_0$ then $(\rho)_{i+1} = \text{tr}((\rho)_i, \sigma_0(\rho_{\leq i}))$, else $(\rho)_{i+1} = \text{tr}((\rho)_i, \sigma_1(\rho_{\leq i}))$.

A strategy is winning for a player if all the plays induced by composing such a strategies with strategies from the adversarial player will enter a target state. If such a winning strategy exists we say that the player wins the game. Reachability games under perfect information are know to be zero-sum, i.e., if Player$_0$ loses the game then Player$_1$ wins it and vice versa. The formal definition of reachability winning condition follows.

Definition 4.4. Let G be a 2TRG and $W \subseteq \text{St}$ a set of target states. Player$_0$ wins the game G, under the reachability condition, if he has a strategy such that for all strategies of Player$_1$ the resulting induced play will enter a state in W.

It is folklore that turn-based two-player reachability games are positional [43]. We recall that a strategy is positional if the moves of a player over a play only depends of the last state and a game is positional if positional strategies suffices to decide weather Player$_0$ wins the game. Directly from this result, the following corollary holds.

Corollary 4.5. Given a 2TRG G, a strategy σ_0 for Player$_0$, and a strategy σ_1 for Player$_1$, the induced play ρ is winning for Player$_0$ if there is $(\rho)_i \in W$ with $0 \leq i \leq |\text{St}| - 1$.

Hence, the corollary above just states that given a 2TRG game, Player$_0$ wins the game if he can reach a winning state in a number of steps bounded by the size of the set of states of the game.

Example 4.6. The two case studies that we have analyzed in Section 3 can be easily modeled using a 2TRG. We now give some details. As set of states we use all the rooms in the maze, together with the status of their doors.

In the *Escape Game* the state $((0, 0), \{d^1_1, d^3_1\})$ is the initial state, where d^c_i means that the door d_i is closed. For an open door, instead, we will use the label o in place of c. Formally, let $D_{i,j}$ be the set of doors (up to four) belonging to the room (i, j), which can be flagged either with c (closed) or o (open), then we set $\text{St} \subseteq \{(i, j), D_{i,j} \mid 0 \leq i, j \leq 2\}$. The set of actions for the controller are $\text{Ac}_{\text{con}} = \{\text{open}_{d_i} \mid 0 \leq i \leq 12\}$, i.e. he chooses a door to open. The set of actions for the human are $\text{Ac}_{\text{human}} = \{\text{take}_{d_i} \mid 0 \leq i \leq 12\}$, i.e. he chooses a door to take. Transitions are taken by the human in order to change the room (coordinates) or by the controller to change the status of doors. These moves are taken in accordance with the shape of the maze. The partitioning of the states between the players follows immediately, as well as the definition of the target states. A possible track in which the human reaches the exit is $\rho = ((0, 0), \{d^1_1, d^3_1\})((0, 0), \{d^9_1, d^3_3\})((0, 1), \{d^9_1, d^2_2, d^3_3\})((1, 1), \{d^9_1, d^6_6, d^7_6, d^9_6\})((1, 2), \{d^9_1, d^6_6, d^7_6\})((2, 2), \{d^9_1, d^6_6\})$.

In the same way, in *Cop and Robber Game* the initial state is $((1, 1), \emptyset)$, where \emptyset means that all doors are open. The set of actions for the cop are $\text{Ac}_{\text{cop}} = \{\text{block}_{d_i} \mid 0 \leq i \leq 12\}$, i.e. he chooses a door to block. The set of actions for the robber are $\text{Ac}_{\text{rob}} = \{\text{take}_{d_i} \mid 0 \leq i \leq 12\}$, i.e. he chooses a door to take.
5. Searching for Additional Winning Strategies

To check whether Player$_0$ has a winning strategy in a 2TRG G one can use a classic backward algorithm. We briefly recall it. Let $\text{succ} : \text{St} \rightarrow 2^\text{St}$ be the function that for each state $s \in \text{St}$ in G gives the set of its successors. The algorithm starts from a set S equal to W. Iteratively, it tries to increase S by adding all states $s \in \text{St}$ that satisfy the following conditions: (i) $s \in \text{St}_0$ and $\text{succ}(s) \cap S \neq \emptyset$; or, (ii) $s \in \text{St}_1$ and $\text{succ}(s) \subseteq S$. If S contains at a certain point the initial state, then Player$_0$ wins the game.

