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ABSTRACT
We study dynamic changes of agents’ observational power in logics

of knowledge and time. We consider CTL∗K, the extension of CTL∗

with knowledge operators, and enrich it with a new operator that

models a change in an agent’s way of observing the system. We

extend the classic semantics of knowledge for agents with perfect

recall to account for changes of observational power, and we show

that this new operator increases the expressivity of CTL∗K. We

reduce the model-checking problem for our logic to that for CTL∗K,
which is known to be decidable. This provides a solution to the

model-checking problem for our logic, but it is not optimal, and we

provide a direct model-checking procedure with better complexity.
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1 INTRODUCTION
In multi-agent systems, agents usually have partial information

about the state of the system [38]. This has led to the development

of epistemic logics, often combined with temporal logics, to reason

about how agents’ knowledge evolve over time. Such formalisms

have been applied to the analysis of, e.g., distributed protocols [17,

27] or information flow and cryptographic protocols [19, 41].

In these frameworks, an agent’s view of a particular state of

the system is given by an observation of that state. In all the cited

settings, an agent’s observation of a given state does not change

over time. In other words, these frameworks have no primitive

for reasoning about agents whose observation power can change.

Because this phenomenon occurs in real scenarios, for instance

when a user of a system is granted access to previously hidden data,

we propose here to tackle this problem. Precisely, we extend classic

epistemic temporal logics with a new unary operator, ∆o , that
represents changes of observation power, and is read “the agent

changes her observation power to o”. For instance, the formula

∗
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∆o1AF(∆o2 (Kp ∨ K¬p)) expresses that “For an agent with initial

observation power o1, in all possible futures there exists a point

where, if the agent updates her observation power to o2, she learns
whether or not the proposition p holds”. If in this example o1 and o2
represent different “security levels” and p is sensitive information,

then the formula expresses a possible avenue for attack. The present

work provides means to express and evaluate such properties.

Related work. There is a rich history of epistemic logic in AI,

including the static and temporal [17, 18, 20, 21, 33], dynamic [2,

4, 10, 14, 28, 43, 45] and strategic [6, 7, 13, 23, 38] settings. The

most common logics of knowledge and time are CTLK, LTLK and

CTL∗K, which extend the classic temporal logics CTL, LTL and

CTL∗ with epistemic operators. Satisfiability and axiomatisation

have been studied in depth in [20, 21]. Model checking has also

been studied, for agents with either no memory or perfect recall.

For memoryless agents, knowledge operators do not add to the com-

plexity of model checking with regards to purely temporal logics

LTL, CTL and CTL∗ [24, 36]. For agents with perfect recall however,

introducing knowledge makes the model-checking problem nonele-

mentary, with k-Exptime upper-bound for formulas with at most k
nested knowledge operators [3, 11, 15, 40], and (k −1)-Expspace for
CTLK [1]. While it is known that no elementary procedure exists,

these bounds are not known to be tight.

Two recentworks involve dynamic changes of observation power.

The first one [8] studies an imperfect-information extension of Strat-

egy Logic [30, 31] in which agents can change observation power

when changing strategies, but the logic does not allow reasoning

about knowledge. The second [29] extends the latter with knowl-

edge operators, and solves the model-checking problem for a frag-

ment related to the notion of hierarchical information [25, 34, 35].

In these two works, the focus is on strategic aspects. In the present

work, instead, we intend to study in depth how the possibility to

reason about change of observational power affects the semantics,

expressive power, and model checking of epistemic temporal logics.

Contributions. We extend CTL∗K (which subsumes CTLK and

LTLK) with observation-change operators ∆o . For agents with per-

fect recall, which we study in this work, extending the classic se-

mantics of knowledge requires to store past observations of agents,

which we do thanks to the introduction of observation records. Start-

ing with the mono-agent case, we solve the model-checking prob-

lem by first defining an alternative semantics which, unlike the

natural one, is based on a bounded amount of information. Once

the two semantics are proven to be equivalent, designing a model-

checking algorithm is almost straightforward. We then extend the

logic to the multi-agent case, introducing operators ∆oa for each

agent a, and we extend our approach to solve its model-checking



problem. Next, we study the expressivity of our logic, showing that

the observation-change operator increases expressivity. We finally

provide a reduction to CTL∗K which removes observation-change

operators at the cost of a blow-up in the size of the model. We show

that going through this reduction and using knownmodel-checking

algorithms for CTL∗K is more costly than our direct approach.

