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Abstract VANET constitutes a huge research area due to its potential in traffic
management and road safety. In this paper, we propose a novel, smart, and compact
representation of vehicular networks. Starting from the standard graph representa-
tion, we extract a signal assigning a congestion factor to each vehicle, so that highly
jammed traffic areas can be immediately detected by identifying the highest peaks
of the wave. The way the signal is built provides useful information about vehicles
distribution throughout the network, producing as result a simple but very meaning-
ful wave characterizing the corresponding VANET.
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1 Introduction

Wireless Sensor Networks (WSNs) are made of low-cost and low-power sensors
able to communicate and perform distributed tasks, often by self-organizing into
clusters. These networks can be largely employed for different purposes, such as
sensing, event detection, localization ([8, 9, 11, 21]). The WSN features of conges-
tion control, self-configuration, and energy awareness let their use keep growing.
In particular, congestion in WSN constitutes a concrete challenging issue, since it
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determines a network performance decrease, as a consequence of an amount of re-
quests which is higher than the ones it can be actually satisfied. As pointed out in [3],
the increasing interest in the last years is due to the fact that rapid deployment and
fault tolerance characteristics of sensor networks make them a promising sensing
technique for military purposes. Moreover, the sensor ability of tracking the move-
ment of small animals, as well as monitoring the surrounding ambient, makes them
suitable for environmental aims.

An interesting application of WSN is in the vehicular context [22]: indeed, a new
emerging field is the vehicular ad hoc network, where the vehicles play the role of
sensors in a WSN [4]. Due to the increasing number of road accidents, the need for a
stable communication system between vehicles is growing. Cars can broadcast data
and information about exceptional events occurrence via wireless media, letting the
rest of the vehicles be aware of the condition inside the network [16]. This mech-
anism has a significant impact not only on safety, but also in traffic management.
Due to the importance of such a network, in this work we provide a smart VANET
representation by including in a single compact wave a lot of useful information
about node congestion, traffic, and network clusterization. Such a wave is obtained
by computing the value of congestion, named congestion factor, of any vehicle in
the network, so that highly jammed traffic areas can be immediately detected by
identify the highest peaks of the wave. Essentially, we propose a way to obtain the
highest amount of information about the network, with as few data as possible.

Outline of the paper

The rest of the paper is organized as follows. In Section 2, the state of the art is
analyzed. In Section 3, our novel network representation is provided. Here we dis-
tinguish the phase in which the signal is built from the one in which the signal is
analyzed and understood. In this section we also provide some examples of use, just
for the purpose of illustration. Finally, Section 4 gives the conclusions and some
hints for future developments of this paper, working mainly on the obtained wave.

2 Related Work

Vehicular ad hoc networks (VANETs) has become an active area of research due to
its potential to improve vehicle and road safety, and traffic efficiency: as explained in
[25], these kind of networks belong to Intelligent Transportation System (ITS) field,
where each vehicle can receive or send information to the network. Vehicles are
equipped with on-board units in order to be able to communicate not only between
each other, but also with road infrastructure elements.

Each car in a VANET can communicate with its adjacent nodes directly and, via
multi-hop, communication can be performed also with farther vehicles, as pointed
out in [13]. Nowadays, VANETs are a hot research topic because of the variety of
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applications: in [15], they propose some of them, such as vehicle collision warning,
cooperative driving, map location, automatic parking [5], path tracking [10], and so
on.

Many researchers in the last years based their studies on VANETs issues, such as
routing protocols, and clustering algorithms: in [18], they point out that routing is a
challenge due to high dynamics of VANETs, and they analyze a position-based rout-
ing approach in city environment; similarly, in [19], they propose a Connectivity-
Aware routing for inter-vehicular communication, by integrating the needs of locat-
ing destination and finding paths between source and destination. [17] provides a
survey on routing protocols for VANETs.

A further hot topic in this field is clusterization, that provides a clever way to
disseminate data through the network, by improving communication and reducing
redundancy. This is the reason way many authors made an effort to propose new
clustering algorithms suitable for vehicular networks. As instance, we mention au-
thors in [26], which propose a multi-hop clustering schema to enstablish stable vehi-
cle groups. Furthermore, we have already faced some VANETs issues in our recent
work, by also focusing on clusterization techniques. In particular, in [12], we pro-
vide a non-exclusive clustering approach, by modifying the DBSCAN algorithm, by
revisiting the standard communication framework with a centralized approach. In-
deed, we observed that a centralized system brigs different benefits, among them: (i)
the simplification of clustering process, (ii) a full knowledge of the network topol-
ogy, and (iii) the ability of collecting data and providing statistics. Moreover, in [6],
we propose a new clustering technique based on two kind of cluster-head election,
according to the road configuration (one-way or two-ways). Specifically, the cluster-
head is chosen as the farthest node from the source of information. This choice al-
lows to optimized the node distribution in clusters, and to minimize redundancy in
transmission. For further details on VANETs clustering proposals consult [24].