In case one wants to ensure that more than a winning strategy exists, the above algorithm becomes less appropriate. For this reason, we use instead a top-down automata-theoretic approach. To properly introduce this solution we first need to provide some auxiliary notation. Precisely, we introduce the concepts of decision tree, strategy tree, and additional strategy tree.

A decision tree simply collects all the tracks that come out from the interplays between the players. In other words, a decision tree can be seen as an unwinding of the game structure along with all possible combinations of players actions. The formal definition follows.

Definition 5.1. Given a 2TRG G, a decision tree is an St-labeled Ac-tree $<T,V>$, where ε is the root of T, $V(\varepsilon) = s_I$, and for all $v \in T$ we have that:

- if last(v) \in Ac$_0$ then last(anc(v)) \in Ac$_1$, otherwise last(v) \in Ac$_1$;
- $V(v) = \text{tr}(V(\text{anc}(v)), \text{last}(v))$.

We now introduce strategy trees that allow to collect, for each fixed strategy for Player$_1$, all possible responding strategies for Player$_{1-i}$, with $i \in \{0,1\}$. Therefore, the strategy tree is a tree where each node labeled with $s \in \text{St}_i$ has an unique successor determined by the strategy for Player$_i$; and each node labeled with $s \in \text{St}_{1-i}$ has $|\text{Ac}_{1-i}|$ successors. Thus, a strategy tree is an opportune projection of the decision tree. The formal definition follows.

Definition 5.2. Given a 2TRG and a strategy σ for Player$_i$, a strategy tree for Player$_i$ is an St-labeled Ac-tree $<T,V>$, where ε is the root of T, $V(\varepsilon) = s_I$, and for all $v \in T$ we have that:

- if last(v) \in Ac$_0$ then last(anc(v)) \in Ac$_1$, otherwise last(v) \in Ac$_1$;
- if $V(\text{anc}(v)) \in \text{St}_i$ then $V(v) = \text{tr}(V(\text{anc}(v)), \sigma(\rho))$, otherwise $V(v) = \text{tr}(V(\text{anc}(v)), \text{last}(v))$;

where $\rho = (\rho)_0 \ldots (\rho)_{|v|-1}$ is a track from s_I, with $(\rho)_k = V(v_{\leq k})$ for each $0 \leq k \leq |v| - 1$.

Following the above definition and Definition 4.4, given a 2TRG G with a set of target states W, if G is determined then Player$_0$ wins the game and Player$_1$ loses it by simply checking the existence of a strategy tree for Player$_0$, that is a tree such that each path enters a state belonging to W. Such a tree is called a winning-strategy tree for Player$_0$.

In case we want to ensure that at least two winning strategies exist then, at a certain point along the tree, Player$_0$ must take two successors. We build a tree automaton that accepts exactly this kind of trees. We now give a definition of additional strategy trees and then we define the desired tree automata.

Definition 5.3. Given a 2TRG G and two strategies σ_1 and σ_2 for Player$_i$, an additional strategy tree for Player$_i$ is an St-labeled Ac-tree $<T,V>$ that satisfies the following properties:
the root node is labeled with the initial state s_I of G;

• for each $x \in T$ that is not a leaf and it is labeled with state s of $Player_0$, it holds that x has as children a non-empty subset of $\text{succ}(s)$;

• for each $x \in T$ that is not a leaf and it is labeled with state s of $Player_1$, it holds that x has as children the set of $\text{succ}(s)$;

• each leaf of T corresponds to a target state in G;

• there exists at least one leaf in T that has an ancestor node x that corresponds to a $Player_0$ state in G and it has at least two children.

The above definition, but the last item, is the classical characterization of strategy tree. The last property further ensures that $Player_0$ has the ability to enforce at least two winning strategies no matter how $Player_1$ acts.

We now give the main result of this section, i.e. we show that it is possible to decide in linear time whether, in a 2TRG, $Player_0$ has more than a winning strategy. We later report on the application of this result along the case studies.

Theorem 5.4. For a 2TRG game G it is possible to decide in linear time whether $Player_0$ has more than a strategy to win the game.

