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Abstract

In this paper we introduce and study Graded Strategy Logic (GSL), an
extension of Strategy Logic (SL) with graded quantifiers. SL is a powerful
formalism that allows to describe useful game concepts in multi-agent settings
by explicitly quantifying over strategies treated as first-order citizens. In GSL,
by means of the existential construct 〈〈x≥g〉〉ϕ, one can enforce that there exist
at least g strategies x satisfying ϕ. Dually, via the universal construct [[x<g]]ϕ,
one can ensure that all but less than g strategies x satisfyϕ.

Strategies in GSL are counted semantically. This means that strategies
inducing the same outcome, even though looking different, are counted as one.
While this interpretation is natural, it requires a suitable machinery to allow
for such a counting, as we do. Precisely, we introduce a non-trivial equivalence
relation over strategy profiles based on the strategic behavior they induce.

To give an evidence of GSL usability, we investigate some basic questions
about the Vanilla GSL[1g] fragment, that is the vanilla restriction of the well-
studied One-Goal Strategy Logic fragment of SL augmented with graded strategy
quantifiers. We show that the model-checking problem for this logic is PTime-
complete. We also report on some positive results about the determinacy.

Keywords: Strategic reasoning, Strategy Logic, Counting quantifiers.

1. Introduction

Formal methods in system design are a renowned story of success. Break-
through contributions in this field comprise model checking [1, 2] and temporal
logics such as LTL [3], CTL [1], CTL? [4], and the like. First applications of
these methodologies involved closed systems [5] generally analyzing whether a
Kripke structure, modeling the system, meets a temporal logic formula, specify-
ing the desired behavior [6]. In the years several algorithms have been proposed
in this setting and some implemented as tools [7]. Nevertheless these approaches
turn to be useless when applied to open systems [5]. The latter are characterized,
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in the simplest situation, by an ongoing interaction with an external environment
on which the whole system behavior deeply relies. To be able to deal with
the unpredictability of the environment, extensions of the basic verification
techniques have come out. A first attempt worth of note is module checking
where a Kripke structure is replaced by a specific two-player arena. Module
checking has been first introduced in [8, 9]. In the last decade this methodology
has been fruitfully extended in several directions (see [10, 11, 12] for some related
works).

Starting from the study of module checking, researchers have looked for logics
focusing on the strategic behavior of players in multi-agent systems [13]. One
of the most important developments in this field is Alternating-Time Temporal
Logic (ATL?, for short), introduced by Alur, Henzinger, and Kupferman [13].
This logic allows to reason about strategies of agents having the satisfaction of
temporal goals as the payoff criterion. Formally, it is obtained as a generalization
of CTL?, in which the existential E and the universal A path quantifiers are
replaced with strategic modalities of the form 〈〈A〉〉 and [[A]], where A is a set of
agents. Strategic modalities over agent teams are used to describe cooperation
and competition among them in order to achieve certain goals. In particular,
these modalities express selective quantifications over those paths that are the
result of infinite interaction between a coalition and its complement.

Despite its expressiveness, ATL? suffers from the strong limitation that
strategies are treated only implicitly in the semantics of its modalities. This
restriction makes the logic less suited to formalize several important solution
concepts, such as Nash Equilibrium. These considerations led to the introduction
of Strategy Logic (SL, for short) [14, 15], a more powerful formalism for strategic
reasoning. As a key aspect, SL treats strategies as first-order objects that can be
determined by means of the existential 〈〈x〉〉 and universal [[x]] quantifiers, which
can be respectively read as “there exists a strategy x” and “for all strategies
x”. Remarkably, a strategy in SL is a generic conditional plan that at each
step prescribes an action on the base of the history of the play. Such a plan is
not intrinsically glued to a specific agent but an explicit binding operator (a, x)
allows to link an agent a to the strategy associated with a variable x.

A common aspect about all logics mentioned above is that quantifications
are either existential or universal. Per contra, there are several real scenarios in
which “more precise” quantifications are crucially needed (see [16, 17], for an
argumentation). This has attracted the interest of the formal verification commu-
nity to graded modalities. These have been first studied in classic modal logic [18]
and then exported to the field of knowledge representation to allow quantitative
bounds on the set of individuals satisfying specific properties. Specifically, they
are counting quantifiers in first-order logics [19], number restrictions in descrip-
tion logics [20, 21, 22, 23] and numerical constraints in query languages [24].

First applications of graded modalities in formal verification concern closed
systems. In [25], graded µCalculus has been introduced in order to express
statements about a given number of immediately accessible worlds. Successively
in [26, 27, 28, 16], the notion of graded modalities have been extended to deal
with number of paths. Among the others graded CTL (GCTL, for short) has
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been introduced with a suitable axiomatization of counting [16]. This work has
been recently extended in [29] to address GCTL?, a graded extension of CTL?.

In open systems verification, we are aware of just two orthogonal approaches
in which graded modalities have been investigated, but in a very restricted form:
module checking for graded µCalculus [30] and an extension of ATL with
graded path modalities (GATL, for short) [31]. In particular, the former involves
a counting of one-step moves among two agents, the latter allows for a more
restricted counting on the histories of the game, but in a multi-player setting.
Both approaches suffer of several limitations. First, not surprisingly, they cannot
express powerful game reasoning due to the limitation of the underlying logic.
Second, it is based on a very rigid and restricted counting of strategies.

In this paper, we take a different approach by formally introducing a machin-
ery to count strategies in a multi-agent setting and use it upon the powerful
framework of SL. Precisely, we introduce and study Graded Strategy Logic
(GSL) which extends SL with the existential 〈〈x ≥ g〉〉ϕ and universal [[x < g]]ϕ
graded strategy quantifiers. They allow to express that there are at least g or
all but less than g strategies x satisfying ϕ, respectively. As in SL, we use the
binding operator to associate these strategies to agents.

As far as the counting of strategies is concerned, one of the main difficulties
resides on the fact that some strategies, although looking different, produce the
same outcome and therefore have to be counted as one. To overcome this problem
while preserving a correct counting over paths for the underlining logic SL, we
introduce a suitable equivalence relation over profiles based on the strategic
behavior they induce. This is by its own an important contribution of this paper.

To show the applicability of GSL we investigate basic game-theoretic and
verification questions over a powerful fragment of GSL. Recall that model
checking is non-elementary-complete for SL and this has spurred researchers to
investigate fragments of the logic for practical applications. Here, we concentrate
on the vanilla version of the SL[1g] fragment of SL. We recall that SL[1g] was
introduced in [32]. As for ATL, vanilla SL[1g] (for the first time introduced
here) requires that two successive temporal operators in a formula are always
interleaved by a strategy quantifier. We prove that the model-checking problem
for this logic is PTime-complete. We also show positive results about the
determinacy of turn-based games.

GSL can have useful applications in several multi-agent game scenarios. For
example, in safety-critical systems, it may be worth knowing whether a controller
agent has a redundant winning strategy to play in case of some fault. Having
more than a strategy may increase the chances for a success [33], i.e., if a strategy
fails for any reason, it is possible to apply the others.

Such a redundancy can easily be expressed in GSL by requiring that at least
two different strategies exist for the achievement of the safety goal. The universal
graded strategy quantifier may turn useful to grade the “security” of a system.
For example, one can check whether preventing the use of at most k strategies,
the remaining ones are all winning. In a network this may correspond to prevent
some attacks while leaving the communication open.
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Outline. The sequel of the paper is structured as follows. Section 2 introduces
GSL and provides some preliminaries. Section 3 introduces, by means of axioms,
the equivalence relation used to count strategies. Section 4 shows how to
transform a game from concurrent to turn-based. Section 5 and Section 6
address the determinacy and the model-checking problem for Vanilla GSL[1g].
Finally we conclude in Section 7 with some discussions and future work.

2. Graded Strategy Logic

In this section we introduce syntax and semantics of Graded Strategy Logic
(GSL, for short), an extension of Strategy Logic (SL, for short) [15] that allows
reasoning about the number of strategies an agent may exploit in order to satisfy
a given temporal goal. We recall that SL simply extends LTL with two strategy
quantifiers and a binding construct used to associate an agent to a strategy.

This section is organized as follows. In Subsection 2.1, we recall the definition
of concurrent game structure, used to interpret GSL and give some examples.
In Subsection 2.2 we introduce the syntax of GSL, and, in Subsection 2.3, its
semantics. Finally, in Subsection 2.4 we list the main results of this work.

2.1. Model

Similarly to SL, as semantic framework we use concurrent game struc-
tures [13], i.e., a generalization of both Kripke structures [34] and labeled tran-
sition systems [35] in which the system is modeled as a game where players
perform actions chosen strategically as a function on the history of the play.

Definition 2.1 (Concurrent Game Structure). A Concurrent Game Structure
(CGS, for short) is a tuple G , 〈AP,Ag,Ac,St, tr, ap, sI〉, where AP, Ag, Ac,
and St are sets of atomic propositions, agents/players, actions and states,
respectively, sI ∈ St is an initial state, and ap : St→ 2AP is a labeling function
mapping each state to the set of atomic propositions true in that state. Let
Dc,Ag⇀Ac be the set of decisions, i.e., partial functions describing the choices
of an action by some agent. Then, tr : Dc→ (St⇀ St) denotes the transition
function mapping every decision δ ∈ Dc to a partial function tr(δ) ⊆ St×St
representing a deterministic graph over the states.

Intuitively, a CGS can be seen as a generic labeled transition graph [35], where
labels are possibly incomplete agent decisions, which determine the transitions
to be executed at each step of a play in dependence of the choices made by
the agents in the relative state. In particular, incomplete decisions allow us to
represent any kind of legal move in a state, where some agents or a particular
combination of actions may not be active. It is worth noting that, due to the way
the transition function is defined, a CGS is in general nondeterministic. Indeed,
two different but indistinguishable decisions may enable different transitions
for the same state. Even more, a single decision may induce a non-functional
relation. However, due to the focus of this work, we restrict to the case of
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deterministic games structures, by describing later on few conditions that rule
out how the transition function has to map partial decisions to transitions.

A concurrent game structure G naturally induces a graph Gr(G) = 〈St,
Ed 〉, whose vertexes are represented by the states and the edge relation Ed ,⋃
δ∈Dc tr(δ) is obtained by rubbing out all labels on the transitions. Note that

there could be states where no transitions are available, i.e., dom(Ed) ⊂ St.
If this is the case, those states in St \ dom(Ed) are called sink-states. A path
π ∈ Pth , {π ∈ Stω : ∀i ∈ N . ((π)i, (π)i+1) ∈ Ed} is simply an infinite
path in G. Similarly, the order |G| , |Gr(G)| (resp., size ‖G‖ , ‖Gr(G)‖)
of G is the order (resp., size) of its induced graph. As usual in the study
of extensive-form games, finite paths also describe the possible evolutions of
a play up to a certain point. For this reason, they are called in the game-
theoretic jargon histories, whose corresponding set is denoted by Hst , {ρ ∈ St∗

: ∀i ∈ [0, |ρ| − 1[ . ((ρ)i, (ρ)i+1) ∈ Ed}. Moreover, by fst(ρ) = ρ0 ( resp.,
fst(π) = π0) we denote the first element in the history (resp., path), by lst(ρ)
we denote the last element occurring in the history ρ and by ρ≤i (resp., π≤i)
we denote the prefix up to the state of index i. We now introduce the sets
of decisions, agents, and actions that trigger some transition in a given state
s ∈ St by means of the three functions dc : St → 2Dc, ag : St → 2Ag, and
ac : St×Ag→ 2Ac such that:

dc(s) , {δ ∈ Dc : s ∈ dom(tr(δ))};

ag(s) , {a ∈ Ag : ∃δ ∈ dc(s) . a ∈ dom(δ)};
ac(s, a) , {δ(a) ∈ Ac : δ ∈ dc(s) ∧ a ∈ dom(δ)}, for all a ∈ Ag.

These functions can be easily lifted to the set of histories as follows: dc : Hst→
2Dc with dc(ρ) , dc(lst(ρ)), ag : Hst → 2Ag with ag(ρ) , ag(lst(ρ)), and
ac : Hst×Ag→ 2Ac with ac(ρ, a) , dc(lst(ρ), a).

A decision δ∈Dc is coherent w.r.t. a state s∈St (s-coherent, for short), if
ag(s)⊆ dom(δ) and δ(a)∈ ac(s, a), for all a∈ ag(s). By Dc(s)⊆Dc, we denote
the set of all s-coherent decisions.