2 CTL∗K∆
In this section we define the logic CTL∗K∆, which corresponds to

the case of one agent. We generalize to multiple agents in Section 5.

2.1 Notation
A finite (resp. infinite)word over some alphabet Σ is an element of Σ∗

(resp. Σω ). The length of a finite wordw = w0 . . .wn is |w | = n + 1,
and we let last(w) = wn . Given a finite (resp. infinite) wordw and

0 ≤ i < |w | (resp. i ∈ N), we letwi be the letter at position i inw ,

w≤i is the prefix ofw that ends at position i , andw≥i is the suffix

that starts at position i . We writew ≼ w ′ ifw is a prefix ofw ′.

2.2 Syntax
We fix a countably infinite set of atomic propositions, AP, and a

finite set of observations O, that represent possible observational

powers of the agent. Note that in this work, “observation” does not

refer to a punctual observation of a system’s state, but rather a way

of observing the system, or “observational power” of an agent.

As for state and path formulas in CTL∗, we distinguish between

history formulas and path formulas (the terminology history formula

reflects the perfect-recall semantics we consider, for which the truth

of epistemic formulas depends on the whole history).

Definition 2.1 (Syntax). The sets of history formulas φ and path

formulasψ are defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | Aψ | Kφ | ∆oφ
ψ ::= φ | ¬ψ | ψ ∧ψ | Xψ | ψUψ ,

where p ∈ AP and o ∈ O.

CTL∗K∆ formulas are all history formulas. Operators X and U

are the next and until operators of temporal logics, and A is the path

quantifier from branching-time temporal logics. K is the knowledge

operator from epistemic logics, and Kφ reads as “the agent knows

that φ is true”. Our new observation change operator, ∆o , reads as
“the agent now observes the system with observational power o”.

As usual, we define ⊤ = p ∨ ¬p, φ ∨ φ ′ = ¬(φ ∧ ¬φ), φ → φ ′ =
¬φ ∨ φ ′, as well as the temporal operators finally (F ) and always

(G): Fφ = ⊤Uφ, and Gφ = ¬F¬φ.

2.3 Semantics
Models ofCTL∗K∆ are Kripke structures equippedwith one relation

∼o on states for each observation o.

Definition 2.2 (Models). A Kripke structure with observations is a

structureM = (AP, S,T ,V , {∼o }o∈O , s
ι ,oι ), where

• AP ⊂ AP is a finite subset of atomic propositions,

• S is a set of states,

• T ⊆ S × S is a left-total
1
transition relation,

1
i.e., for every s ∈ S there exists s ′ ∈ S such that sT s ′. This cosmetic restriction is

made to avoid having to deal with finite runs ending in deadlocks.

• V : S → 2
AP

is a valuation function,

• ∼o ⊆ S × S is an equivalence relation, for each o ∈ O,
• sι ⊆ S is an initial state, and

• oι ∈ O is the initial observation.

A path is an infinite sequence of states π = s0s1 . . . such that for

all i ≥ 0, siTsi+1, and a history h is a finite prefix of a path. For I ⊆ S ,
we write T (I ) = {s ′ | ∃s ∈ I s.t. sTs ′} for the set of successors of
states in I . Finally, for o ∈ O and s ∈ S , we let [s]o = {s

′ | s ∼o s ′}
be the equivalence class of s for relation ∼o .

Remark 1. We model agents’ information via indistinguishability

relations ∼o , where s ∼o s ′ means that s and s ′ are indistinguishable
for an agent who has observation power o. Other approaches exist.
One is via observation functions (see, e.g., [40]), that map states to

atomic observations, and where two states are indistinguishable if

they have the same image. Another consists in seeing states as tuples

of local states, one for each agent, two global states being indistin-

guishable for an agent if her local state is the same in both (see, e.g.,

[24]). All these formalisms are essentially equivalent with respect to

epistemic temporal logics [32]. In these alternative formalisms, change

of observation power would correspond to, respectively, changing ob-

servation function, and changing the local states inside each global

state. We find that indistinguishability relations are convenient to

study theoretical aspects of our logic.