Proof: Consider a 2TRG game G. We build an NTA A that accepts all trees that are witnesses of more than a winning strategy for $Player_0$ over G. We describe the automaton. It uses $Q = St \times \{\text{ok, split}\}$ as set of states where ok and split are flags and the latter is used to remember that along the tree $Player_0$ has to ensure the existence of two winning strategies by opportunely choosing a point where to "split". We set as alphabet $\Sigma = St$ and initial state $q_0 = (s_I, \text{split})$. For the transitions, starting from a state $q = (s, \text{flag})$ and reading the symbol a, we have that:

$$\delta(q, a) = \begin{cases}
(s', \text{ok}) & \text{if } s = a \text{ and } s \in St_0 \text{ and } \text{flag} = \text{ok}; \\
((s', \text{ok}) \land (s'', \text{ok})) \lor (s', \text{split}) & \text{if } s = a \text{ and } s \in St_0 \text{ and } \text{flag} = \text{split}; \\
(s_1, \text{ok}) \land \cdots \land (s_n, \text{ok}) & \text{if } s = a \text{ and } s \in St_1 \text{ and } \text{flag} = \text{ok}; \\
(s_1, f_1) \land \cdots \land (s_n, f_n) & \text{if } s = a \text{ and } s \in St_1 \text{ and } \text{flag} = \text{split}; \\
\emptyset & \text{otherwise.}
\end{cases}$$

where $s', s'' \in \text{succ}(s)$ with $s' \neq s''$, $\{s_1, \ldots, s_n\} = \text{succ}(s)$, and f_1, \ldots, f_n are flags in which there exists $1 \leq i \leq n$ such that $f_i = \text{split}$ and for all $j \neq i$, we have $f_j = \text{ok}$. Informally, given a state q, if q belongs to $Player_0$ and its flag is split then there are one successor with flag split or two successors with flag ok. Instead, if the flag is ok then there is only one successor with flag ok. In the case in which the state belongs to $Player_1$ and its flag is ok then there are n successors with flag ok. Finally, if the flag is split then there are $n - 1$ successors with flag ok and one successor with flag split.

The set of accepting states is $W \times \{ \text{ok} \}$. A tree is accepted by A if all the branches lead to a target state and there is a node labeled with a state in St_0 that has at least two successors. By Corollary 4.5 we have that A considers only trees with depth until the number of states, so if no state in W is reached in $|\text{St}|$ steps, then there is a loop over the states in the game model that forbids to reach states in W.

The size of the automaton is just linear in the size of the game. Moreover, by using the fact that, from [44], checking the emptiness of an NTA can be performed in linear time, the desired complexity result follows. □

Example 5.5. Consider the Escape Game example. By applying the above construction, the automaton A accepts an empty language. Indeed, for each input tree, A always leads to a leaf containing either a state with a non-target component (i.e., the tree is a witness of a losing strategy) or with a flag split (i.e., Player 0 cannot select two winning strategies). Conversely, consider the same game, but flipping the direction of the door d_3 in the maze. In this case, A is not empty. Indeed, starting from the initial state $(((0,0), \{d_{c1}, d_{c3}\}), \text{split})$, A proceeds in two different direction with states $(((0,0), \{d_{o1}, d_{c3}\}), \text{ok})$ and $(((0,0), \{d_{c1}, d_{o3}\}), \text{ok})$, that refer to two distinct winning strategies for the controller.

A similar reasoning can be exploited with the Cop and Robber Game example. Indeed, by applying our solution technique, we end in an automaton that accepts an empty language. Conversely, by flipping the door d_4, the automaton accepts a tree that is witnessing of two different winning strategies each of them going through one of the two doors left unblocked by the cop.

For the sake of completeness, we report that in case of one-player games the problem of checking whether more than a winning strategy exists can be checked in NLOGSPACE. Indeed, it is enough to extend the classic path reachability algorithm in a way that we search for two paths leading to the target state. This can be done by just doubling the used logarithmic working space [49].

By means of the automata-theoretic approach, one can also check for other and more sophisticated “forms” of additional winning conditions. For example one can check whether Player 0 can win the game in case the opponent player is restricted to use all but one strategy. This check can be accomplished by first using a classic backward algorithm, introduced at the beginning of this section, for Player 1 and then the automaton introduced in the proof of Theorem 5.4 but used to collect all additional strategy trees for Player 1. Precisely, if the backward algorithm says that Player 1 wins the game and the automaton is empty, then the result holds. Indeed, the satisfaction of both these conditions says that Player 1 has one and only one strategy to beat all strategies of Player 0. Therefore, by removing this specific strategy, Player 0 wins the game. So, the explanation of the concept of all but one strategy derives.