Although many authors focused on VANETs aspects and challenges, as far as we
know, this is the first work addressing the VANETs representation. Even in Google
Maps, the most popular mapping app used by more than 150 millions of unique
users monthly according to a 2018 statistics reported in [2], a road representation
emphasizing the traffic congestion is not treated enough. Here, we provide a smart
and compact representation of such a network, by computing a congestion factor for
each vehicle belonging to it, aimed to map the network to a wave on a Cartesian co-
ordinate system. The result is a very intuitive representation of the starting VANET,
providing useful information, such as traffic distribution and network clusterization.

3 Wave Construction over Traffic Network

In this section we propose a novel algorithm to produce an opportune wave repre-
sentation of a generated traffic network. Before focusing over the core of our work,
we provide the definitions of some terms used in this section.
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3.1 Preliminaries

As follows, we provide some basic concepts used in the rest of the paper. As these
are common definitions, an expert reader can skip this part.

We consider a traffic network as a undirected graph G = (V,E) in which the set
of nodes V corresponds to the vehicles in the network, with |V | = n, and the set of
edges E corresponds to the links, if any, between the nodes, with |E|= m.

We define R as the distance coefficient, i.e. the maximum value within which
two vehicles can communicate with each other. Such a value is calculated refer-
ring to the measurement of the power present in a received radio signal, i.e. the re-
ceived signal strength indicator (RSSI). The RSSI values are measured in dBm and
have typical negative values ranging between 0 dBm (excellent signal) and −110
dBm (extremely poor signal)[20]. In particular, it is intuitive to say that increasing
the distance, the RSSI decreases. Moreover, given two nodes u,v ∈ V, we define
d(u,v) ∈ [0,R] the euclidean distance between u and v. We can state that an edge
(u,v) ∈ E exists iff d(u,v)≤ R, and we indicate with weight(u,v) its weight.

Since in a vehicular network d(i, j) 6= d( j, i) (with i 6= j), we directly provide a
normalized graph, by computing the average of these two distances and by assigning
this value to the edge linking i and j, so that the corresponding adjacency matrix is
symmetric. Finally, for each v∈V define neig(v) = {v′|(v,v′)∈ E} and degree(v) =
|neig(v)| as the set of v-neighbors and its number, respectively.

3.2 Construction Phase

The idea of our algorithm is to construct a smart compact vision of traffic network
based on wave representation, starting from randomly generated points in the space
(based on the normal distribution). In order to obtain a signal that reflects the con-
gestion of any vehicle in the network regardless the way it is visited, we compute a
congestion factor through a function f for each node of the network:

f : V 7−→ [0,1] (1)

This factor is parametric on R and is computed as the difference between the
ideal congestion and the local congestion. Given the node v, the ideal congestion
represents the situation where all the neighbors are at maximum distance from v:

ideal(v) = degree(v)∗R (2)

Instead, the local congestion is an arithmetic average over the adjacents of v:

local(v) =
∑u∈neig(v) weight(u,v)

degree(v)
(3)
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Fig. 1: Example of misleading congestion factor computation

We can observe that the congestion degree of a node does not depend only on the
number of its neighbors, but mostly on their congestion. Thus, we need to take into
account the congestion of each neighbor of the considered node, in order to avoid
the situation as the one shown in Figure 1, in which the nodes A and B have the same
number of neighbors, but the congestion of such neighbors is different. Indeed, in
the left side we have a higher congestion level with respect to the right side, but with
the previous formula A and B would have had the same congestion factor.

For this reason, we introduce a weighted ideal congestion:

weighted ideal(v) = ∑
u∈neig(v)

(degree(u)−1)∗ ideal(v) (4)

Notice that when we compute the degree of the neighbors of a given node v, we
decrease it by 1 in order not to consider v again. Once the congestion factors are
computed, they are normalized, dividing them by the maximum congestion factor
of the considered network.

The network representation we want to build is f (V ), with f as defined in equa-
tion 1. A key point in the wave representation is the order in which the nodes are
placed on the x axis. Our goal is to obtain a signal that immediately highlights the
most congested areas and which points belong to them. For this reason, we propose
a cluster-oriented visit of the network that, starting from a random point, continues
the visit of neighbors, putting them in the same connected area, as long as a certain
distance is not overcome. With ”connected area” we mean a set of related nodes.
It is important to notice that this is not a new clusterization technique, but an al-
ternative way of visiting a network by detecting areas of nodes connected within a
certain distance. To this aim, we introduce a tolerance ε such that, given a node v
and its neighbor u, if d(v,u)) ≤ R− ε , u is in the same connected area as v. It is
necessary to notice that we distinguish the congestion factor of isolated nodes by
the one of nodes having only edges with weight ≥ R− ε , by preserving them in the
network. Once the connected areas are obtained, the nodes are placed on the x axis
in such a way that the ones belonging to the same connected area are contiguous. In
particular, for each connected area we put the elements belonging to it in increasing
order with respect to the congestion factor. This choice makes easier the detection
of connected areas looking at the signal.
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3.3 Signal rendering

In this section, we propose some examples of network transformation, by analyzing
all the information we can infer. The examples below are generated according to the
following parameters: the number of nodes n, maximum distance R allowed between
two nodes, a tolerance ε introduced in the section above, and the standard deviation
sd, used to produce random points through a normal distribution.