A strategy is a partial function σ ∈ Str , Hst ⇀ Ac prescribing, whenever
defined, which action has to be performed for a certain history of the current
outcome. Roughly speaking, it is a generic conditional plan which specifies

“what to do” but not “who will do it”. Indeed, a given strategy can be used
by more than one agent at the same time. We say that σ is coherent w.r.t.
an agent a ∈ Ag (a-coherent, for short) if, in each possible evolution of the
game, either a is not influential or the action that σ prescribes is available to a.
Formally, for each history ρ ∈ Hst, it holds that either a 6∈ ag(ρ) or ρ ∈ dom(σ)
and σ(ρ) ∈ ac(ρ, a). By Str(a) ⊆ Str we denote the set of a-coherent strategies.
Moreover, Str(A) ,

⋂
a∈A Str(a) indicates the set of strategies that are coherent

with all agents in A ⊆ Ag.
For a state s ∈ St, we say that σ is s-total iff it is defined on all non-trivial

histories (i.e., |ρ| > 0) starting in s, i.e.,dom(σ) = {ρ ∈ Hst|fst(ρ) = s}.
A profile is a function ξ ∈ Prf , Ag→a Str(a) specifying a unique behavior

for each agent a ∈ Ag by associating it with an a-coherent strategy ξ(a) ∈ Str(a).
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Given a profile ξ, to identify which action an agent a ∈ Ag has chosen to perform
on a history ρ ∈ Hst, we first extract the corresponding strategy ξ(a) and then
determine the action ξ(a)(ρ), whenever defined. To identify, instead, the whole
decision on ρ, we apply the standard flipping operator to ξ. 1 We get so a
function ξ̂ : Hst→ Dc such that ξ̂(ρ)(a) = ξ(a)(ρ), which maps each history to
the planned decision.

A path π ∈ Pth is a play w.r.t. a profile ξ ∈ Prf (ξ-play, for short) iff, for

all i ∈ [0, |π|[, there exists a decision δ ∈ dc((π)i) such that δ ⊆ ξ̂((π)≤i) and
((π)i, (π)i+1) ∈ tr(δ), i.e. (π)i+1 is one of the successors of (π)i induced by the

decision ξ̂((π)≤i) prescribed by the profile ξ on the history (π)≤i.
CGSs describe generic mathematical structures, where the basilar game-

theoretic notions of history, strategy, profile, and play can be defined. However,
in several contexts, some constraints rule out how the function tr maps partial
decisions to transitions between states. Here, as already observed, we require that
the CGSs are deterministic. We do this by means of the following constraints:

1. there are no sink-states, i.e., dc(s) 6= ∅, for all s ∈ St;

2. for all s-coherent decisions δ ∈ Dc(s), there exists a set of agents A ⊆ ag(s)
such that δ�A ∈ dc(s);

3. each decision induces a partial function among states, i.e. tr(δ) ∈ St ⇀ St,
for all δ ∈ Dc;

4. there are no different but indistinguishable active decisions in a given
state s ∈ St, i.e., for all δ, δ ∈ dc(s) with δ 6= δ, there exist a ∈
dom(δ) ∩ dom(δ) such that δ(a) 6= δ(a).

Given a state s ∈ St, the determinism in a CGS ensures that there exists
exactly one ξ-play π starting in s, i.e., fst(π) = s. Such a play is called (ξ, s)-play.
For this reason, we use the play function play : Prf × St→ Pth to identify, for
each profile ξ ∈ Prf and state s ∈ St, the corresponding (ξ, s)-play play(ξ, s).

As a running example, consider the concurrent game structure GS depicted
in Figure 1. It models a scheduler system that comprises two processes, P and
P, willing to access a shared resource, such as a processor, and an arbiter A

used to solve conflicts arisen under contending requests. The processes can use
four actions: i for idle, r for (resource) request, f for free (a resource), and a

for abandon (a pending request), all with the obvious meaning. The action i

means that the process does not want to change the current situation in which
the entire system resides. The action r is used to ask for the resource, when
this is not yet owned, while the action f releases it. Finally, the action a is
asserted by a process that, although has asked for the resource, did not obtain it
and so it decides to relinquish the request. The system can reside in the states
I, 1, 2, 1/2, 2/1 and W. The first three are ruled by the processes, the last by
all the agents, and 1/2 (resp, 2/1) by P (resp., P) and A. The idle state I

indicates that none of the processes owns the resource, while a state k ∈ {1, 2}
asserts that process Pk is using it. The state 1/2 (resp. 2/1) indicates that the

1By ĝ : (B → (A → C)) we denote the operation of flipping of a function g : (A → (B → C)).
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I

1
r

2
r

1/2
r

2/1
r

W

PP 7→ii

PP 7→ri PP 7→ir

PP 7→rr

PP 7→ii

PP 7→fi

PP 7→fr

PP 7→ir

PP 7→ii

PP 7→if

PP 7→rf

PP 7→ri

AP 7→ii

AP 7→2i

P 7→f

AP 7→ii

AP 7→1i

P 7→f

PP 7→aa

PP 7→ia PP 7→ai

APP 7→1ii APP 7→2ii

Figure 1: A scheduler system GS .

process P (resp., P) has the resource, while its competitor requires it. Finally,
the waiting state W represents the case in which an action from the arbiter is
required in order to solve a conflict. To denote who is the owner of the resource,
we label 1 and 1/2 (resp., 2 and 2/1) with the atomic proposition r (resp., r).
A decision is graphically represented by ~a 7→ ~c, where ~a is a sequence of agents
and ~c is a sequence of corresponding actions. For example PP → ir indicates
that agents P and P take actions i and r, respectively. All the other available
decisions are depicted in Figure 1.

2.2. Syntax

GSL extends SL by replacing the two classic strategy quantifiers 〈〈x〉〉 and
[[x]], where x belongs to a countable set Vr of variables, with their graded version
〈〈x≥g〉〉 and [[x<g]], where the finite number g ∈ N denotes the corresponding
degree, that is a bound associated to the strategy quantifiers. Intuitively, these
quantifiers are read as “there exist at least g strategies” and “all but less than
g strategies”. Moreover, GSL syntax comprises a set AP of atomic proposition
to expresses properties over the states, a binding operator to link strategies to
agents, and Boolean connectives.

Definition 2.2 (GSL Syntax). GSL formulas are built inductively by means of
the following context-free grammar, where a ∈ Ag, p ∈ AP, x ∈ Vr, and g ∈ N:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | 〈〈x ≥ g〉〉ϕ | [[x < g]]ϕ | (a, x)ϕ.
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As usual, to provide the semantics of a predicative logic, it is necessary to
define the concept of free and bound placeholders of a formula. As for SL, since
strategies can be associated to both agents and variables, we need the set of free
agents/variables free(ϕ) as the subset of Ag ∪Vr containing (i) all agents a for
which there is no binding (a, x) before the occurrence of an atomic proposition
and (ii) all variables x for which there is a binding (a, x) but no quantification
〈〈x ≥ g〉〉 or [[x < g]].

Definition 2.3 (GSL Free Agents/Variables). The set of free agents/variables
of a GSL formula is given by the function free : GSL→ 2Ag∪Vr such that:

1. free(p) , Ag, with p ∈ AP;

2. free(¬ϕ) , free(ϕ);

3. free(ϕ1 ∨ ϕ2) , free(ϕ1) ∪ free(ϕ2);

4. free(ϕ1 ∧ ϕ2) , free(ϕ1) ∪ free(ϕ2);

5. free(Xϕ) , Ag ∪ free(ϕ);

6. free(ϕ1Opϕ2) , Ag ∪ free(ϕ1) ∪ free(ϕ2) with Op ∈ {U, R};
7. free(〈〈x ≥ g〉〉ϕ) , free(ϕ) \ {x};
8. free([[x < g]]ϕ) , free(ϕ) \ {x};
9. free((a, x)ϕ) , free(ϕ), if a 6∈ free(ϕ), with a ∈ Ag and x ∈ Vr;

10. free((a, x)ϕ) , (free(ϕ)\{a})∪{x}, if a ∈ free(ϕ), with a ∈ Ag and x ∈ Vr.

A formula ϕ without free agents (resp., variables), i.e., with free(ϕ)∩Ag = ∅
(resp., free(ϕ) ∩ Vr = ∅)), is named agent-closed (resp., variable-closed). A
sentence is a both agent- and variable-closed formula. Since a variable x may be
bound to more than a single agent at the time, we also need the subset shr(ϕ, x)
of Ag containing those agents for which a binding (a, x) occurs in ϕ.

Definition 2.4 (GSL Shared Variables). The set of shared variables of a GSL
formula is given by the function shr : GSL×Vr→ 2Ag such that:

1. shr(p, x) , ∅, with p ∈ AP;

2. shr(¬ϕ, x) , shr(ϕ, x);

3. shr(ϕ1 ∨ ϕ2, x) , shr(ϕ1, x) ∪ shr(ϕ2, x);

4. shr(ϕ1 ∧ ϕ2, x) , shr(ϕ1, x) ∪ shr(ϕ2, x);

5. shr(Xϕ, x) , shr(ϕ, x);

6. shr(ϕ1Opϕ2, x) , shr(ϕ1, x) ∪ shr(ϕ2, x) with Op ∈ {U, R};
7. shr(〈〈x ≥ g〉〉ϕ, x) , shr(ϕ, x);

8. shr([[x < g]]ϕ, x) , shr(ϕ, x);

9. shr((a, y)ϕ, x) , shr(ϕ, x), if a 6∈ free(ϕ) or y 6= x, with a ∈ Ag and y ∈ Vr;

10. shr((a, x)ϕ, x) , shr(ϕ, x) ∪ {a}, if a ∈ free(ϕ), with a ∈ Ag.

For complexity reasons, we restrict to the One-Goal fragment of GSL
(GSL[1g], for short), which is the graded extension of SL[1g] [36]. To for-
malize its syntax, we first introduce some notions. A quantification prefix over
a set V⊆Vr of variables is a word ℘∈{〈〈x≥ g〉〉, [[x< g]] : x∈V ∧ g ∈N}|V| of
length |V| such that each x∈V occurs just once in ℘. With Qn(V ) we indicate
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the set of quantification prefixes over V . A binding prefix over A⊆Ag is a word
[∈{(a, x) : a∈A ∧ x∈Vr}|A| such that each a∈A occurs exactly once in [. By
Bn we indicate the set of all binding prefixes. GSL[1g] restricts GSL by forcing,
after a quantification prefix, a single goal to occur i.e., a formula of the kind
[ψ, where [ is a binding prefix on all the agents in Ag. The syntax of GSL[1g]
follows.

Definition 2.5 (GSL[1g] Syntax). GSL[1g] formulas are built inductively
through the following grammar:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | ℘[ϕ,

with ℘ quantification prefix over free([ϕ) and [ϕ a goal.

As an example of GSL[1g] property, in the context of the scheduler system,
consider the sentence ϕ = ℘[ψ, with ℘ = 〈〈x ≥ k〉〉[[y < g1]][[y < g2]], [ =
(A, x)(P, y)(P, y), and ψ=F(r ∨ r). It says that there are at least k strate-
gies for the arbiter A ensuring that one between the processes P and P receives
the resource, being them able to avoid less than g1 and g2 strategies, respectively.

2.3. Semantics

As for SL, the interpretation of a GSL formula requires a valuation for
its free placeholders. This is done via assignments, i.e., partial functions χ∈
Asg, (Vr ∪ Ag)⇀Str mapping variables/agents to strategies. An assignment
χ is complete if it is defined on all agents in Ag, i.e., χ(a)∈ Str({a}), for all
a ∈ Ag ⊆ dom(χ). In this case, it directly identifies the profile χ�Ag given by
the restriction of χ to Ag. In addition, χ[e 7→ σ], with e ∈ Vr ∪Ag and σ ∈ Str,
denotes the assignment defined on dom(χ[e 7→ σ]), dom(χ) ∪ {e} that differs
from χ only on the fact that e is associated with σ. Formally, χ[e 7→ σ](e) = σ
and χ[e 7→ σ](e′) = χ(e′), for all e′ ∈ dom(χ)\{e}. For a state s ∈ St, it is
said that χ is s-total if all strategies χ(l) are s-total, for l ∈ dom(χ). The set
Asg ,Vr ∪ Ag⇀ Str (resp., Asg(s) ,Vr ∪ Ag⇀ Str(s)) contains all (resp., s-
total) assignments. Moreover, Asg(X) , X⇀Str (resp., Asg(X, s) , X⇀Str(s))
indicates the subset of X-defined (resp., s-total ) assignments, i.e., (resp., s-total
) assignments defined on the set X ⊆ Vr ∪ Ag. Finally, for a formula ϕ, we
say that χ is ϕ-coherent iff (i) free(ϕ) ⊆ dom(χ), (ii) χ(a) ∈ Str({a}), for all
a ∈ dom(χ) ∩ Ag, and (iii) χ(x) ∈ Str(shr(ϕ, x)), for all x ∈ dom(χ) ∩ Vr. To
provide the semantics of GSL, we give a definition of update state/assignment
which is used to calculate, at a certain step of the play, what the current state
and its updated assignment are. For a given state s ∈ St and a complete s-total
assignment χ ∈ Asg(s), the i-th update state/assignment of (χ, s), with i ∈ N,
is the pair of a complete assignment and a state (χ, s)i , ((χ)(π)≤i

, (π)i) where

π = play(χ, s). In other words, (χ, s)i corresponds to the i-th element of the
sequence, given a partial assignments (χ)(π)≤i

.
We now define the semantics of a GSL formula ϕ w.r.t. a CGS G and a

ϕ-coherent assignment χ. In particular, we write G, χ |= ϕ to indicate that ϕ
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holds in G under χ. The semantics of LTL formulas and agent bindings are
defined as in SL. The definition of graded strategy quantifiers, instead, makes
use of a family of equivalence relations ≡ϕG on assignments that depend on the
structure G and the considered formula ϕ. This equivalence is used to reasonably
count the number of strategies that satisfy a formula w.r.t. an a priori fixed
criterion. Observe that we use a relation on assignments instead of a more
direct one on strategies, since the classification may also depend on the context
determined by the strategies previously quantified. In Section 3, we will come
back to the properties the equivalence relation has to satisfy in order to be used
in the semantics of GSL.