Theorem 5.6. For a $2TRG$ game G it is possible to decide in linear time whether Player 0 can win G against all but one strategies of Player 1.

6. Games with Imperfect Information

In this section, we provide the setting of two-player turn-based finite games with imperfect information. As for the perfect information case, we consider here games along the reachability objective. The main difference with respect to the perfect case is that both players may not have full information about the moves performed by their opponents. Therefore, there could be cases in which a player has to come to a decision (which move to perform) without knowing exactly in which state he is. More precisely, we
assume that the players act uniformly, so they use the same moves over states that are indistinguishable to them. The formal definition of these games follows.

Definition 6.1. A turn-based two-player reachability game with imperfect information (2TRGI, for short), played between Player\(_0\) and Player\(_1\), is a tuple \(G \triangleq \langle St, s_f, Ac, tr, W, \cong_0, \cong_1 \rangle\), where \(St, s_f, Ac, tr, W\) are as in 2TRG. Moreover, \(\cong_0\) and \(\cong_1\) are two equivalence relations over \(Ac\).

Let \(i \in \{0, 1\}\). The intuitive meaning of the equivalence relations is that two actions \(a, a' \in Ac_{1-i}\) such that \(a \cong_i a'\) cannot be distinguished by Player\(_i\). For this reason, we say that \(a\) and \(a'\) are indistinguishable to Player\(_i\). By \([Ac_i] \subseteq Ac_i\) we denote the subset of actions that are distinguishable for Player\(_{1-i}\). If two actions are indistinguishable then also the reached states are so\(^1\) A relation \(\cong_i\) is said an identity equivalence if it holds that \(a \cong_i a'\) iff \(a = a'\). Note that, a 2TRGI has perfect information if the equivalence relations contain only identity relations.

To define the semantics of 2TRGI, we now introduce the concept of uniform strategy. A strategy is uniform if it adheres on the visibility of the players. To formally define it, we first give the notion of indistinguishability over tracks.

For a Player\(_i\) and two tracks \(\rho, \rho' \in Trk\), we say that \(\rho\) and \(\rho'\) are indistinguishable to Player\(_i\) iff \(|\rho| = |\rho'| = m\) and for each \(k \in \{0, \ldots, m - 1\}\) we have that \(\overline{tr}(\rho)_k, (\rho')_k \cong_i \overline{tr}(\rho')_k, (\rho')_{k+1}\), where \(\overline{tr}\) is the function that given two states \(s\) and \(s'\) returns the action \(a\) such that \(s' = tr(s, a)\). Note that \(\overline{tr}\) is well defined since it takes as input successive states coming from real tracks and it returns just one unique action due to the specific definition of \(tr\).

Definition 6.2. A strategy \(\sigma_i\) is uniform iff for every \(\rho, \rho' \in Trk\) that are indistinguishable for Player\(_i\) we have that \(\sigma(\rho) = \sigma(\rho')\).

Thus uniform strategies are based on observable actions. In the rest of the paper we only refer to uniform strategies. We continue by giving the definition of the the semantics of 2TRGI, i.e. how Player\(_0\) wins the game.

Definition 6.3. Let \(G\) be a 2TRGI and \(W \subseteq St\) a set of target states. Player\(_0\) wins the game \(G\), under the reachability condition, if he has a uniform strategy such that for all uniform strategies of Player\(_1\) the resulting induced play has at least one state in \(W\).

Technically, a uniform strategy can be seen as an opportune mapping, over the decision tree, of a player’s "strategy schema" built over the visibility part of the decision tree itself. In other words, the player first makes a decision over a set \(S\) of indistinguishable states and then this unique choice is used in the decision tree for each state in \(S\). This makes the decision tree to become uniform. It is important to observe, however, that we use memoryfull strategies. This means that in a decision tree, the set \(S\) of indistinguishable states resides at the same level. To make this idea more precise, we now formalize the concept of schema strategy tree and uniform strategy tree.