Observation records. To define which histories the agent cannot

distinguish, we need to keep track of how she observed the system

at each point in time. To do so, we record each observation change

as a pair (o,n), where o is the new observation and n is the time

when this change occurs.

Definition 2.3. An observation record r is a finite word over O×N,
i.e., r ∈ (O × N)∗.

Observation records, which represent changes of observational

ability, do not contain the initial observation (which is given in the

model). We write ∅ for the empty observation record.

Example 2.4. Consider a modelM with initial observation oι , a
history h = s0 . . . s4 and an observation record r = (o1, 0) · (o2, 3) ·
(o3, 3). The agent first observes state s0 with observation oι . The
observation record shows that at time 0, thus before the first transi-

tion, the agent changed for observation o1. She then observed state

s0 again, but this time with observation o1. Then the system goes

through states s1 and s2 and reaches s3, all of which she observes

with observation o1. At time 3, the agent changes to observation

o2, and thus observes state s3 again, but this time with observation

o2, and finally she switches to observation o3 and thus observes s3
once more, with observation o3. Finally, the system goes to state s4,
which the agent observes with observation o3.

We write r · (o,n) for the observation record obtained by ap-

pending (o,n) to the observation record r , and r [n] for the record
consisting of all pairs (o,m) in r such thatm = n. We say that an

observation record r stops at n if r [m] is empty for allm > n, and r
stops at history h if it stops at |h | − 1. Unless otherwise specified,
when we consider an observation record r together with a history

h, it is understood that r stops at h.



Observations at time n. We let ol(r ,n) be the list of observations
used by the agent at time n. It consists of the observation that the

agent has when the n-th transition is taken, plus those of observa-

tion changes that occur before the next transition. It is defined by

induction on n:

ol(r , 0) = oι · o1 · . . . · ok ,

if r [0] = (o1, 0) · . . . · (ok , 0), and

ol(r ,n + 1) = last(ol(r ,n)) · o1 · . . . · ok ,

if r [n + 1] = (o1,n + 1) · . . . · (ok ,n + 1).

Observe that ol(r ,n) is never empty: if no observation change

occurs at time n, ol(r ,n) only contains the last observation taken

by the agent. If r is empty, the latter is the initial observation oι .

Example 2.5. If r = (o1, 0) · (o2, 3) · (o3, 3), then ol(r , 0) = oι · o1,
ol(r , 1) = ol(r , 2) = o1, ol(r , 3) = o1 · o2 · o3, and ol(r , 4) = o3.

Synchronous perfect recall. The usual definition of synchronous
perfect recall states that for an agent with observation o, histories
h and h′ are indistinguishable if they have the same length and are

point-wise indistinguishable, i.e., |h | = |h′ | and for each i < |h |,
hi ∼o h′i . We adapt this definition to changing observations: two

histories are indistinguishable if, at each point in time, the states

are indistinguishable for all observations used at that time.

Definition 2.6 (Dynamic synchronous perfect recall). Given an

observation record r , two histories h and h′ are equivalent, written
h ≈r h′, if |h | = |h′ | and ∀i < |h |, ∀o ∈ ol(r , i), hi ∼o h′i .

We now define the natural semantics of CTL∗K∆.

Definition 2.7 (Natural semantics). Fix a model M . A history

formula φ is evaluated in a history h and an observation record r .
A path formulaψ is interpreted on a run π , a point in time n ∈ N
and an observation record. The semantics is defined by induction

on formulas (we omit the obvious boolean cases):

h, r |= p if p ∈ V (last(h))

h, r |= Aψ if ∀π s.t. h ≼ π , π , |h | − 1, r |= ψ

h, r |= Kφ if ∀h′ s.t. h′ ≈r h, h′, r |= φ
h, r |= ∆oφ if h, r · (o, |h | − 1) |= φ

π ,n, r |= φ if π≤n , r |= φ

π ,n, r |= Xψ if π , (n + 1), r |= ψ

π ,n, r |= ψ1Uψ2 if ∃m ≥ n s.t. π ,m, r |= ψ2 and

∀k s.t. n ≤ k < m, π ,k, r |= ψ1

We say that a model M with initial state sι satisfies a CTL∗K∆
formula φ, writtenM |= φ, if sι , ∅ |= φ.