Definition 2.6 (GSL Semantics). Let G be a CGS, ϕ be a GSL formula
and s ∈ St be a state. For all ϕ-coherent assignments χ ∈ Asg, the relation
G, χ, s |= ϕ is inductively defined as follows.

1. For every p ∈ AP, it holds that G, χ, s |= p iff p ∈ ap(s).

2. For all formulas ϕ, ϕ1, and ϕ2, it holds that:

(a) G, χ, s |= ¬ϕ iff G, χ, s 2 ϕ;
(b) G, χ, s |= ϕ1 ∧ ϕ2 iff G, χ, s |= ϕ1 and G, χ, s |= ϕ2;
(c) G, χ, s |= ϕ1 ∨ ϕ2 iff G, χ, s |= ϕ1 or G, χ, s |= ϕ2.

3. For each x ∈ Vr, g ∈ N, and ϕ ∈ GSL, it holds that:

(a) G, χ, s |= 〈〈x ≥ g〉〉ϕ iff |({χ[x 7→ σ] : σ ∈ ϕ[G, χ, s](x)}/≡ϕG)| ≥ g;
(b) G, χ, s |= [[x < g]]ϕ iff |({χ[x 7→ σ] : σ ∈ ¬ϕ[G, χ, s](x)}/≡¬ϕG )| < g;

where η[G, χ, s](x), {σ ∈ Str(shr(η, x)) : G, χ[x 7→ σ], s |= η} is the set of
shr(η, x)-coherent strategies that, being assigned to x in χ, satisfy η.

4. For each a ∈ Ag, x ∈ Vr, and ϕ ∈ GSL, it holds that G, χ, s |= (a, x)ϕ iff
G, χ[a 7→ χ(x)], s |= ϕ.

5. Finally, if the assignment χ is also complete, for all formulas ϕ, ϕ1, and
ϕ2, it holds that:

(a) G, χ, s |= Xϕ iff G, (χ, s)1 |= ϕ;
(b) G, χ, s |= ϕ1Uϕ2 if there is an index i ∈ N such that G, (χ, s)i |= ϕ2

and, for all indexes j ∈ N with j < i, it holds that G, (χ, s)j |= ϕ1;
(c) G, χ, s |= ϕ1Rϕ2 if, for all indexes i ∈ N , it holds that G, (χ, s)i |= ϕ2

or, there is an index j ∈ N with j < i, such that G, (χ, s)j |= ϕ1.

Intuitively, the existential quantifier 〈〈x ≥ g〉〉ϕ allows us to count the number
of equivalence classes w.r.t. ≡ϕG over the set of assignments {χ[x 7→ σ] : σ ∈
ϕ[G, χ](x)} that, extending χ, satisfy ϕ. The universal quantifier [[x<g]]ϕ is the
dual of 〈〈x≥ g〉〉ϕ and counts how many classes w.r.t. ≡¬ϕG there are over the
assignments {χ[x 7→ σ] : σ ∈ ¬ϕ[G, χ](x)} that, extending χ, do not satisfy ϕ.
Note that all GSL formulas with degree 1 are SL formulas, since with 〈〈x≥1〉〉ϕ
is appropriate to find a single strategy that satisfies the formula, just like 〈〈x〉〉ϕ.
Furthermore, by [[x<1]]ϕ all strategies are considered, without excluding any,
just like [[x]]ϕ. In order to complete the description of the semantics, we now give
the classic notions of model and satisfiability of an GSL sentence. We say that
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a CGS G is a model of an GSL sentence ϕ, in symbols G |= ϕ , if G,∅, sI |= ϕ.2

In general, we also say that G is a model for ϕ on s ∈ St, in symbols G, s |= ϕ, if
G,∅, s |= ϕ. An GSL sentence ϕ is satisfiable if there is a model for it.

Consider again the sentence ϕ = 〈〈x≥k〉〉[[y<g1]][[y<g2]](A, x)(P, y)(P, y)
F(r ∨ r) of the scheduler example. Once a reasonable equivalence relation on
assignments is fixed (see Section 3), one can see that GS |= ϕ with k ≥ 0 and
(g1, g2) = (1, 2) but GS 6|= ϕ with (k, g1, g2) = (1, 1, 1). Indeed, if the processes
use the same strategy, they may force the play to be in (I+ ·W)∗ ·Iω+(I+ ·W)ω, so
they either avoid to do a request or relinquish a request that is not immediately
served. Consequently, to satisfy ϕ, we need to verify the property against all but
one strategy of P, i.e., the one used by P. Under these assumptions, we can
see that the arbiter A has an infinite number of different strategies by suitably
choosing the actions on all histories ending in the state W.

2.4. Results

In this section, we summarize the main results we have obtained on GSL
along this paper. We start showing that graded ATL (GATL) [31] is strictly
included in GSL[1g]. Precisely, we first show that GATL can be translated
into GSL[1g], then we provide a formula GSL[1g] and show that it cannot be
expressed in GATL. In [31], the authors introduce two different semantics for
GATL, called off-line and on-line, and it has been showed that this logic has the
ability to count how many different strategies (in the off-line semantics) or paths
(in the on-line semantics) satisfy a certain property. Under the off-line semantics,
over a CGS with agents α and α, the GATL formula 〈〈α〉〉gψ is equivalent to
the GSL[1g] sentence 〈〈x≥g〉〉[[x<1]](α, x)(α, x)ψ. Under the on-line semantics,
instead, it is equivalent to the sentence [[x<1]]〈〈x≥g〉〉(α, x)(α, x)ψ. Note that
the counting over strategies in GATL is limited to existential agents and, so, the
GSL[1g] formula [[x<2]]〈〈y≥1〉〉(α, x)(α, y)ψ does not have any ATL equivalent
formula. From these considerations, we derive the following theorem.

Theorem 2.1. GSL[1g] is more expressive of GATL.

It is important to note that the criteria used for the strategy classification
in GATL is strictly coupled with the temporal operators Xϕ, ϕ1Uϕ2, and Gϕ
along the syntax, and we do not see how this can be extended to the whole LTL,
unless one uses the approach proposed in [16].

Another important result we prove in Section 5 is the determinacy for GSL[1g]
in the case of 2 variables as stated in the following theorem.

Theorem 2.2 (Determinacy). GSL[1g, 2ag] on Turn-Based Game Structures
is determined.

Finally, in Section 6, we solve the model checking problem for the vanilla
fragment of GSL[1g] with 2 variables. As for ATL, Vanilla GSL[1g] requires

2The symbol ∅ stands for the empty function.
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that two successive temporal operators in a formula are always interleaved by a
strategy quantifier.

Theorem 2.3 (Model Checking). The model-checking problem for Vanilla
GSL[1g] is PTime-complete w.r.t. the size of the structure and the sentence.

3. Strategy Equivalence

Our definition of the GSL semantics makes use of an arbitrary family of
equivalence relation on assignments. This choice introduces flexibility in its
description, since one can come up with different logics by opportunely choosing
different equivalences. In this section, we focus on a particular relation whose key
feature is to classify as equivalent all assignments that reflect the same “strategic
reasoning”, although they may have completely different structures. Just to get
an intuition about what we mean, consider two assignments χ and χ and the
corresponding involved strategies associated with the agents a and a. Assume
now that, for each i∈{1, 2}, the homologous strategies χ(ai) and χ(ai) only
differ on histories never met by a play because of a specific combination of their
actions. Clearly, χ and χ induce the same agent behaviors, which means to
reflect the same strategic reasoning. Therefore, it is natural to set them as
equivalent, as we do. Two formulas are considered equivalent whenever the two
assignments are equivalent for both or none of them. Also, if two assignments
do not satisfy the same formulas, they are not equivalent.

In the sequel, in order to illustrate the introduced concepts, we analyze sub-
formulas of the previously described sentence 〈〈x≥k〉〉[[y<1]][[y<2]](A,x)(P,y)
(P,y)F(r∨r), together with their negations, over the CGS GS of Figure 1.

3.1. Elementary Requirements

Logics usually admit syntactic redundancy. For example, in LTL we have
¬X(p ∧ q) ≡ X¬(p ∧ q) ≡ X(¬p ∨ ¬q). Also, the semantics is normally closed
under substitution. Yet for LTL, this means that ¬X(p ∧ q) can be replaced
with X¬(p ∧ q) or X(¬p ∨ ¬q), without changing the meaning of a formula. GSL
should not be an exception. To ensure this, we require the invariance of the
equivalence relation on assignments w.r.t. the syntax of the involved formulas.

Definition 3.1 (Syntax Independence). An equivalence relation on assignments
≡·G is syntax independent if, for any pair of equivalent formulas ϕ1 and ϕ2 and
(free(ϕ1) ∪ free(ϕ2))-coherent assignments χ, χ ∈ Asg, we have that χ ≡ϕ

G χ
iff χ ≡ϕ

G χ.

As declared above, our aim is to classify as equivalent w.r.t. a formula ϕ
all assignments that induce the same strategic reasoning. Therefore, we cannot
distinguish them w.r.t. the satisfiability of ϕ itself.

Definition 3.2 (Semantic Consistency). An equivalence relation on assignments
≡·G is semantically consistent if, for any formula ϕ and ϕ-coherent assignments
χ, χ ∈ Asg, we have that if χ ≡ϕGχ then either G, χ |= ϕ and G, χ |= ϕ or
G, χ 6|= ϕ and G, χ 6|= ϕ.
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3.2. Play Requirement

We now deal with the equivalence relation for the basic case of temporal
properties. Before disclosing the formalization, we give an intuition on how to
evaluate the equivalence of two complete assignments χ and χ w.r.t. their
agreement on the verification of a generic LTL property ψ. Let π and π
with π 6= π be the plays satisfying ψ induced by χ and χ, respectively.
Also, consider their maximal common prefix ρ = prf(π, π) ∈ Hst. If ρ can be
extended to a play in such a way that ψ does not hold, we are sure that the
reasons why both the assignments satisfy the property are different, as they
reside in the parts where the two plays diverge. Consequently, we can assume
χ and χ to be non-equivalent w.r.t. ψ. Conversely, if all infinite extensions
of ρ necessarily satisfy ψ, we may affirm that this is already a witness of the
verification of the property by the two plays and, so, by the two assignments.
Hence, we can assume χ and χ to be equivalent w.r.t. ψ.

In the following, we often make use of the concept of witness of an LTL
formula ψ as the set Wψ , {ρ ∈ Hst : ∀π ∈ Pth . ρ < π ⇒ π |= ψ} containing
all histories that cannot be extended to a play violating the property.

Definition 3.3 (Play Consistency). An equivalence relation on assignments
≡·G is play consistent if, for any LTL formula ψ and ψ-coherent assignments

χ, χ ∈ Asg, we have that χ≡ψGχ iff either π=π or prf(π, π)∈Wψ, where
π= play(χ�Ag, sI) and π= play(χ�Ag, sI) are the plays induced by χ and χ,
respectively, and Wψ ⊆ Hst is the witness set of ψ.

To see how to apply the above definition, consider the formula ψ = F(r ∨r)
and let Wψ be the corresponding witness set, whose minimal histories can be
represented by the regular expression I+ · (1 + 2) + (I+ · W)+ · (1 + 2 + 1/2 + 2/1).
Moreover, let χ, χ, χ ∈ Asg({A, P, P}) be three complete assignments on
which we want to check the play consistency. We assume that each χi associates
a strategy χi(a) = σai with the agent a ∈ {A, P, P} as defined in the following,
where ρ, ρ′ ∈ Hst with lst(ρ′) 6= I : for the arbiter A, we set σA/(ρ · W) , 2,

σA//(ρ · 1/2)=σA(ρ · 2/1),i, and σA(ρ · W)=σA/(ρ · 2/1),1; for the processes,

instead, we set σP//(ρ
′) = σP//(ρ

′) , i, σP/(ρ · I) = σP//(ρ · I) , r, and

σP (ρ · I),i3. Now, one can see that χ ≡ψGχ, but χ 6≡ψGχ. Indeed, χ, χ,
and χ induce the plays π=I · W · 2/1 · 1/2ω, π=I · W · 2/1ω, and π=I · 2ω,
respectively, where ρ=prf(π, π)=I · W · 2/1 and ρ=prf(π, π)=I are the
corresponding common prefixes. Thus, ρ belongs to the witness Wψ, while ρ
does not.

As another example, consider the formula ψ = G(¬r ∧ ¬r), which is
equivalent to the negation of the previous one, and observe that its witness set
Wψ is empty. Moreover, let χ, χ, χ ∈ Asg({A, P, P}) be the three complete
assignments we want to analyze. The strategies for the arbiter A are defined

3Note that, we use σa
i/j

(ρ) = α to represent σai (ρ) = α and σaj(ρ) = α.
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as above, while those of the processes follows: σPi//(ρ
′) , i, σPi/(ρ · I) , r,

σPi/(ρ · W), a, and σPi (ρ · I) = σPi (ρ · W), i, where i ∈ {1, 2} and ρ, ρ′ ∈ Hst

with lst(ρ′) 6∈ {I, W}. Now, one can see that χ ≡ψGχ, but χ6≡ψGχ. Indeed, χ
and χ induce the same play (I · W)ω, while χ runs along Iω. Thus, χ and χ
are equivalent, but χ and χ are not.