Definition 6.4. Given a 2TRGI and a uniform strategy \(\sigma\) for Player\(_i\), a schema strategy tree for Player\(_i\) is a \(\{T, \perp\}\)-labeled \((Ac_i \cup [Ac_{1-i}])\)-tree \(<T, V \rangle\), where \(\varepsilon\) is the root of \(T\), \(V(\varepsilon) = s_f\), and for all \(v \in T\) we have that:

\(^1\)For technical reasons, the indistinguishability over states follows from that one over actions. Thanks to this, the construction of the 2TRGI easily follows.
We recall that this problem is already investigated and solved in the case in which there is imperfect
vertical. In other words, it holds that
$$\forall v \in \{\top, \bot\} \text{ such that } \rho = (\rho_0, \ldots, \rho_{|v|-1}) \text{ is a track from } s_1, \text{ with } (\rho)_k = \text{tr}(\rho|_{k-1}, last(v|_k)) \text{ for each } 0 \leq k \leq |v| - 1.
$$

Thus, in a schema strategy tree the \top label indicates that Player_1 selects the corresponding set of
visible states in the decision tree and the \bot is used conversely.2 In particular, the starting node of the
game is the root of the schema strategy tree and it is always enabled; all nodes belonging to the adversarial
player are always enabled; and one of the successors of Player_1 nodes is enabled in accordance with the
uniform strategy σ. Straightforwardly, a uniform strategy tree is a projection of the decision tree along the
schema strategy tree. In the next example we consider an extension of the Cop and Robber Game with
imperfect information.

Example 6.5. Consider again the Cop and Robber Game example given in Section 3. Assume now,
that we change the set of actions for the robber in $\text{Ac}_{\text{rob}} = \{l, r, t, b\}$, where l, r, t, and b represent
left, right, top, and bottom, respectively, and that the cop can always choose between two doors to enter,
namely d_1 and d_2. Assume also that the cop can only recognize whether the robber moves horizontally or
vertically. In other words, it holds that $l \cong_{\text{cop}} r$ and $t \cong_{\text{cop}} b$. Accordingly, the cop has only two uniform
moves to perform, one for the first pair and one for the second. This is clearly different from the perfect
information case where the cop has instead four moves to possibly catch the robber. More formally, in the
imperfect information case, assuming that the robber moves first, we have four possible evolutions of the
schema strategy tree. In all schema the root is labeled with \top and it has two successors x and y, both
labeled with \top and corresponding to the actions l and r, and t and b, possibly performed by the robber,
respectively. Moreover, x and y have both two children. The four schema evolve by respectively placing
to the children of x and y the following four combination of \top and \bot: $((\top, \bot)(\top, \bot)), ((\top, \bot)(\bot, \top)), ((\bot, \top)(\top, \bot))$, and $((\bot, \top)(\bot, \top))$. For example, the second tuple corresponds to choose action d_1 in
response to actions l and r and d_2 in response to t and b; similarly, the mining of the other tuple follows.
Directly from this explanation it is no hard to build the corresponding uniform strategy trees.

7. Looking for Additional Winning Strategies in 2TRGI

In this section, we introduce an automaton-theoretic approach to solve 2TRGI, taking as inspiration
those introduced in [8, 32, 41, 44]. We start by analyzing the basic case of looking for a winning strategy.
We recall that this problem is already investigated and solved in the case in which there is imperfect
information over states [2, 50]. By these considerations, we show how to solve the case in which the
imperfect information is over the actions. Subsequently, we extend the latter case to check whether the
game also admits additional winning strategies.

Before starting we recall that positional strategies do not suffice to decide a game with imperfect
information. Indeed, it is well known that Player_0 needs exponential memory w.r.t. the size of the states
of the game in order to come up with a winning strategy in case it exists [50]. Therefore, we cannot use
directly the approach exploited in Section 5. A possible direction to solve a game G with imperfect