We first discuss a subtlety of our semantics, which is that an agent

can observe the same state consecutively with several observations.

Remark 2. Consider the formula ∆o
′

φ and history h. By definition,

h, r |= ∆o
′

φ iff h, r · (o′, |h | − 1) |= φ. Although the history does

not change (it is still h), the observation record is extended by the

observation o′ at time |h | −1, with the following consequence. Suppose
thatol(r , |h |−1) = o. After switching too′, the agent considers possible
all histories h′ such that i) h ≈r h′ (they were considered possible

before the change of observation) and ii) last(h) ∼o′ last(h
′) (they are

still considered possible after the change of observation). This means

that by changing observation from o to o′, the agent’s information is

refined by o′, and it is as though the agent at time |h | − 1 observed
the system with observation o ∩ o′. At later times, her observation is

simply o′, until another change of observation occurs.

2.4 Examples of observation change
We now illustrate that observation change is natural and relevant.

Example 2.8. A logic of accumulative knowledge (and resource

bounds) is introduced in [22]. It studies agents that can perform

successive observations to improve their knowledge of the situation,

each observation refining their current view of the world. In their

framework, an observation models a yes/no question about the

current situation; if the answer is ‘yes’, the agent can eliminate

all possible worlds for which the answer is ‘no’, and vice versa.

Formally, an observation is a binary partition of the possible states,

and the agent learns in which partition is the current state. Such

observations are particular cases of our models’ indistinguishability

relations, and the semantics of an agent performing an observation

o is exactly captured by the semantics of our operator ∆o . Similarly,

performing sequence of observations o1 . . . on corresponds to the

successive application of operators ∆o1 . . . ∆on . As an example, [22]

shows how to model a medical diagnosis in which the disease is

narrowed down by performing a series of successive tests.

Our logic is incomparable with the one discussed in the previous

example: in the latter observations have a cost, but no temporal

aspect is considered, while in this work we do not consider costs,

but we study the evolution of knowledge through time in addition to

dynamic observation change. We now illustrate how both interact.

Example 2.9 (Security scenario). Consider a system with two

possible levels of security clearance, modelled by observations o1
and o2, which define what information users have access to. In this

scenario, we want to hide a secretp from the users. A desirable prop-

erty is thus expressed by the formula (∆o1AG¬Kp) ∧ (∆o2AG¬Kp),
which means that a user using either o1 or o2 will never know that

p holds. ModelM from Figure 1 satisfies this formula.

Now consider formulaφ = ∆o1EF∆o2Kp, which means that if the

user starts with observation o1, there exists a path and a moment

when changing observation lets her discover the secret. We show

that M satisfies φ and thus that users should not be allowed to

change security level. Consider history h = s0s2s5 inM with initial

observation o1. At time 0 the user knows that the current state is s0.
After going to s2, she does not know if the current state is s2 or s1,
as they are indistinguishable by o1. At time 2, at first the user does

not know whether the system is in s4 or s5. Now, if she changes to
observation o2, she sees that the system is either in state s5 or s6.
Refining her previous knowledge that the system is either in state

s4 or s5, she deduces that the current state is s5, and that p holds.