3.3. Strategy Requirements

The semantics of a binding construct ϕ= (a, x)η involves a redefinition of
the underlying assignment χ, as it asserts that ϕ holds under χ once the inner
part η is satisfied by associating the agent a to the strategy χ(x). Thus, the
equivalence of two assignments χ and χ w.r.t. ϕ necessarily depends on that
of their extensions on a w.r.t. η.

Definition 3.4 (Binding Consistency). An equivalence relation on assignments
≡·G is binding consistent if, for a formula ϕ = (a, x)η and ϕ-coherent assignments
χ, χ ∈ Asg, we have that χ ≡ϕGχ iff χ[a 7→χ(x)]≡ηGχ[a 7→χ(x)].

To get familiar with the above concept, consider the formula [ψ, where
[ , (A, x)(P, y)(P, y), and let χ, χ, χ ∈ Asg({x, y, y}) be the assignments

assuming as values the strategies χi(x) , σAi and χi(yj) , σ
Pj
i previously defined,

where i ∈ {1, 2, 3} and j ∈ {1, 2}. Then, by definition, it is immediate to see

that χ ≡[ψG χ, but χ6≡[ψG χ.
Before continuing with the analysis of the equivalence, it is worth making

same reasoning about the dual nature of the existential and universal quantifiers
w.r.t. the counting of strategies. We do this by exploiting the classic game-
semantics metaphor originally proposed for first-order logic by Lorenzen and
Hintikka, where the choice of an existential variable is done by a player called ∃
and that of the universal ones by its opponent ∀. Consider a sentence 〈〈x≥g1〉〉
[[x<g2]]η, having 〈〈y≥h1〉〉η1 and [[y<h2]]η2 as two subformulas in η. When
player ∃ tries to choose h1 different strategies y to satisfy η1, it also has to
maximize the number of strategies x by verifying [[x<g2]]η to be sure that
the constraint ≥ g1 of the first quantification is not violated. At the same time,
player ∀ tries to do the opposite while choosing h2 different strategies y not
satisfying η2, i.e., it needs to maximize the number of strategies x falsifying η
in order to violate the constraint < g2 of the second quantifier.

With the above observation in mind, we now treat the equivalence for the
existential quantifier. Two assignments χ and χ are equivalent w.r.t. a formula
ϕ=〈〈x≥g〉〉η if player ∃ is not able to find a strategy σ among those satisfying
η, to associate with the variable x, that allows the corresponding extensions of
χ and χ on x to induce different behaviors w.r.t. η. In other words, ∃ cannot
distinguish between the two assignments, as they behave the same independently
of the way they are extended.

Definition 3.5 (Existential Consistency). An equivalence relation on assign-
ments ≡·G is existentially consistent if, for any formula ϕ = 〈〈x ≥ g〉〉η and

14



ϕ-coherent assignments χ, χ ∈ Asg, we have that χ≡ϕGχ iff, for each strategy
σ ∈ η[G, χ](x) ∪ η[G, χ](x), it holds that χ[x 7→ σ]≡ηGχ[x 7→ σ].

To clarify the above definition, consider the formula ϕ = 〈〈y ≥ 2〉〉[ψ and
let χ, χ, χ ∈ Asg({x, y}) be the three assignments having as values the

strategies χi(x) , σAi and χi(y) , σPi previously defined, where i ∈ {1, 2, 3}.
By a matter of calculation, one can see that χ≡ϕGχ, but χ6≡ϕGχ. By definition,

χ ≡ϕGχ iff, for each strategy σ ∈ ([ψ)[G, χ](y) ∪ ([ψ)[G, χ](y), it holds that

χ[y 7→ σ]≡[ψG χ[y 7→ σ]. Now, observe that the strategy σP introduced above

is the unique one that allows χ and χ to satisfy [ψ once extended on y. At

this point, we can easily show that χ[y 7→ σP ]≡[ψG χ[y 7→ σP ], as the derived
complete assignments χ[y 7→ σP ] ◦ [ and χ[y 7→ σP ] ◦ [ induce the same
play (I · W)ω. The non-equivalence of χ and χ easily follows from the fact that
σP 6∈ ([ψ)[G, χ](y), as χ[y 7→ σP ]◦[ induces the play I · 2ω that does not

satisfy ψ. Thus, χ[y 7→σP ] 6≡[ψG χ[y 7→σP ].
We conclude with the equivalence for the universal quantifier. Two assign-

ments χ and χ are equivalent w.r.t. a formula ϕ = [[x<g]]η if, for each index
i ∈ {1, 2} and strategy σi player ∀ chooses among those satisfying η under χi,
there is a strategy σ−i this player can choose among those satisfying η under
χ−i such that, once the two strategies are associated with the variable x, they
make the corresponding extensions of assignments equivalent w.r.t. η. This
means that the parts of the concurrent game structure that are reachable under
χ and χ contain exactly the same information w.r.t. the verification of the
inner formula. In other words, ∀ cannot distinguish between the two assignments,
as the induced subtrees of possible plays are practically the same.

Definition 3.6 (Universal Consistency). An equivalence relation on assignments
≡·G is universally consistent if, for any formula ϕ= [[x < g]]η and ϕ-coherent
assignments χ, χ ∈ Asg, we have that χ ≡ϕGχ iff, for all i ∈ {1, 2} and
strategy σi∈η[G, χi](x), there is a strategy σ−i∈η[G, χ−i](x) such that χ[x 7→
σ]≡ηGχ[x 7→σ].

Finally, to better understand the above definition, consider the formula
ϕ=[[y<1]]η, where η=[[y<2]][ψ, and let χ, χ, χ ∈ Asg({x}) be the three

assignments having as values the strategies χi(x) , σAi previously defined, where
i ∈ {1, 2, 3}. One can see that χ≡ϕGχ, but χ6≡ϕGχ.

First, observe that η[G, χ](y) = η[G, χ](y) = Str. Indeed, for all strategies
σ ∈ Str, we have that G, χ[y 7→σ] |= η and G, χ[y 7→σ] |= η, since G, χ[y 7→
σ, y 7→ σ′] |= [ψ and G, χ[y 7→ σ, y 7→ σ′] |= [ψ, for all σ′ ∈ Str such that
σ 6= σ′. This is due to the fact that the plays π and π induced by the two
complete assignments χ[y 7→σ, y 7→σ′]◦ [ and χ[y 7→σ, y 7→σ′]◦ [ differ from
(I+ · W)∗ · Iω and (I+ · W)ω, as the strategies of the two processes are different.
Also, they share a common prefix ρ= prf(π, π) belonging to Wψ, since the
strategies of the arbiter only differ on the histories ending in the state 2/1. We
can now show that χ and χ are equivalent, by applying the above definition
in which we assume that σi = σ−i.
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Figure 2: An example of CGS G. Note that each node of G is labeled with its name
(in the upper part) and the subset of the players that are active in it (in the lower
part).

To prove that χ and χ are non-equivalent, we show that there is a strategy
σ ∈ η[G, χ](y) for χ such that, for all strategies σ′ ∈ η[G, χ](y) for χ, it
holds that χ[y 7→ σ] 6 ≡ηGχ[y 7→ σ′]. As before, observe that η[G, χ](y) =
η[G, χ](y) = Str and choose σ ∈ Str as the strategy σP previously defined. At
this point, one can easily see that all plays compatible with χ[y 7→σ] ◦ [ pass
through either I · 1 or I · W · 2/1, while a play compatible with χ ◦ [ cannot pass
through the latter history. Thus, the non-equivalence of the two assignments
immediately follows.

4. From Concurrent To Turn-Based Games

In this section, we transform a game in a simpler but equivalent form.
Precisely, we show how to transform a game from concurrent to turn-based.
The definition of the turn-based structure follows.

Definition 4.1 (Turn-Based Game Structure). A CGS G is a Turn-Based
Game Structure (TBGS, for short) if there exist a function own : St → Ag,
named owner function such that, for all states s ∈ St and decisions δ1, δ2∈Dc,
it holds that if δ1(own(s)) = δ2(own(s)) then tr(δ1)(s) = tr(δ2)(s).

It is worth recalling that similar reductions have been also used to solve
questions related to GATL in [31] and the one-goal fragment of SL in [37].
However, none of them can be used for GSL[1g]. The main reason resides in
the fact that in both the mentioned cases, the reduction always results in a two-
player game, where the two players represent a collapsing of all existential and
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universal modalities, respectively. Conversely, in GSL[1g] we need to maintain a
multi-player setting in the construction. This is due to the fact that the technique
employed in GSL[1g] to count the non-equivalent strategies in a quantification,
say 〈〈x≥g〉〉ϕ , depends on the particular kind of quantifications and counting on
the variables contained in its matrix, i.e., ϕ. In particular, it is worth recalling
that in GATL strategies are grouped together w.r.t. set of agents, while in
GSL[1g] every agent strategy is considered separately. Thus, we introduce an
ad-hoc transformation of the concurrent game under exam into a multi-player
turn-based one, which has the peculiarity of retaining the same number of
variables, but can collapse equivalent actions. More precisely, starting with a
game having k variables, we end in a game with k agents and k variables. The
proposed conversion is divided into three parts. The first, called normalization,
concerns the elimination of the bindings, where a different agent is introduced
for every free variable. The second, named minimization, is the elimination of
equivalent actions that are, therefore, redundant. Finally, the third is the real
transformation of the game in a turn-based one. To better understand the three
steps of the conversion, we consider the following running example.

Example 4.1. Consider the CGS G =〈AP,Ag,Ac,St, tr, ap, sI〉 depicted in Fig-
ure 2, where AP = {p}, Ag = {a, b, c}, Ac = {0, 1, 2}, St = {s, s, s, s, s, s,
s, s}, and sI = s. Note that agent a is active in all states, agent b only in
s, and agent c in s, s, and s. Moreover, we have that ac(s, a) = ac(s, b) =
ac(s, a) = ac(s, c) = {0, 1, 2} and ac(s, a) = ac(s, c) = ac(s, a) = ac(s, c) =
ac(s, a) = ac(s, c) = ac(s, a) = ac(s, a) = ac(s, a) = {0, 1}. Finally, the
labeling function is defined as ap(s) = ap(s) = ap(s) = ap(s) = ap(s) = ∅
and ap(s) = ap(s) = ap(s) = {p}. The transition function is directly derivable
from the figure.

4.1. Normalization

In this subsection, we introduce the concept of normalized CGS w.r.t. a
given binding. The aim is to show how to turn a CGS G in a new one G• in
which all agents associated with the same variable are merged into a single player.
Basically, by applying the normalization, we restrict our attention to the part of
the structure that is effectively involved in the verification of the formula w.r.t.
a binding [. From a technical point of view, the normalization consists of two
steps. The first transforms the set of variables into the set of agents; this means
that all bindings become identities of the kind (x, x). The second involves the
transition function, which is augmented in order to associate decisions to the
new agent (via the binding).

Construction 4.1 (CGS Normalization). From a CGS G=〈AP,Ag,Ac,St, tr,
ap, sI〉, a binding prefix [∈Bn(Ag) and GSL[1g] formula ϕ = ℘[ψ, we build the
normalized CGS G• , 〈AP,Ag•,Ac,St, tr•, ap, sI〉 as follows:

• the new agents in Ag• , rng([) are all variables bounded by [, where
rng : Bn→ Ag, i.e., it returns all agents bounded by [.
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Figure 3: Normalized CGS G• built on G.

• the new transition function tr•(δ•)(s) , tr(δ• ◦ [)(s) simply maps a state
s ∈ St and a new active decision δ• ∈ dc•(s) , {δ• ∈ Dc• : δ• ◦ [ ∈ dc(s)}
into the successor tr(δ•◦[)(s) of s following the original decision δ•◦[ ∈ Dc;

• the new GSL[1g] formula is ϕ• , ℘
∏
x∈rng([)(x, x)ψ.

Observe that, to normalize the game, we simply need to normalize its CGS,
as well as to change the underling GSL[1g] formula, since agent and variable
names now coincide. Indeed, the new GSL[1g] formula differs from the original
one only on its bindings, which now are all identities.

Example 4.2. Consider again the game depicted in Figure 2, with ϕ = ℘[Fp
a GSL[1g] formula, where ℘ = 〈〈x ≥ 3〉〉[[y < 2]] and [ = (a, x)(b, y)(c, x). The
resulting normalized CGS is G• , 〈AP,Ag•,Ac,St, tr•, ap, sI〉, where the set of
new agents is Ag• , {x, y} and the transition function is reported in Figure 3.
Note that, the transitions in which the agents a and c in Figure 2 take different
actions are removed. The associated GSL[1g] sentence is ϕ• , 〈〈x ≥ 3〉〉[[y <
2]](x, x)(y, y)Fp.

4.2. Minimization

As for previous considerations, actions involving the same strategic reasoning
need to be merged together. We accomplish this by constructing a new concurrent
game structure that maintains just one representative for each class of equivalence
actions. Before describing the formal construction, we need to introduce some
accessory notions.