\footnote{The use of \top and \bot is a classical solution in the automata theoretic approach to disable/enable successors, as it has been done
in Module Checking [7] and the like.}
information is to convert it, by means of a subset construction, in a game \(\bar{G} \) with perfect information and solve it by using Theorem 5.4 (see for example [50]). With this translation one can individuate along the game \(\bar{G} \) exponential strategies necessary to Player_0 for winning the game. As the subset construction involves an exponential blow-up and Theorem 5.4 provides a polynomial-time solution we get an overall exponential procedure. In this paper, however, we present a different and more elegant way to solve games with imperfect information. Precisely, we introduce a machinery that in polynomial time can represent exponential strategies. With more details, given a game with imperfect information \(G \) we construct an alternating tree automaton that accepts trees that represent uniform strategies under imperfect information. This is done by sending the same copy of the automaton (same direction) to all states that are indistinguishable to Player_0. Then, the automaton checks that in all these common directions Player_0 behaves the same and satisfies the reachability condition. Precisely, the automaton takes in input trees corresponding to Player_0’s strategies over the unwinding of the game by replacing nodes by the equivalence classes. The run instead is as usual, that is a Player_0 strategy over the total unwinding of the game. The beauty of this approach resides on the fact that we do not make explicit the exponential strategies required to win the game but rather consider a polynomial compact representation of them by means of the automaton. Clearly, as the emptiness of alternating tree automata is exponential, we get the same overall exponential complexity as in the subset construction approach.

7.1. Solution 2TRGI

To solve 2TRGI, we use an automata-approach via alternating tree automata. The idea is to read a \(\{\top, \bot\} \)-labeled \((Ac_0 \cup [Ac_1]) \)-tree such that more copies of the automaton are sent to the same directions along the class of equivalence over \([Ac_1]\).

Theorem 7.1. Given a 2TRGI \(G \) played by Player_0 and Player_1, the problem of deciding whether Player_0 wins the game is EXPTIME-COMPLETE.

Proof:

Let \(G \) be a 2TRGI. For the lower bound, we recall that deciding the winner in a 2-player turn-based games with imperfect information is EXPTIME-HARD [9, 50].

For the upper bound, we use an automata-theoretic approach. Precisely, we build an ATA \(A \) that accepts all schema strategy trees for Player_0 over \(G \). The automaton, therefore will send more copies on the same direction of the input tree when they correspond to hidden actions. Then it will check the consistency with the states on the fly by taking in consideration the information stored in the node of the tree. This can be simply checked by means of a binary counter along with the states of the automaton. For the sake of readability we omit this.

The automaton uses as set of states \(Q = St \times St \times \{\top, \bot\} \times \{0, 1\} \) and alphabet \(\Sigma = \{\top, \bot\} \). Note that, we use in \(Q \) a duplication of game states as we want to remember the game state associated to the parent node while traversing the tree. For the initial state we set \(q_0 = (s_I, s_I, \top, 0) \), i.e., for simplicity the parent game state associated to the root of the tree is the game state itself. The flag \(f \in \{0, 1\} \) indicates whether along a path we have entered a target state, in that case we move \(f \) from 0 to 1. Given a state \(q = (s, s', t, f) \), the transition relation is defined as:
Given a Player Theorem 7.3. kind of trees. Now, we have all ingredients to give the following result.

\[\delta(q, t') = \begin{cases} \land_{a_0 \in Ac_0}(d, (s', s'', T, f')) & \text{if } s' \in St_0 \text{ and } t' = T \text{ and } t = T; \\
\land_{a_1 \in Ac_1}(d, (s', s'', T, f')) & \text{if } s' \in St_1 \text{ and } t' = T \text{ and } t = T; \\
false & \text{if } t' = T \text{ and } t = \bot; \\
true & \text{if } t' = \bot. \\
\end{cases} \]

where if \(s' \in St_0 \) then \(s'' = tr(s', a_0) \) and \(d \) is in accordance with \(|Ac_1| \), else \(s'' = tr(s', a_1) \) and \(d \) is in accordance with \(|Ac_0| \); if \(q' \in W \) then \(f' = 1 \) otherwise \(f' = f \). Informally, given a state \(q \), if \(q \) belongs to Player_0 (resp., Player_1) and it is enabled then there are \(|Ac_0| \) (resp., \(|Ac_1| \)) enabled successors. Instead, if \(q \) is disabled then the automaton returns false. Finally, if the automaton reads the symbol \(\bot \) then it returns true.

The set of accepted states is \(F = \{(s, s', t, f) : s, s' \in St \land t = T \land f = 1\} \). Recall that an input tree is accepted if there exists a run whose leaves are all labeled with accepting states. In our setting this means that an input tree simulates a schema strategy tree for Player_0. So, if the automaton is not empty then Player_0 wins the game, i.e., there exists a uniform strategy for him.