Starting from the wave representation, we are able to understand the network
congestion, as well as identify the different connected areas. Indeed, according to
how the signal is built, a null congestion factor corresponds to an isolated node,
and each high-low transition induces a new connected area, but the opposite does
not hold in general. Hence, this is a necessary but not a sufficient condition for the
starting of a new area. This means that there could be changes of area hidden by the
signal, when the highest congestion factor of the first connected area is smaller than
the lowest one of the second connected area, introducing false negatives. As shown
in Figure 2(b), which is the signal corresponding to the graph 2(a), it is intuitive
to observe that the most congested nodes are 24 and 29. Another information easy

Fig. 2: Random generation of a network with n = 35, sd = 10, R = 10, ε = 0.3 (a)
and the corresponding wave representation (b)
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to deduce is about the areas of the network made by single nodes. Indeed, they are
identified by the points whose congestion factor coincides with the dashed line, i.
e. 3, 11, 33, and 35. In order to detect the remaining connected areas, we need to
retrieve the high-low transitions, corresponding in this network to the points 9, 29,
26, and 27. By analyzing the network in Figure 2(a), we would have expected a
change of area between the nodes 4,13 and 8,17,22, that is hidden by the signal
because of false negatives. The same happens between the nodes 22 and 7.

The signal obtained as shown in the examples, is determined by visiting the nodes
of the network starting from the one having the smallest x-coordinate. By changing
the starting point, clearly the congestion factor of each node stays the same, but the
resulting wave can be a permutation of the peaks in the current signal. This could
be a limitation for comparisons between waves. For this reason, we introduce a
canonical form of the signal, obtained by changing the order of the nodes on the x
axis: not only the nodes are ordered in increasing order of congestion factor inside
each connected area, but also each connected area is ordered in decreasing order of
maximum congestion factor on the x axis. Through this normalization, we obtain a
signal having the connected area with the highest congested node on the left side,
and the single nodes on the right side.

With this approach, false negatives are also reduced. Indeed, it is no longer pos-
sible that the highest congested factor of a previous connected area is smaller than
the lowest factor of the next area, since they are ordered, but false negatives can still
occur, as formally reported in the following theorem:

Theorem 1. Given two successive connected areas a1 and a2, let hi and si (with
i ∈ [1,2]) be the highest and lowest congestion factors respectively for the corre-
sponding area, then:

false negative =⇒ a2 made of a single node having as congestion factor h1

Proof. Let us assume the premise true, thus we have a false negative. The following
inequalities hold: 

h1 ≥ h2 by construction

h1 ≤ s2 by definition of false negative

s2 ≤ h2 trivially

Hence, the only possibility is that s2 = h2 = h1.

�

The example in Figure 3(b) shows the signal construction following the random
generation of the corresponding network in Figure 3(a). As expected, the peaks de-
creases from left to right (with 21 the most congested vehicle), each high-low tran-
sition indicates a change of connected area, and the nodes whose values correspond
with the dashed line are isolated vehicles (2,10,19,35).

By slightly changing the standard deviation value, we generate a more connected
network such as the one shown in Figure 4(a). Analyzing the corresponding signal
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Fig. 3: Random generation of a network with n = 35, sd = 10, R = 10, ε = 0.2 (a)
and the corresponding wave representation (b).

in Figure 4(b), we can deduce that the most congested node is 18, there are three iso-
lated nodes (4,34,10), and high-low transitions occur correspondingly to the nodes
18, 3, 15, 5, 28 and 34 identifying the end of a connected area.

Other examples my be obtained by modifying the input parameters: the result
is a network with a different distribution of nodes. By decreasing the maximum
distance allowed between any pair of nodes, we automatically make the radio signal
less powerful. As a consequence, the visibility between nodes is reduced and we
produce a network which is more disconnected. The corresponding signal, hence,
presents an higher number of isolated nodes (whose congestion factor correspond
to the zero line).

On the other hand, if we increase the tolerance, we have a higher probability that
nodes far enough do not belong to the same connected area, despite being linked.
Indeed, the greater is the tolerance, the less is the maximum distance allowed for
two nodes to be in the same connected area.
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Fig. 4: Random generation of a network with n = 35, sd = 8, R = 10, ε = 0.2 (a)
and the corresponding wave representation (b).

4 Conclusions and Future Works

VANET constitutes a very promising research field due to the increasing number of
vehicles equipped with wireless devices. This number, according to how estimated
in [1], will have increased more than three times the 2018 value in seven years.
Vehicular environments represent challenging but fascinating scenario in which we
find a huge amount of applications [7]. Among the best known, we mention the
Traffic information systems [23], as well as parking techniques development [14].

In this work, we provide a smart wave representation of a network, where vehi-
cles are linked to each other according to RSSI value. The obtained signal allows to
indentify the traffic condition of a certain environment, and how the vehicles form
connected areas according to their distribution. This work opens up several possible
future scenarios. Indeed, we are planning to exploit this representation to preform
comparisons between the waves, corresponding to networks, and to extract similar-
ity measures.
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