Given a CGS G = 〈AP,Ag,Ac,St, tr, ap, sI〉, one of its states s ∈ St, a
quantification prefix ℘ ∈ Qn(ag(s)), and a function vr : Qn→ Vr, we can define
an equivalence relation δ≡℘s δ between decisions δ, δ ∈ Dc with ag(s)\vr(℘) ⊆
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dom(δ), dom(δ) that locally mimics the behavior of the one between assignments
previously discussed. Intuitively, it allows to determine whether two different
moves of a set of agents are actually mutually substitutable w.r.t. the strategy
quantification of interest. Formally, we have that:

1) for the empty quantification prefix ε, it holds that δ ≡εsδ iff tr(δ)(s) =
tr(δ)(s);

2) δ ≡
〈〈a≥g〉〉℘
s δ iff, for all active actions c ∈ ac(s, a), it holds that δ[a 7→

c]≡℘s δ[a 7→ c];

3) δ ≡
[[a<g]]℘
s δ iff, for all indexes i ∈ {1, 2} and active actions ci ∈ ac(s, a),

there exists an active action c−i ∈ ac(s, a) such that δ[a 7→ c]≡℘s δ[a 7→ c].

At this point, we can introduce an equivalence relation between the active
actions c, c ∈ ac(s, a) of an agent a ∈ ag(s), once a partial decision δ ∈ Dc
with {a′ ∈ ag(s) : a′ <℘ a} ⊆ dom(δ) of the agents already quantified is

given. Formally, c ≡
〈〈a≥g〉〉℘
s,δ c iff δ[a 7→ c] ≡℘s δ[a 7→ c] and c ≡

[[a<g]]℘
s,δ c iff

δ[a 7→ c] ≡℘s δ[a 7→ c], where ℘ represents the dual prefix of ℘, i.e., ℘ = ¬℘.
Intuitively, the two actions c, c are equivalent w.r.t. δ iff agent a can use them
indifferently to extend δ, without changing the set of successors of s it can force
to reach.

We can now introduce the concept of minimization of a CGS, in which the
behavior of each agent is restricted in such a way that he can only choose the
representative element from each class of equivalent actions. Before moving to
the formal definition, as an additional notation, we use ℘≥a to denote the suffix
of the quantification prefix ℘ starting from its variable/agent a.

Construction 4.2 (CGS Minimization). From a CGS G =〈AP,Ag,Ac,St, tr,
ap, sI〉 normalized w.r.t. a binding prefix [ ∈ Bn(Ag), and a quantification prefix
℘ ∈ Qn(rng([)), we build the minimized CGS G� , 〈AP,Ag,Ac,St, tr�, ap, sI〉,
where the new transition function tr� is defined as follows. First, assume
Λ(s, δ, a) ⊆ ac(s, a) to be a subset of active actions for the agent a ∈ ag(s) on the
state s ∈ St such that, for each c ∈ ac(s, a), there is exactly one c′ ∈ Λ(s, δ, a)
with c≡℘≥a

s,δ c
′. Intuitively, Λ(s, δ, a) is one of the minimal sets of actions needed by

the agent a in order to preserve the essential structure of the CGS. At this point,
let dc�(s) , {δ ∈ dc(s) : ∀a ∈ dom(δ) . δ(a) ∈ Λ(s, δ�{a′∈dom(δ):a′<℘a}, a)} to be
the set of active decisions having only values among those ones previously chosen.
Finally, for each state s ∈ St and decision δ ∈ Dc, assume tr�(δ)(s) , tr(δ)(s),
if δ ∈ dc�(s), and tr�(δ) , ∅, otherwise.

Observe that the minimization of the game only involves the CGS, as we
just change the active actions of the agents, while states and agents remain
unchanged.

Example 4.3. Consider the normalized game G• of the Example 4.2 and sen-
tence ϕ• = ℘[Fp, where ℘ = 〈〈x ≥ 3〉〉[[y < 2]] and [ = (x, x)(y, y). The
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Figure 4: Minimized CGS G� built on Normalized G•.

corresponding minimized CGS is G� , 〈AP,Ag•,Ac,St, tr�, ap, sI〉, where the
new transition function tr� is depicted in Figure 4. To give an intuition, we
analyze the equivalence relation between the actions 0, 1 ∈ ac(s, x) of the agent x.

We have that 0≡℘s,∅1 iff ∅[x 7→ 0]≡[[y<]]
s ∅[x 7→ 1] iff, for all indexes i ∈ {1, 2}

and active actions ci ∈ ac(s, y), there exists an active action c−i ∈ ac(s, y)
such that δ[y 7→ c]≡εsδ[y 7→ c]. Since ac(s, y) = ∅ the previous equivalence
is vacuously verified. Therefore, 0 and 1 are equivalent actions.

4.3. Conversion

Finally, we describe the conversion of concurrent game structures into turn-
based ones. As anticipated before, differently from similar transformations one
can found in literature, the game we obtain is one with k agents and k variables,
where k is the number of variables of the starting game. Additionally, our
construction makes use of the concepts of minimization and equivalence between
actions, by removing the ones that induce equivalent paths. The intuitive idea
of our reduction is to replace each state in the concurrent game structure with a
finite tree whose height depends on the number of strategy quantifications. Also,
we enrich each state of the new structure with extra information regarding the
corresponding state in the concurrent one: (i) the index of the operator in the
prefix of quantifications; (ii) the sequence of actions taken by the agents along a
partial play. The formal definition follows.

Construction 4.3 (CGS Conversion). From a CGS G =〈AP,Ag,Ac,St, tr, ap,
sI〉 minimized w.r.t. a binding prefix [ ∈ Bn(Ag) and a quantification prefix
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Figure 5: Turn-based game structure G? built on Minimized G�. In particular, the
agent x is owner of all circle nodes, the agent y is owner of all square nodes, and each
diamond node represents the transition state. Note that, for a matter of readability
some nodes are duplicated.
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℘ ∈ Qn(rng([)), we build the TBGS G? , 〈AP,Ag,Ac,St?, tr?, ap?, sI
?〉, where

the new set of states St? and the new transition function tr? are defined as
follows. Given a state s ∈ St, we denote by ℘s the quantification prefix obtained
from ℘ by simply deleting all agents/variables not in ag(s) and by Vr(℘s) the
corresponding set of variables. The state space has to maintain the information
about the position in G together with the index of the first variable that has
still to be evaluated and the values already associated to the previous variables.
To do this, we set St? , {(s, i, δ)|s ∈ St, i ∈ [0, |ag(s)|], δ ∈ (Vr(℘s<i) → Ac)}.
Observe that, when a play is in a state (s, |ag(s)|, δ), all quantifications are
already resolved and it is time to evaluate the corresponding decision δ. Before
proceeding with the definition of the transition function, it is helpful to identify
which are the active agents and decisions for each possible state. Formally, for all
(s, i, δ) ∈ St?, we have that ag((s, i, δ)) , {vr(℘si )} and dc?((s, i, δ)) , {vr(℘si ) 7→
c : c ∈ ac(s, vr(℘si ))}, if i < |℘s|, and ag((s, i, δ)) , ∅ and dc?((s, i, δ)) , {∅},
otherwise. The transition function is defined as follows. For each new state (s, i, δ)
with i < |℘s| and new decision vr(℘si ) 7→ c, we simply need to increase the counter
i and embed vr(℘si ) 7→ c into δ. Formally, we set tr?(vr(℘si ) 7→ c)((s, i, δ)) ,
(s, i+1, δ[vr(℘si ) 7→ c]). For a new state (s, |ag(s)|, δ), instead, we just introduce a
transition to the state (s′, 0,∅), where s′ is the successor of s in the CGS following
the decision δ. Formally, we have tr?(∅)((s, |ag(s)|, δ)) , (tr(δ)(s), 0,∅). The
new labeling function ap? is such that, for each state (s, j, δ) we have that

ap?((s, j, δ)) ,

{
ap(s), if j = 0 and δ = ∅;
∅, otherwise.

Finally, the initial state s?I , (sI , 0,∅).

By means of a simple generalization of the classic correctness proof of a
transformation of a concurrent game into a turn-based one, the following result
derives.

Theorem 4.1 (Concurrent/Turn-Based Conversion). For each CGS G with
|St| and GSL[1g] formula ϕ = ℘[ψ with |Vr(℘)| variables, there is an equivalent

TBGS G? with |Vr(℘)| agents/variables of order O(|St| · |Ac||Vr(℘)|
).

Proof. The theorem is proved by following the three steps of normalization,
minimization and conversion. In detail, from a CGS G= 〈AP,Ag,Ac,St, tr,
ap, sI〉, a binding prefix [ ∈ Bn(Ag) and GSL[1g] formula ϕ = ℘[ψ, by ap-
plying the construction described in Sections 4.1, we obtain the normalized
CGS G• , 〈AP,Ag•,Ac,St, tr•, ap, sI〉. At this point, From the latter w.r.t.
a binding prefix [ ∈ Bn(Ag), and a quantification prefix ℘ ∈ Qn(rng([)),
by applying the construction described in Sections 4.2 we build the mini-
mized CGS G� , 〈AP,Ag,Ac,St, tr�, ap, sI〉. Finally, , we build the TBGS
G? , 〈AP,Ag,Ac,St?, tr?, ap?, sI

?〉 by applying the construction in Sections 4.3
to the minimized CGS G� , 〈AP,Ag,Ac,St, tr�, ap, sI〉. Regarding the complex-
ity of the conversion from G to G?, we have that the size of G? is exponential in the
number of the variable of the quantification prefix. Indeed, for each s ∈ St, the
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conversion produces a number of states equal to
∑|ag(s)|
i=0 |Ac|i = O(|Ac||ag(s)|). So,

the overall size is O(|St| · |Ac||ag(s)|). Thanks to the normalization Ag = Vr(℘),
the result follows.

Example 4.4. Consider the minimized game G� of Example 4.3 with the for-
mula ϕ� = ϕ•. We want to build a turn-based game G? from G�. The new
CGS is G? , 〈AP,Ag•,Ac,St?, tr?, ap?, sI

?〉, where the new set of states St?,
the new transition function tr?, and the new initial state sI

? , (s0, 0, ∅) are
depicted in Figure 5. Finally, the labeling function is ap(s, 0, ∅) = ap(s, 0, ∅) =
ap(s, 0, ∅) = ap(s, 0, ∅) = ap(s, 0, ∅) = p and, for each state (s, j, δ), with
j 6= 0 and δ 6= ∅ we have that ap(s, j, δ) = ∅.

5. Determinacy

In this section, we address the determinacy problem for a fragment of GSL,
that we name GSL[1g, 2ag], involving only two players over turn-based struc-
tures. Recall that determinacy has been first proved for classic Borel turn-based
two-player games in [38]. However, the proof used there does not directly apply
to our graded setting. To give evidence of the differences between the two frame-
works, observe that in SL[1g, 2ag] sentences like 〈〈x〉〉[[x]]η imply [[x]]〈〈x〉〉η, while
in GSL[1g, 2ag] the corresponding implication 〈〈x≥ i〉〉[[x<j]]η ⇒ [[x<j]]〈〈x≥
i〉〉η does not hold. The determinacy property we are interested in is exactly the
converse direction, i.e., [[x< j]]〈〈x≥ i〉〉η ⇒ 〈〈x≥ i〉〉[[x< j]]η. In particular, we
extend the Gale-Stewart Theorem [39], by exploiting a deep generalization of
the technique used in [31]. The idea consists of a fixed-point calculation over the
number of winning strategies an agent can select against all but a fixed number
of those of its opponent. Regarding this approach, we recall that the simpler
counting considered in [31] is restricted to existential quantifications only.

Construction 5.1 (Grading Function). Let G be a two-agent turn-based game
structure G with Ag = {α, α}, and ψ be an LTL formula with Wψ,W¬ψ ⊆ Hst
denoting the witness sets for ψ and ¬ψ, respectively. It is immediate to see that,
in case sI ∈Wψ (resp., sI ∈W¬ψ), all strategy profiles are equivalent w.r.t. the

temporal property ψ (resp., ¬ψ). If sI ∈ X , Hst \ (Wψ ∪W¬ψ), instead, we

need to introduce a grading function Gαψ : X→ Γ, where Γ , N→ (N∪{ω}), that
allows to determine how many different strategies the agent α (resp., α) owns
w.r.t. ψ (resp., ¬ψ). Informally, Gαψ(ρ)(j) represents the number of winning
strategies player α can put up against all but at most j strategies of its adversary
α, once the current play has already reached the history ρ ∈ X.

Before continuing, observe that α sometimes has the possibility to commit
a suicide, i.e., to choose a strategy leading directly to a history in W¬ψ, with
the hope to win the game by collapsing all strategies of its opponent into a
unique class. The set of histories enabling this possibility is defined as follows:
S , {ρ ∈ X : ∃ρ′ ∈W¬ψ . ρ < ρ′ ∧ ∀ρ′′ ∈ Hst . ρ ≤ ρ′′ < ρ′ ⇒ ρ′′ ∈ Hstα}, where
Hstα = {ρ ∈ Hst : ag(lst(ρ)) = {α}} is the set of histories ending in a state
controlled by α. Intuitively, α can autonomously extend a history ρ ∈ S into one
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ρ′ ∈W¬ψ that is surely loosing, independently of the behavior of α. Note that
there may be several suicide strategies, but all of them are equivalent w.r.t. the
property ψ. Also, against them, all counter strategies of α are equivalent as well.