The required computational complexity of the solution follows by considering that: (i) the size of the automaton is polynomial in the size of the game, (ii) to check its emptiness can be performed in exponential time [51,47].

7.2. Additional Winning Strategies for 2TRGI

In this section we describe the main result of this work, i.e., we show an elementary solution to ensure that more than a winning strategy exists in 2TRGI. As we have anticipated earlier we use an opportune extension of the automata-theoretic approach we have introduced in the previous sections.

First of all, we formalize the concept of schema additional strategy tree.

Definition 7.2. Given a 2TRGI and two uniform strategies \(\sigma \) and \(\sigma' \) for Player_i, a schema additional strategy tree for Player_i is a \(\{T, \bot\}\)-labeled \((Ac_i \cup [Ac_{i-1}])\)-tree \(<T, V> \), where \(\varepsilon \) is the root of \(T \), \(V(\varepsilon) = s_f \), and for all \(v \in T \) we have that:

- if \(last(v) \in Ac_i \) then \(last(anc(v)) \in [Ac_{i-1}] \), otherwise \(last(v) \in [Ac_{i-1}] \);

- if \(last(v) \in [Ac_{i-1}] \) then \(V(v) = T \) else if \(last(v) = \sigma(\rho) \) or \(last(v) = \sigma'(\rho) \) then \(V(v) = T \), otherwise \(V(v) = \bot \);

where \(\rho = (\rho)_0 \ldots (\rho)_{|v|-1} \) is a track from \(s_f \), with \((\rho)_k = tr((\rho)_{k-1}, last(v_{\leq k})) \) for each \(0 \leq k \leq |v| - 1 \).

Informally, a schema additional strategy tree is a schema strategy tree in which at a certain point along the tree, a state of Player_0 has to two successors. We build a tree automaton that accepts exactly this kind of trees. Now, we have all ingredients to give the following result.

Theorem 7.3. Given a 2TRGI \(G \) played by Player_0 and Player_1, the problem of deciding whether Player_0 has more than a uniform strategy to win the game is in EXPTIME-COMPLETE.
Proof: Let G be a 2TRGI. For the lower bound, we recall that deciding the winner in a 2-player turn-based games with imperfect information is EXPTIME-HARD $[9,50]$.

For the upper bound, we use an automata-theoretic approach. Precisely, we build an ATA A that accepts all schema additional strategy trees for Player_0 over G. Since the automaton sends more copies on the same direction of the input tree when they correspond to hidden actions, then it checks the consistency with the states on the fly by taking in consideration the information stored in the node of the tree. In detail, the automaton uses as set of states $\mathcal{Q} = \mathcal{S} \times \mathcal{S} \times \{\top, \bot\} \times \{0,1\} \times \{\text{ok, split}\}$, where given a state $q = (s, s', t, f, \bar{f})$ we have that s is the parent of s', s' is the actual state, t is used to disable/enable the state, f is a flag indicating whether along the path we have entered in a target state, and \bar{f} is a flag indicating whether along the path there was a state of Player_0 with two successors. The alphabet is $\Sigma = \{\top, \bot\}$ and the initial state is $q_0 = (s_I, s_I, \top, 0, \text{split})$. Given a state $q = (s, s', t, f, \bar{f})$, the transition relation is defined as follows:

$$
\delta(q, t') = \begin{cases}
\land_{a_0 \in \mathcal{A}_0}(d, (s', s'', \top, f', \text{ok})) & \text{if } s' \in \mathcal{S}_0 \text{ and } t' = \top \text{ and } t = \top \text{ and } \bar{f} = \text{ok}; \\
\land_{a_0 \in \mathcal{A}_0} \lor_{f' \in \{\text{ok, split}\}} (d, (s', s'', \top, f', \bar{f}')) & \text{if } s' \in \mathcal{S}_0 \text{ and } t' = \top \text{ and } t = \top \text{ and } \bar{f} = \text{split}; \\
\land_{a_1 \in \mathcal{A}_1}(d, (s', s'', \top, f', \text{ok})) & \text{if } s' \in \mathcal{S}_1 \text{ and } t' = \top \text{ and } t = \top \text{ and } \bar{f} = \text{ok}; \\
\land_{a_1 \in \mathcal{A}_1} \lor_{f' \in \{\text{ok, split}\}} (d, (s', s'', \top, f', \bar{f}')) & \text{if } s' \in \mathcal{S}_1 \text{ and } t' = \top \text{ and } t = \top \text{ and } \bar{f} = \text{split}; \\
\text{false} & \text{if } t' = \top \text{ and } t = \bot; \\
\text{true} & \text{if } t' = \bot.
\end{cases}
$$