Example 2.10 (Fault-Tolerant Diagnosability). Diagnosability is a

property of systems which states that every failure is eventually

detected [37]. In the setting considered in [9], the system is moni-

tored through a set of sensors, and a diagnosability condition is a

pair (c1, c2) of disjoint sets of states that the system should always

be able to tell apart. The problem of finding minimal sets of sen-

sors that ensure diagnosability is studied, that is, finding a minimal

sensor configuration sc such that ∆oscAG(Kc1 ∨ Kc2) holds, where
osc is the observation corresponding to sensor configuration sc.
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Figure 1: ModelM in Example 2.9, and its variantM ′

InCTL∗K∆ one can express andmodel check a stronger notion of

diagnosability that we call fault-tolerant diagnosability, where the

system must remain diagnosable even after the loss of a sensor. For

a given diagnosability condition (c1, c2) and sensor configuration

sc, we write o the original observation (with every sensor in sc),

oi the observation where sensor i failed, and pi is a proposition

indicating the failure of sensor i . The following formula expresses

that sensor configuration sc ensures fault-tolerant diagnosability:

Φ
diag
= ∆oAG((Kc1 ∨ Kc2) ∧ (pi → ∆oiAG(Kc1 ∨ Kc2))).

Observe that it is possible for a system to satisfy Φ
diag

but not

∆oiAG(Kc1 ∨ Kc2) if sensor i , before failing, brings some piece of

information that is crucial for diagnosis.

2.5 Model-checking problem
Themodel checking-problem forCTL∗K∆ consists in, given amodel

M and a formula φ, deciding whetherM |= φ.

Model-checking approach. Perfect-recall semantics refers to his-

tories of unbounded length, but it is well known that in many

situations it is possible to maintain a bounded amount of informa-

tion that is sufficient to deal with perfect recall. We show that it

is also the case for our logic, by generalising the classic approach.

Intuitively, it is enough to know the current state, the current ob-

servational power and the set of states that the agent believes the

system might be in. The latter is usually called information set in

epistemic temporal logics and games with imperfect information.

We define an alternative semantics based on information sets in-

stead of histories and records, and we prove that this semantics

is equivalent to the natural one presented in this section. Because

information sets are of bounded size, it is then easy to build from

this alternative semantics a model-checking algorithm for CTL∗K∆.

3 ALTERNATIVE SEMANTICS
We define an alternative semantics for CTL∗K∆. It is based on

information sets, a classic notion in games with imperfect informa-

tion [44], whose definition we now adapt to our setting.

Definition 3.1. Given a modelM , the information set I (h, r ) after
a history h and an observation record r is defined as follows:

I (h, r ) = {s ∈ S | ∃h′,h′ ≈r h and last(h′) = s}.

This information is sufficient to evaluate epistemic formulas

for one agent. We now describe how to maintain this information

along the evaluation of a formula. To do so, we define two update

functions for information sets: one reflects changes of observational

power, and the other captures transitions taken in the system.

Definition 3.2. Fix a model M = (AP, S,T ,V , {∼o }o∈O , s
ι ,oι ).

FunctionsUT andU∆ are defined as follows, for all I ⊆ S , all s, s ′ ∈ S
and o,o′ ∈ O.

UT (I , s
′,o) = T (I ) ∩ [s ′]o

U∆(I , s,o
′) = I ∩ [s]o′

When the agent has observational power o and information set I ,
and the model takes a transition to a state s ′, the new information

set is UT (I , s
′,o), which consists of all successors of her previous

information set I that are ∼o -indistinguishable with the new state

s ′. When the agent is in state s with information set I , and she

changes for observational power o′, her new information set is

U∆(I , s,o
′), i.e., all states that she considered possible before and

that she still considers possible after switching to o′.
We let O(h, r ) be the last observation taken by the agent after

history h, according to r . Formally, O(h, r ) = on if ol(r , |h | − 1) =
o1 · . . . · on . The following result establishes that the functions U∆

and UT correctly update information sets. It is proved by simple

application of the definitions.

Proposition 3.3. For every history h · s , observation record r that
stops at h and observation o, it holds that

I (h · s, r ) = UT (I (h, r ), s,O(h, r )), and

I (h, r · (o, |h | − 1)) = U∆(I (h, r ), last(h),o).

We can now define our alternative semantics for CTL∗K∆.