At this point, to define the function Gαψ, we introduce the auxiliary functor
Fαψ : (X→ Γ)→ (X→ Γ), whose least fixpoint represents a function returning
the maximum number of different strategies α can use against all but a precise
fixed number of counter strategies of α. Formally, we have that:

Fαψ(f)(ρ)(j) ,


∑
ρ′∈suc(ρ)∩X f(ρ′)(0)+|suc(ρ)∩Wψ|, if ρ∈Hstα and j=0;∑
ρ′∈suc(ρ)∩X f(ρ′)(j), if ρ∈Hstα and j>0;∑
c∈C(ρ)(j)

∏
ρ′∈dom(c) f(ρ

′)(c(ρ′)), otherwise;

where suc(ρ) = {ρ′ ∈ Hst : ∃s ∈ St. ρs = ρ′} and C(ρ)(i) ⊆ (suc(ρ) ∩ X) ⇀ N
contains all partial functions c ∈ C(ρ)(i) for which α owns a suicide strategy
on the histories not in their domains, i.e., (suc(ρ) ∩ X) \ dom(c) ⊆ S, and
the sum of all values assumed by c plus the number of successor histories that
are neither surely winning nor contained in the domain of c equals to i, i.e.,
i =

∑
ρ′∈dom(c) c(ρ

′) + |suc(ρ) \ (Wψ ∪ dom(c))|.
Intuitively, the first item of the definition simply asserts that the number of

strategies F(f)(ρ)(0) that agent α has on the α-history ρ, without excluding any
counter strategy of its adversary, is obtainable as the sum of the f(ρ′)(0) strategies
on the successor histories ρ′ ∈ X plus a single strategy for each successor history
that is surely winning. Similarly, the second item takes into account the case in
which we can avoid exactly j counter strategies. The last item, instead, computes
the number of strategies for α on the α-histories. In particular, through the set
C(ρ)(j), it first determines in how many ways it is possible to split the number
j of counter strategies to avoid among all successor histories of ρ. Then, for
each of these splittings, it calculates the product of the corresponding numbers
f(ρ′)(c(ρ′)) of strategies for α.

We are finally able to define the grading function Gαψ by means of the least
fixpoint f? = Fαψ(f?) of the functor Fαψ, whose existence is proved in Lemma 5.1:

Gαψ(ρ)(j),
∑j
h=0 f

?(ρ)(h)+

{
1, if ρ∈S and j≥1;

0, otherwise.

Intuitively, Gαψ(ρ)(j) is the sum of the numbers f?(ρ)(h) of winning strategies
the agent α can exploit against all but exactly h strategies of its adversary α, for
each h ∈ [0, j]. Moreover, if ρ ∈ S, we need to add to this counting the suicide
strategy that α can use once α avoids to apply his unique counter strategy.

Lemma 5.1 (Fixpoint Existence). The functor Fαψ of Construction 5.1 admits
a unique least-fixed point.

Proof. Consider the set of functions D , X → Γ, where Γ , N → (N ∪ {ω}),
equipped with the binary relation v ⊆ D × D defined as follows: f v f iff
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f(ρ)(j) ≤ f(ρ)(j), for all histories ρ ∈ X and indexes j ∈ N, where ≤ is the
standard ordering on the set of natural numbers extended with the maximum
element ω. Now, it is immediate to see that v is a reflexive, antisymmetric,
and transitive relation over D. Hence, (D,v) is a partial order. Actually, this
structure is a complete lattice [40], since any set of functions F ⊆ D admits a
greatest lower bound inf F, which can be computed as follows: (inf F)(ρ)(j) ,
minf∈Ff(ρ)(j), for all ρ ∈ X and j ∈ N. Moreover, by direct inspection, it can be
easily showed that the functor Fαψ : D→ D over D defined in Construction 5.1 is
monotone w.r.t. v, i.e., Fαψ(f) v Fαψ(f), whenever f v f, for all f, f ∈ D (in
particular, notice that the only operations used in its definition are the sum and
the multiplication). Consequently, by the Knaster-Tarski Theorem, Fαψ admits a
least fixpoint.

Thanks to the above construction, one can compute the maximum number of
strategies that a player has at its disposal against all but a fixed number of strate-
gies of the opponent. Next lemma precisely describes this fact. Indeed, we show
how the satisfiability of a GSL[1g, 2ag] sentence 〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)ψ
can be decided via the computation of the associated grading function Gαψ, where
by [[x ≤ j]]ϕ we mean [[x < j + 1]]ϕ.

Lemma 5.2 (Grading Function). Let G be a two-agent turn-based game structure,
where Ag = {α, α}, and ϕ = 〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)ψ a GSL[1g, 2ag]
sentence. Moreover, let Gαψ be the grading function and Wψ,W¬ψ,X ⊆ Hst
the sets of histories obtained in Construction 5.1. Then, G |= ϕ iff one of the
following three conditions hold: (i) i ≤ 1, j ≥ 0, and sI ∈Wψ; (ii) i ≤ 1, j ≥ 1,
and sI ∈W¬ψ; (iii) i ≤ Gαψ(sI)(j) and sI ∈ X.

Proof. For the case (i), we consider the worst scenario in which i = 1 and j = 0,
i.e., we have the sentence ϕ = 〈〈x ≥ 1〉〉[[x ≤ 0]](α, x)(α, x)ψ. Since sI ∈ Wψ

and Wψ only contains histories that cannot be extended to a play violating the
property ψ, we know that from sI , by taking any strategy for player α against
all strategies for the player α, the corresponding play satisfy the formula ψ.
Moreover, all strategies are equivalent. We show this by directly analyzing the
semantic of sentence ϕ.

1. G |= ϕ iff |({∅[x 7→ σx] : σx ∈ ϕ′[G,∅, sI ](x)}/≡ϕ
′

G )| ≥ 1, where ϕ′ = [[x ≤
0]](α, x)(α, x)ψ;

2. ϕ′[G,∅, sI ](x) = {σx∈Str({α}) : G,∅[x 7→σx], sI |= ϕ′};
3. G,∅[x 7→ σx], sI |= ϕ′ iff |({∅[x 7→ σx, x 7→ σx] : σx ∈ ¬ϕ′′[G,∅[x 7→
σx], sI ](x)}/≡¬ϕ

′′

G )| ≤ 0, where ϕ′′ = (α, x)(α, x)ψ;

4. ¬ϕ′′[G,∅[x 7→ σx], sI ](x) = {σx ∈ Str({α}) : G,∅[x 7→ σx, x 7→ σx], sI |=
¬ϕ′′};

5. G,∅[x 7→σx, x 7→ σx], sI 6|= ¬ϕ′′, since G,∅[x 7→σx, x 7→ σx], sI |= ϕ′′ due
to the fact that sI ∈Wψ.

By item (5), the set ¬ϕ′′[G,∅[x 7→σx], sI ](x) of item (4) is empty. Therefore, from
the item (3) we immediately derive that G,∅[x 7→σx], sI |= ϕ′. Consequently, the
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set ϕ′[G,∅, sI ](x) of item (2) is equal to Str({α}), from which we immediately
see at item (1) that G,∅, sI |= ϕ.

For the case (ii), we consider the worst scenario in which i = 1 and j = 1,
i.e. we have the sentence ϕ = 〈〈x ≥ 1〉〉[[x ≤ 1]](α, x)(α, x)ψ. Since sI ∈ W¬ψ
then the player α can use all its strategies to satisfy ¬ψ, independently from
behavior of α. By Definition 3.3, we know that all these strategies are equivalent.
Therefore, by removing the unique corresponding equivalence class we have that
agent α can use any of its strategies to vacuously satisfy the formula ψ, since
we do not actually require ϕ to hold at all. Also in this case, we show this by
directly analyzing the semantic of sentence ϕ.

1. G |= ϕ iff |({∅[x 7→ σx] : σx ∈ ϕ′[G,∅, sI ](x)}/≡ϕ
′

G )| ≥ 1, where ϕ′ = [[x ≤
0]](α, x)(α, x)ψ;

2. ϕ′[G,∅, sI ](x) = {σx∈Str({α}) : G,∅[x 7→σx], sI |= ϕ′};
3. G,∅[x 7→ σx], sI |= ϕ′ iff |({∅[x 7→ σx, x 7→ σx] : σx ∈ ¬ϕ′′[G,∅[x 7→
σx], sI ](x)}/≡¬ϕ

′′

G )| ≤ 1, where ϕ′′ = (α, x)(α, x)ψ;

4. ¬ϕ′′[G,∅[x 7→ σx], sI ](x) = {σx ∈ Str({α}) : G,∅[x 7→ σx, x 7→ σx], sI |=
¬ϕ′′};

5. G,∅[x 7→σx, x 7→ σx], sI |= ¬ϕ′′, since sI ∈W¬ψ.

By item (5), the set ¬ϕ′′[G,∅[x 7→σx], sI ](x) of item (4) is equal to Str({α}).
By Definition 3.3, for all σ1, σ2 ∈ ¬ϕ′′[G,∅[x 7→σx], sI ](x), it holds that ∅[x 7→
σx, x 7→ σ1] ≡¬ϕ

′′

G ∅[x 7→ σx, x 7→ σ2]. Due to this fact, |({∅[x 7→ σx, x 7→ σx] :

σx ∈ ¬ϕ′′G,∅[x 7→σx], sI ](x)}/≡¬ϕ
′′

G )| = 1 we immediately derive that G,∅[x 7→
σx], sI |= ϕ′. Consequently, the set ϕ′[G,∅, sI ](x) of item (2) is equal to Str({α}),
from which we immediately see at item (1) that G,∅, sI |= ϕ.

For the case (iii), the proof proceeds by nested induction over the indexes
j and i of strategy counting. Precisely, the external induction is done over j,
while the internal one over i.

As internal base case, i.e., when j = 0 and i = 1, we have that Gαψ(sI)(0) ,
f?(sI)(0) ≥ 1, where f? is the least fix point of the functor Fαψ, i.e., f? = Fαψ(f?).
Now, let σα ∈ Str({α}) be an α-strategy satisfying the following property: for
all histories ρ ∈ X ∩ Hstα with f?(ρ)(0) ≥ 1, if suc(ρ) ∩Wψ 6= ∅, then the

action σα(ρ) is chosen in such a way that the successor history ρ′ , ρ · tr({α 7→
σα(ρ)})(lst(ρ)) of ρ following the decision {α 7→ σα(ρ)} belongs to suc(ρ) ∩Wψ,
i.e., ρ′ ∈ suc(ρ) ∩Wψ. Otherwise, we require that f?(ρ′)(0) ≥ 1. The existence
of such a strategy is immediately derived by the first case of the definition of
the functor Fαψ. Moreover, σα is a winning strategy for α, due to the last case of
the same definition. To see that this is actually the case, let σα ∈ Str({α}) be
an α-strategy and consider the resulting play π = play({α 7→ σα, α 7→ σα}, sI).
Due to the construction of σα, on every history ρ ∈ Hstα that is a prefix of π,
we have that f?(ρ)(0) ≥ 1. The same holds for every ρ ∈ Hstα that is a prefix
of π, as well. Indeed, due to the last case of the definition of the functor, we
would have had f?(ρ′)(0) = 0 otherwise, for all histories ρ′ ≤ ρ. However, this is
clearly impossible, due to the fact that f?(sI)(0) ≥ 1. Now, since f? is the least
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fix point of Fαψ, there exists necessarily a prefix ρ ∈ Hst of π belonging to Wψ,
which implies that π satisfies the temporal property ψ.

For the internal inductive case, i.e., when j = 0 and i > 1, assume Sα to be
the set of i − 1 non-equivalent winning α-strategies constructed by inductive
hypothesis. We want to prove that there exists a new α-strategy σα ∈ Str({α})
that is neither contained in Sα nor equivalent to any of those strategies there
contained. To do this, let σα be the strategy satisfying the following property:
for all histories ρ ∈ X ∩Hstα with ρ′ , ρ · tr({α 7→ σα(ρ)})(lst(ρ)), it holds that
|{σ ∈ Sα : ρ′ = ρ · tr({α 7→ σ(ρ)})(lst(ρ))}| < f?(ρ′)(0). Intuitively, the actions
prescribed by σα force a play to follows histories that are not completely covered
by the other strategies. Therefore, if such a strategy σα exists, we necessarily
have that σα 6∈ Sα. Moreover, due to the turn-based structure of the underlying
model, this observation also suffices to prove that σα cannot be equivalent to
any strategy contained in Sα. Indeed, due to the particular choice of the actions
σα(ρ), there exists a play compatible with σα that is not compatible with any
other strategy of this predetermined set. If, instead, such a particular strategy
does not exist, there is a history ρ ∈ X ∩ Hstα ruled by the opponent player
α satisfying the following: (i) for all prefixes ρ′ < ρ, it holds that ρ′ ∈ Hstα;
(ii) |{σ ∈ Sα : ∀ρ′ < ρ . ρ′ · tr({α 7→ σ(ρ′)})(lst(ρ′)) ≤ ρ}| < f?(ρ)(0). Intuitively,
these two properties ensure that the number of strategies of Sα passing trough ρ
is strictly less than the one predicted by the function f?. Consequently, there
is an α-strategy σα 6∈ Sα such that ρ′ · tr({α 7→ σα(ρ′)})(lst(ρ′)) ≤ ρ, for all
ρ′ < ρ. Also in this case σα is not equivalent to any strategy in Sα. Indeed, due
to property (ii), there always exists an α-strategy that forces σα and σ ∈ Sα to
follows different and, so, non equivalent plays. To conclude this case, one has to
prove that σα is winning. To do this, the same approach used in the base case
above can be applied.