where it holds that if $s' \in \mathcal{S}_0$ then $s'' = tr(s', a_0)$ and d is in accordance with $|\mathcal{A}_1|$, otherwise $s'' = tr(s', a_1)$ and d is in accordance with $|\mathcal{A}_0|$; if $q' \in \mathcal{W}$ then $f' = 1$ otherwise $f' = f$. Informally, given a state q, if q belongs to Player_0, it is enabled, and its flag is split so there are $|\mathcal{A}_0|$ enabled successors, such that it holds that either all of them have split has flag, or at least two of them have ok as flag. Instead, if the state q is enabled and its flag is ok then there are $|\mathcal{A}_0|$ enabled successors and all of them have the flag ok. If the state q belongs to Player_1, it is enabled, and its flag is ok, thus there are $|\mathcal{A}_1|$ enabled successors such that all of them have the flag ok. Instead, if the state is enabled and its flag is split then there are $|\mathcal{A}_1|$ enabled successors such that at least one successor has flag split. In the case in which the state q is disabled then the automaton returns false. Finally, if the automaton reads the symbol \bot then it returns true.

The set of accepted states is $\mathcal{F} = \{(s, s', t, f, \bar{f}) : s, s' \in \mathcal{S} \land t = \top \land f = 1 \land \bar{f} = \text{ok}\}$. Recall that an input tree is accepted if there exists a run whose leaves are all labeled with accepting states. In our setting this means that an input tree simulates a schema additional strategy tree for Player_0. So, if the automaton is not empty then Player_0 wins the game, i.e., there exists a schema additional strategy tree for him. The required computational complexity of the solution follows by considering that: (i) the size of the automaton is polynomial in the size of the game, (ii) to check its emptiness can be performed in exponential time $[51,47]$.

Finally, also in the imperfect information case one can repeat the same reasoning done in Section 5 about “all but one” strategies. Indeed, it is sufficient to use the automata in the proofs of Theorem $[7,1]$ and
Theorem 7.3 from the viewpoint of $Player_1$. Indeed, the result follows by checking whether the former automaton is not empty and the latter automaton is empty. Consequently, the following result holds.

Theorem 7.4. For a $2TRGI$ game G it is possible to decide in EXPTIME-COMPLETE whether $Player_0$ has a uniform strategy against all but one uniform strategies of $Player_1$.

8. Conclusion and Future Work

In this paper we have introduced a simple but effective automata-based methodology to check whether a player has more than a winning strategy in a two-player game under the reachability objective. Our approach works with optimal asymptotic complexity both in the case the players have perfect information about the moves performed by their adversarial or not. Overall, this is the first work dealing with the counting of strategies in the imperfect information setting we are aware of.

We have showed how our approach can be applied in practice by reporting on its use over two different game scenarios, one cooperative and one adversarial. We believe that the solution algorithm we have conceived in this paper can be used as core engine to count strategies in more involved game scenarios and in many solution concepts reasoning. For example, it can be used to solve the *Unique Nash Equilibrium* problem, in an extensive game form.

This work opens to several interesting questions and extensions. An interesting direction is to consider the counting of strategies in multi-agent concurrent games. This kind of games have several interesting applications in artificial intelligence [6]. Some works along this line have been done, but not for finite games, nor in the imperfect information setting. As another direction of work, one can consider some kind of hybrid game, where one can opportunely combine teams of players working concurrently with some others playing in a turn-based manner as in [52, 53, 54]. Last but not least, it would be worth investigating infinite-state games. These games arise for example in case the interaction among the players behaves in a recursive way [55, 56].

Acknowledgments

We thank prof. Alberto Pettorossi for useful discussion regarding the complexity of the problem of checking whether more than a winning strategy exists, in case of one-player games. We also thank the anonymous referee for helpful comments.

References