Definition 3.4 (Alternative semantics). Fix a modelM . A history

formula φ is evaluated in a state s , an information set I and an obser-
vation o. A path formulaψ is interpreted on a run π , an information

set I and an observation o. The semantic relation |=I is defined by

induction on formulas (we omit the obvious boolean cases):

s, I ,o |=I p if p ∈ V (s)

s, I ,o |=I Aψ if ∀π s.t. π0 = s, π , I ,o |=I ψ

s, I ,o |=I Kφ if ∀s ′ ∈ I , s ′, I ,o |=I φ
s, I ,o |=I ∆

o′φ if s,U∆(I , s,o
′),o′ |=I φ

π , I ,o |=I φ if π0, I ,o |=I φ

π , I ,o |=I Xψ if π≥1,UT (I ,π1,o),o |=I ψ

π , I ,o |=I ψ1Uψ2 if ∃n ≥ 0 such that

π≥n , U
n
T (I ,π ,o),o |=I ψ2 and∀m such that 0 ≤ m < n,

π≥m ,U
m
T (I ,π ,o),o |=I ψ1,

where U n
T (I ,π ,o) is the iteration of the temporal update, defined

inductively as follows:

• U 0

T (I ,π ,o) = I , and

• U n+1
T (I ,π ,o) = UT (U

n
T (I ,π ,o),πn+1,o).

Using Proposition 3.3, one can prove that the natural semantics

|= and the information semantics |=I are equivalent.

Theorem 3.5. For every history formula φ, model M , history h
and observation record r that stops at h,

h, r |= φ iff last(h), I (h, r ),o(h, r ) |=I φ.



4 MODEL CHECKING CTL∗K∆
In this section we devise a model-checking procedure based on

the equivalence between the natural and alternative semantics

(Theorem 3.5), and we prove the following result.

Theorem 4.1. Model checking CTL∗K∆ is in Exptime.

Augmented model. Given a model M , we define an augmented

model M̂ in which the states are tuples (s, I ,o) consisting of a state

s of M , an information set I and an observation o. According to

Theorem 3.5, history formulas can be viewed on this model as state

formulas, and a model checking procedure can be devised by merely

following the definition of the alternative semantics.

Let M = (AP, S,T ,V , {∼o }o∈O , s
ι ,oι ). We define the Kripke

structure M̂ = (S ′,T ′,V ′, sι ′), where:

• S ′ = S × 2S × O,
• (s, I ,o) T ′ (s ′, I ′,o) if s T s ′ and I ′ = UT (I , s

′,o),
• V ′(s, I ,o) = V (s), and
• sι ′ = (sι , [sι ]oι ,o

ι ).

We call M̂ the augmented model, and we write M̂o the Kripke struc-

ture obtained by restricting M̂ to states of the form (s, I ,o′) where
o′ = o. Note that the different M̂o are disjoint with regards to T ′.

Model-checking procedure. We define function CheckCTL∗K∆
which evaluates a history formula in a state of M̂ :

CheckCTL∗K∆ (M̂, (sc , Ic ,oc ),Φ) returns true ifM, sc , Ic ,oc |=I
φ and false otherwise, and is defined as follows: if Φ is a CTL∗

formula, we evaluate it using a classic model-checking procedure

for CTL∗. Otherwise, Φ contains a subformula of the form φ = Kφ1
or φ = ∆o

′

φ1 where φ1 ∈ CTL∗. We evaluate φ1 in every state

of every component M̂o (recall that the different M̂o are disjoint),

and mark those that satisfy φ1 with a fresh atomic proposition pφ1
.

Then, ifφ = Kφ1, we mark with a fresh atomic propositionpφ every

state (s, I ,o) of M̂ such that for every s ′ ∈ I , (s ′, I ,o) is marked with

pφ1
. Else, φ = ∆o

′

φ1 and we mark with a fresh proposition pφ every

state (s, I ,o) such that (s,U∆(I , s,o
′),o′) is marked with pφ1

. Finally,

we recursively call function CheckCTL∗K∆ on the marked model

and formula Φ′ obtained by replacing φ with pφ in Φ.

To model check a formula φ in a modelM , we build M̂ and call

CheckCTL∗K∆ (M̂, (sι , [sι ]oι ,oι ),φ).