Finally, for the remaining two cases having j > 0, we proceed similarly to
the previous ones, by taking additional care to eliminate j strategies of player α
while proving that the considered i strategies of player α are winning. This is
done by exploiting the splitting of all the α-strategies dictated by the set C(ρ)(j)
used in the last case of the definition of the functor Fαψ.

By transfinite induction on its recursive structure, we can prove a quite
natural but fundamental property of the grading function, i.e., its duality in the
form described in the next lemma. To give an intuition, assume that agent α has
at most j strategies to satisfy the temporal property ¬ψ against all but at most
i strategies of its adversary α. Then, it can be shown that the latter has more
than i strategies to satisfy ψ against all but at most j strategies of the former.

Lemma 5.3 (Grading Duality). Let Gαψ and Gα¬ψ be the grading functions and
X ⊆ Hst the set of histories obtainable by Construction 5.1. For all histories
ρ ∈ X and indexes i, j ∈ N, it holds that if Gα¬ψ(ρ)(i) ≤ j then i < Gαψ(ρ)(j).

Summing up the above two results, we can easily prove that, on turn-based
game structures, GSL[1g, 2ag] is determined. Indeed, suppose that sI ∈ X
and G |= [[x ≤ j]]〈〈x ≥ i〉〉[ψ, where [ = (α, x)(α, x) (the case with sI ∈
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Figure 6: Turn-based structure.

Wψ immediately follows from classic Martin’s Determinacy Theorem [38, 41]).
Obviously, G does not satisfy the negation of this sentence, i.e., G 6|= 〈〈x ≥
j + 1〉〉[[x ≤ i− 1]][¬ψ. By Lemma 5.2, we have that Gα¬ψ(sI)(i− 1) ≤ j. Hence,
by Lemma 5.3, it follows that i ≤ Gαψ(sI)(j). Finally, again by Lemma 5.2, we
obtain that G |= 〈〈x ≥ i〉〉[[x ≤ j]][ψ, as required by the definition of determinacy.

Theorem 5.1 (Determinacy). GSL[1g, 2ag] on turn-based game structures is
determined.

Example 5.1. Consider the structure depicted in Figure 6, the state s ∈ St,
and the formula ϕ = 〈〈x ≤ g1〉〉[[y < g2]][ψ, with [ = (a, x)(b, y) and ψ = Fp. The
set of histories Wψ is s · s · s+ + s · (s · s)+ · s+ · s · (s + s)

∗+ s · s · ((s ·
s)
∗ · s)+ · (ε+ s + s · (s + s · (s + s)

∗)), while W¬ψ , s · (s+ · s∗ + s · s+ ).
The set X contains s+s ·s+s · (s ·s)∗ ·s+s · (s ·s)+ +s · (s ·s)+ ·s+ .
Finally, the set of suicide strategies is s + s · s.

Now, we evaluate the results of function f for each history in X. First, we set
f(ρ)(j) = 0, ∀ρ ∈ Hst and ∀j ≥ 0. For all k > 0, i ≥ 0, and the history ss,
we have that

fk(ss)(i) ,

{
0, if i > 0;

1, otherwise.

For all k > 0, i ≥ 0, and ρ ∈ s · (s · s)+ · s+ , we have that

fk(ρ)(i) ,

{
0, if i > 0;

k, otherwise.

For all k > 0, i ≥ 0, and ρ ∈ s · (s · s)+, we have that

fk(ρ)(i) ,

{
0, if k < (2i) + 1;

k − ((2i) + 1), otherwise.
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For all k > 0, i ≥ 0, and ρ ∈ s · (s · s)∗ · s, we have that

fk(ρ)(i) ,

{
0, if k < (2i) or i = 0;

k − (2i), otherwise.

For all k > 0, i ≥ 0, and the history s, we have that

fk(s)(i) ,


0, if k < (2i) + 1 and i > 0 or k < 2 and i = 0;

1, if k ≥ 2 and i = 0;

k − ((2i) + 1), otherwise.

Now, we illustrate the results of fixpoint f?. For all i ≥ 0 and the history ss,
we have that

f?(ss)(i) ,

{
0, if i > 0;

1, otherwise.

For all i ≥ 0 and ρ ∈ s · (s · s)+ · s+ , we have that

f?(ρ)(i) ,

{
0, if i > 0;

ω, otherwise.

For all i ≥ 0 and ρ ∈ s · (s · s)+, we have that

f?(ρ)(i) , ω

For all i ≥ 0 and ρ ∈ s · (s · s)∗ · s, we have that

f?(ρ)(i) ,

{
0, if i = 0;

ω, otherwise.

For all k > 0, i ≥ 0, and history the s, we have that

f?(s)(i) ,

{
1, if i = 0;

ω, otherwise.

Finally, we evaluate the results of grading function. For all j ≥ 0 and the history
ss, we have that

Gaψ(ss)(j) ,

{
1, if j = 0;

2, otherwise.

For all j ≥ 0 and ρ ∈ s · (s · s)+ · s+ , we have that

Gaψ(ρ)(j) , ω

For all ρ ∈ s · (s · s)+ ∪ s · (s · s)∗ · s ∪ {s}, we have the same result of

function f?, i.e., Gaψ(ρ)(j) , f?(ρ)(j) for all j ≥ 0.
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6. Model Checking

We finally describe a solution of the model-checking problem for the fragment
of GSL[1g, 2ag], in which all temporal properties are used as in ATL. This
means that we only admit simple temporal properties, i.e., ϕ1Uϕ2, ϕ1Rϕ2, and Xϕ,
where ϕ1, ϕ2, and ϕ are sentences. This fragment, called Vanilla GSL[1g, 2ag],
is in relation with GSL[1g, 2ag], as CTL and ATL are with CTL? and ATL?,
respectively.

The idea here is to exploit the characterization of the grading function stated
in Lemma 5.2 in order to verify whether a game structure G satisfies a sentence
ϕ = 〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)ψ, while avoiding the naive calculation of the
least fixpoint Fαψ, which requires an infinite calculation due to the cycles of the
structure.

Fortunately, due to the simplicity of the temporal property ψ, we have that
the four sets Wψ, W¬ψ, X, and S previously introduced are memoryless, i.e.,
if a history belongs to them, every other history ending in the same state is
also a member of these sets. Therefore, we can focus only on states by defining
Wψ , {s ∈ St : G, s |= Aψ}, W¬ψ , {s ∈ St : G, s |= A¬ψ}, X , St\(Wψ∪W¬ψ),

and S , {s ∈ St : G, s |= E(αUA¬ψ)} via very simple CTL properties. Observe
that we use α and α as labeling of a state to recognize its owner. Intuitively, Wψ

and W¬ψ contain the states from which agents α and α can ensure, independently
from the adversary, the properties ψ and ¬ψ, respectively. The set X, instead,
contains the states on which we have still to determine the number of strategies at
disposal of the two agents. Finally, S maintains the suicide states, i.e., those states
from which α can commit suicide by autonomously reaching W¬ψ. In addition,
since at most j strategies of α can be avoided while reasoning on the sentence ϕ,
we need just to deal with functions in the set Γ , [0, j]→ (N ∪ {ω}) instead of
Γ , N→ (N∪ {ω}). Consequently, the functor Fαψ : (X→ Γ)→ (X→ Γ) can be
redefined as follows:

Fαψ(f)(s)(h) ,


∑
s′∈suc(s)∩X f(s′)(0)+|suc(s)∩Wψ|, if s∈Stα and h=0;∑
s′∈suc(s)∩X f(s′)(h), if s∈Stα and h>0;∑
c∈C(s)(h)

∏
s′∈dom(c) f(s

′)(c(s′)), otherwise;

where suc(s)={s′∈St : (s, s′)∈Ed} and C(s)(i) ⊆ (suc(s)∩X) ⇀ N contains all
partial functions c ∈ C(s)(i) for which α owns a suicide strategy on the states not
in their domains, i.e., (suc(s)∩X)\dom(c) ⊆ S, and the sum of all values assumed
by c plus the number of successors that are neither surely winning nor contained
in the domain of c equals to i, i.e., i=

∑
s′∈dom(c)c(s

′)+|suc(s)\(Wψ∪dom(c))|.
Similarly, the grading function Gαψ : X→Γ becomes

Gαψ(s)(h) ,
∑h
l=0 f

?(s)(l)+

{
1, if s ∈ S and h ≥ 1;

0, otherwise.

where f? is the least fixpoint of Fαψ. Observe that the existence of such a fixpoint
can be proved in the same way of Lemma 5.1, where the set of functions D is
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D , X → Γ, where Γ , [0, j] → (N ∪ {ω}). Unfortunately, these redefinitions
are not enough by their own to ensure that the fixpoint calculation can be done
in a finite, possibly small, number of iterations of the functor. This is due to two
concomitant factors: the functions in Γ have an infinite codomain and the game
structure G might have cycles inside. In order to solve such a problem, we make
use of the following observation. Suppose that agent α has at least one strategy
on one of its states s ∈ Stα against all strategies of its opponent α that is also
part of a cycle in which no state of α is adjacent to a state belonging to the
set W¬ψ. Then, α can use this cycle from s to construct an infinite number of
nonequivalent strategies, by simply pumping-up the number of times he decides
to traverse it before following the previously found strategy. Therefore, in this
case, we avoid to compute the infinite number of iterations required to reach the
fixpoint, by directly assuming ω as value. Formally, we introduce the functor
I : (X → Γ) → (X → Γ) defined as follows, where L ⊆ Stα denotes the set of
α-states belonging to a cycle of the above kind: I(f)(s)(h) = ω, if s ∈ L and
f(s)(h) > 0, and I(f)(s)(h) = f(s)(h), otherwise, for all s ∈ St and h ∈ [0, j]. It
can be proved that f? = (I ◦ Fαψ)(f?) iff f? = Fαψ(f?), i.e., the functor obtained
by composing I and Fαψ has exactly the same least fixpoint of Fαψ. Moreover,
f? = (I ◦ Fαψ)n(f) where j · |G| ≤ n and f is the zero function, i.e., f(s)(h) = 0,
for all s ∈ X and h ∈ [0, j]. Hence, we can compute f? in a number of iterations
of I ◦ Fαψ that is linear in both the degree j and the size of G. Finally, it is not
hard to see that the computation of the sets L can be done in polynomial time.
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s s
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s s
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Figure 7: A two-player turn-based game structure.

As an example of an application of the model-checking procedure, consider
the two-agent turn-based game structure G depicted in Figure 7, with the
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circle states ruled by α, the square ones by its opponent α, and where s
and s are labeled by the atomic proposition p. Also, consider the vanilla
GSL[1g, 2ag] sentence ϕ = 〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)Fp. First, we need to
compute the preliminary sets of states WFp = {s, s} (the light-gray area),
W¬Fp = {s, s} (the dark-gray area), X = {s, s, s, s, s} (the white area
partitioned into strong-connected components), S = {s, s}, and L = {s}.
Now, we can evaluate the fixpoint f? of the functor I ◦ Fαψ that can be obtained,

due to the topology of G, after 2(j + 1) iterations, i.e., f? = (I ◦ Fαψ)2(j+1)(f).
Indeed, at the first one, the values on the states s and s are stabilized to
f?(s)(0) = 1, f?(s)(0) = ω, and f?(s)(h) = f?(s)(h) = 0, for all h ∈ [1, j].
After 2j iterations, we obtain f?(s)(0) = 0, f?(s)(h) = ω, for all h ∈ [1, j],
and f?(s)(h) = ω, for all h ∈ [0, j]. By computing the last iteration, we
derive f?(s)(0) = 1 and f?(s)(h) = ω, for all h ∈ [1, j]. Note that 2(j + 1)
is exactly the sum 1 + 2j + 1 of iterations that the components of the longest
chain {s} < {s, s} < {s} need in order to stabilize the values on their states.
Finally, we can verify whether G |= ϕ, by computing the grading function GαFp at
s, whose values are GαFp(s)(0) = 1 and GαFp(s)(h) = ω, for all h ∈ [1, j]. Thus,
G |= ϕ iff i = 1 or j > 0.

s s

s

s

s

s

s

s

s

s
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α 7→1

α 7→2

α 7→0 α 7→#

α 7→0

α 7→#

α 7→1

α 7→2

α 7→0

Figure 8: Degree transformation.

In order to obtain a PTime procedure, we have also to ensure that each
evaluation of the composed functor I ◦ Fαψ can be computed in PTime w.r.t. the
above mentioned parameters. Actually, the whole I and the first two items of Fαψ
can easily be calculated in linear time. The third item, instead, may require a
sum of an exponential number of elements. Indeed, due to all possible ways a
degree j can split among the successors of a state s, the corresponding set C(s)(j)
may contain an exponential number of functions. To avoid this, by exploiting
a technique similar to the one proposed in [28, 16], we linearly transform a
game structure into an equivalent one where all states ruled by α have degree
at most 2. Formally, starting from the CGS G , 〈AP,Ag,Ac,St, tr, ap, sI〉, we
construct the equivalent G′ , 〈AP′,Ag,Ac,St′, tr′, ap′, sI〉. The set of states is
defined as follows: St′ , Stα ∪ Stα with Stα = {s|s ∈ St ∧ own(s) = α} and
Stα = {si|s ∈ St∧0 ≤ i < |suc(s)| ∧own(s) = α}, where s, s, . . . , s|suc(s)|− are
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fresh states representing |suc(s)| different copies of state s. The labeling function
is so defined: ap′(s) = ap(s) and ap′(si) = {#}, for each 0 ≤ i < |suc(s)|. Let
en : St × Dc ⇀ [0, |suc(s)− 1|[ be a partial function that returns the index of
the decision such that it is injective and dom(en) = {(s, δ)|δ ∈ dc(s)}, we define
dc′(si) , {α → #} ∪ {δ} if i ∈ [0, |suc(s)|[ and en(s, δ) = i, while dc′(si) , δ
if i = |suc(s)− 1| and en(s, δ) = i. At this point, we can define the transition
function as follows:

tr′(δ)(si) ,

{
si+, if si ∈ Stα and δα = #;

t, otherwise, where t = tr(δ)(s) .

In this way, the cardinality of C(s)(j) is bounded by j. For example, consider
the left part of Figure 8 representing the substructure of the previous game
structure G induced by the state s together with its three successors. It is not
hard to see that we can replace it, in G, by the binary graph at its right, without
changing the number of strategies that the two agents have at their disposal.

Theorem 6.1 (Model Checking). The model-checking problem for Vanilla
GSL[1g, 2ag] is PTime in both the size of the game structure and the sentence.
Moreover it is PTime-hard w.r.t. both the data and combined complexity.

Proof. Suppose we want to verify that the vanilla GSL[1g, 2ag] sentence ϕ =
〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)ψ holds on a binary CGS G (the general case easily
follows by induction on the syntactic structure of the sentence, as in the classic
ATL model-checking approach, and by linearly transforming any CGS into a
binary one). First observe that the computation of the sets of surely-winning
states Wψ, surely-loosing states W¬ψ, undetermined states X = St\(Wψ∪W¬ψ),
and suicide states S can be computed in linear time, since they are defined by
means of simple CTL properties. Moreover, let Z ⊆ Stα be the set of α-states
adjacent to some surely-loosing state, and L ⊆ Stα the set of α-states of all
cycles whose nodes do not belong to Z. Note that the elements of Z can be
determined in liner time w.r.t. the number of moves of the CGS G. Similarly,
the sets L can be computed by applying the classic cycle-detection procedure
based on DFS on the graph induced by the nodes in St \ Z. At this point, we
can compute the least fixpoint f? of the functor I ◦ Fαψ in a number of steps that
is bounded by the product of j with the number of moves in G, where every
step only requires polynomial time. As we show later, f? is the least fixpoint for
Fαψ as well. Therefore, the grading function Gαψ is immediately derived. Finally,
G |= ϕ iff the conditions stated in Lemma 5.2 hold.

For the lower bound, observe that the PTime hardness w.r.t. the size of the
game is derived from the fact that classic reachability games [42] are subsumed.
Instead, the hardness w.r.t. the combined complexity follows as GSL[1g, 2ag]
subsumes CTL [43].

It remains to verify that the least fixpoint f? of Fαψ is exactly the least fixpoint
of I ◦ Fαψ, which can be computed in polynomial time. Since Fαψ(f?) = f?, to
prove that (I ◦ Fαψ)(f?) = f?, it is enough to show that I(f?) = f?. Indeed,
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(I ◦ Fαψ)(f?) = I(Fαψ(f?)) = I(f?). Now, let s ∈ X and h ∈ [0, h]. By definition
of the functor I, we have that, if s 6∈ L, then I(f?)(s)(h) = f?(s)(h), else either
I(f?)(s)(h) = ω and f?(s)(h) > 0 or I(f?)(s)(h) = f?(s)(h) = 0. Therefore, we
have only to show that, if f?(s)(h) > 0, then f?(s)(h) = ω, where s ∈ L. Since
s ∈ L, there exists a cycle s = s, s, . . . , sn = s, where all nodes do not belong to
Zh. In particular, by induction on the length n, we can show that there necessarily
exists an index i ∈ [0, n[ such that si ∈ Stα has a successor s′ different from si+,
where f?(s′)(h) > 0. Otherwise, we would have the existence of a fixpoint f?′ for
the functor Fαψ, where f?′(si)(h) = 0, which contradicts the fact that f? is the least
fixpoint of Fαψ. Moreover, by direct inspection of the definition of Fαψ, we have that
f?(s)(h) = f?(s)(h) ≥ f?(s)(h) ≥ . . . ≥ f?(si)(h) ≥ f?(s′)(h) + f?(si+)(h) ≥
f?(s′)(h) + f?(si+)(h) ≥ . . . ≥ f?(s′)(h) + f?(sn)(h) = f?(s′)(h) + f?(s)(h), i.e.,
f?(s)(h) ≥ f?(s′)(h) + f?(s)(h) ≥ 1 + f?(s)(h). Hence, we necessarily have
f?(s)(h) = ω.

Finally, to show that f? can be computed in polynomial time, we prove that
f? = (I ◦ Fαψ)n(f), where n = j · |G| and f is the zero function, i.e., f(s)(h) = 0,

for all s ∈ X and h ∈ [0, j]. Let fi = (I ◦ Fαψ)i(f), for i ∈ ]0, n]. It is easy to

observe that fi(s)(0) = 0, for all states s ∈ Z and indexes i ∈ [0, n]. This is
due to the fact that the set of functions C(s)(0) used in the definition of Fαψ
is necessarily empty. Therefore, after |G| iterations, we have that all values of
f?(s)(0) are determined. Indeed, all cycles passing through Z cannot pump up
the values of the corresponding nodes, while those avoiding Z, thanks to the
functor I, immediately reach the value ω as soon as they are positive. The same
reasoning applies, in general, for the computation of the values f?(s)(h) that are
determined after at most h|G| iterations, since they only depend on the values
f?(s′)(h′), where h′ ≤ h.

7. Discussion

In multi-agent systems general questions to be investigated are: “is there
a winning strategy?” or “is the game surely winning?” (i.e., no matter which
strategy the agent can play). In the years, several logics suitable for the strategic
reasoning have been introduced and, by means of existential and universal
modalities, this kind of questions has been addressed [13]. However, these
logics are not able to address quantitative aspects such as “what is the number
of winning strategies an agent can play?” or, in general, to determine the
success rate of a game [17]. These questions are critical in dealing with solution
concepts [44] and in open-system verification [30].

In this paper, we have introduced and studied GSL, an extension of Strategy
Logic with graded modalities. The use of a powerful formalism such as Strategy
Logic ensures the ability of dealing with very intricate game scenarios [15]. The
obvious drawback of this is a considerable amount of work on solving any related
question [32]. One of the main difficulties we have faced in GSL has been the
definition of the right methodology to count strategies. To this aim, we have
introduced a suitable equivalence relation over strategy profiles based on the
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strategic behavior they induce and studied its robustness. Also, we have provided
arguments and some examples along the paper to give evidence of the usefulness
of GSL and the suitability of the proposed counting.

In order to provide results of practical use, we have investigated basic ques-
tions over a restricted fragment of GSL. Precisely we have considered the
case in which the graded modalities are applied to the vanilla restriction of
the one-goal fragment of SL [32]. The resulting logic, named Vanilla SL[1g],
has been investigated in the turn-based setting. We have obtained positive
results about determinacy and showed that the related model-checking problem
is PTime-complete.

The framework and the results presented in this paper open for several future
work questions. First, it would be worth investigating the extension of existing
formal verification tools such as MCMAS [45] with our results. We recall that
MCMAS, originally developed for the verification for multi-agent models with
respect to specification given in ATL [45], has been recently extended to handle
Strategy Logic specifications [46, 47]. Under our formalism it is possible to check,
in a single evaluation process, that more than one strategy gives a fault and
possibly correct all these errors. This in a way similar as the verification tool
NuSMV has been extended to deal with graded-CTLverification [31].

Another research direction regards investigating the graded extension of
other formalism for the strategic reasoning such as ATL with context [48, 49], as
well as, for the sake of completeness, to determine the complexity of the model
checking problem with respect to other fragments of Strategy Logic [50, 51].

Finally, it would be really interesting to address the satisfiability for GSL[1g]
too, by generalizing the solution procedure developed for SL[1g] [32]. However,
we want to observe that, the technical tools described in this article are not
powerful enough to solve this problem, since this also needs a bounded-width
tree model property. So, further work is still required. Moreover, the procedure
exploited for graded CTL [27, 28, 16] cannot easily be applied to GSL[1g], due
to the fact that the binary-tree unraveling used there would modify the way the
strategies are valuated as equivalent.
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[19] E. Grädel, M. Otto, E. Rosen, Two-Variable Logic with Counting is Decid-
able., in: LICS 97, IEEECS, 1997, pp. 306–317.

[20] C. Lutz, U. Sattler, L. Tendera, The Complexity of Finite Model Reasoning
in Description Logics, Information and Computation 199 (1) (2005) 132–171.

[21] C. Lutz, D. Walther, F. Wolter, Conservative Extensions in Expressive
Description Logics., in: IJCAI, Vol. 7, 2007, pp. 453–458.

36



[22] D. Calvanese, G. D. Giacomo, M. Lenzerini, Reasoning in Expressive De-
scription Logics with Fixpoints based on Automata on Infinite Trees, in:
IJCAI, Vol. 99, 1999, pp. 84–89.
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[24] E. Bárcenas, A counting logic for trees, Computación y Sistemas 19 (2)
(2015) 407–422.

[25] O. Kupferman, U. Sattler, M. Vardi, The Complexity of the Graded mu-
Calculus., in: CADE 02, LNCS 2392, Springer, 2002, pp. 423–437.

[26] A. Ferrante, M. Napoli, M. Parente, Model Checking for Graded CTL.,
Fundamenta Informaticae 96 (3) (2009) 323–339.

[27] A. Bianco, F. Mogavero, A. Murano, Graded Computation Tree Logic., in:
LICS 09, IEEECS, 2009, pp. 342–351.

[28] A. Bianco, F. Mogavero, A. Murano, Graded Computation Tree Logic with
Binary Coding., in: Computer Science Logic’10, LNCS 6247, Springer, 2010,
pp. 125–139.

[29] B. Aminof, A. Murano, S. Rubin, On CTL* with Graded Path Modalities,
in: LPAR-20 2015, LNCS 9450, Springer, 2015, pp. 281–296.

[30] A. Ferrante, A. Murano, M. Parente, Enriched Mu-Calculi Module Checking.,
Logical Methods in Computer Science 4 (3) (2008) 1–21.

[31] M. Faella, M. Napoli, M. Parente, Graded Alternating-Time Temporal
Logic., Fundamenta Informaticae 105 (1-2) (2010) 189–210.

[32] F. Mogavero, A. Murano, G. Perelli, M. Vardi, What Makes ATL* Decidable?
A Decidable Fragment of Strategy Logic., in: CONCUR 12, LNCS 7454,
Springer, 2012, pp. 193–208.

[33] T. Antal, A. Traulsen, H. Ohtsuki, C. Tarnita, M. Nowak, Mutation-
Selection Equilibrium in Games with Multiple Strategies., Journal of Theo-
retical Biology 258 (4) (2009) 614–622.

[34] S. Kripke, Semantical Considerations on Modal Logic., Acta Philosophica
Fennica 16 (1963) 83–94.

[35] R. Keller, Formal Verification of Parallel Programs., Communication of the
ACM 19 (7) (1976) 371–384.

[36] F. Mogavero, A. Murano, G. Perelli, M. Vardi, Reasoning About Strategies:
On the Model-Checking Problem., Transactions On Computational Logic
15 (4) (2014) 34:1–42.

37



[37] F. Mogavero, A. Murano, L. Sauro, Strategy Games: A Renewed Frame-
work., in: AAMAS 14, IFAAMAS, 2014, pp. 869–876.

[38] A. Martin, Borel Determinacy., Annals of Mathematics 102 (2) (1975)
363–371.

[39] D. Perrin, J. Pin, Infinite Words., Pure and Applied Mathematics., Elsevier,
2004.

[40] G. Winskel, The Formal Semantics of Programming Languages (An Intro-
duction)., Foundation of Computing Series, MIT Press, 1993.

[41] A. Martin, A Purely Inductive Proof of Borel Determinacy., in: SPM 82,
Recursion Theory., AMS and ASL, 1985, pp. 303–308.

[42] N. Immerman, Number of Quantifiers is Better Than Number of Tape Cells.,
Journal of Computer and System Science 22 (3) (1981) 384–406.

[43] P. Schnoebelen, The Complexity of Temporal Logic Model Checking., in:
AIML 02, CP, 2002, pp. 393–436.

[44] R. Myerson, Game Theory: Analysis of Conflict., Harvard University Press,
1991.

[45] A. Lomuscio, F. Raimondi, MCMAS: A Model Checker for Multi-agent
Systems., in: TACAS 06, LNCS 3920, Springer, 2006, pp. 450–454.
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