Algorithm correctness. The correctness of the algorithm follows

from the following properties:

• For each formula Kφ1 chosen by the algorithm,

pφ ∈ V
′(s, I ,o) iff M, s, I ,o |=I Kφ1

• For each formula ∆o
′

φ1 chosen by the algorithm,

pφ ∈ V
′(s, I ,o) iff M, s, I ,o |=I ∆

o′φ1

Complexity analysis. Let |M | be the number of states in model

M . Model checking a CTL∗ formula φ on a model M with state-

set S can be done in time 2
O ( |φ |)O(|S |) [16, 26]. Our procedure,

for a CTL∗K∆ formula φ and a model M , calls the CTL∗ model-

checking procedure for at most |φ | formulas of size at most |φ |, on

each state of M̂ . The latter is of size 2
O ( |M |) × |O|, but each call

to the CTL∗ model-checking procedure is performed on a disjoint

component M̂o of size 2
O ( |M |)

. Our overall procedure thus runs in

time |O| × 2O ( |φ |+ |M |).

5 MULTI-AGENT SETTING
We now extend CTL∗K∆ to the multi-agent setting. We fix Ag =

{a1, . . . ,am } a finite set of agents and define the logic CTL∗K∆m .

This logic contains, for each agent a and observation o, an operator

∆oa which reads as “agent a changes for observation o”. We consider

that these observation changes are public in the sense that all agents

are aware of them. The reason is that if agent a changes observation
without agent b knowing it, agent b may entertain false beliefs

about what agent a knows. This would not be consistent with the

S5 semantics of knowledge that we consider in this work, where

false beliefs are ruled out by the Truth axiom Kφ → φ.

5.1 Syntax and natural semantics
We first extend the syntax, with knowledge operators Ka and ob-

servation change operators ∆oa for each agent.

Definition 5.1 (Syntax). The sets of history formulas φ and path

formulasψ are defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | Aψ | Kaφ | ∆
o
aφ

ψ ::= φ | ¬ψ | ψ ∧ψ | Xψ | ψUψ ,

where p ∈ AP, a ∈ Ag and o ∈ O.

Formulas of CTL∗K∆m are all history formulas.

The models of CTL∗K∆m are as for the one-agent case, except

that we assign one initial observation to each agent. We write o for

a tuple {oa }a∈Ag , oa for oa , and o[a ← o] for the tuple o where oa
is replaced by o. Finally, for 1 ≤ i ≤ m, oi refers to oai .

Definition 5.2 (Multiagent models). A multiagent Kripke structure

with observations is a structure M = (AP, S,T ,V , {∼o }o∈O , s
ι ,oι ),

where all components are as in Definition 2.2, except for oι ∈ OAg ,
the initial observation for each agent.

We now adapt some definitions to the multi-agent setting.

Records tuples. We now need one observation record for each

agent. We shall write r for a tuple {ra }a∈Ag . Given a tuple r =
{ra }a∈Ag and a ∈ Ag we write ra for ra , and for an observation

o and time n we let r · (o,n)a be the record tuple r where ra is

replaced with ra · (o,n). Finally, for i ∈ {1, . . . ,m}, ri refers to rai .

Observations at time n.We let ola (r ,n) be the list of observations
used by agent a at time n:

ola (r , 0) = o
ι
a · o1 · . . . · ok ,

if ra [0] = (o1, 0) · . . . · (ok , 0), and

ola (r ,n + 1) = last(ola (r ,n)) · o1 · . . . · ok ,

if ra [n + 1] = (o1,n + 1) · . . . · (ok ,n + 1).

Definition 5.3 (Dynamic synchronous perfect recall). Given a record

tuple r , two histories h and h′ are equivalent for agent a, written
h ≈ra h′, if |h | = |h′ | and ∀i < |h |, ∀o ∈ ola (r , i), hi ∼o h′i .

Definition 5.4 (Natural semantics). LetM be a model, h a history

and r a record tuple. We define the semantics for the following

inductive cases, the remaining ones are straightforwardly adapted

from the one-agent case (Definition 2.7).

h,r |= Kaφ if ∀h′ s.t. h′ ≈ra h, h′,r |= φ

h,r |= ∆oaφ if h,r · (o, |h | − 1)a |= φ



A modelM with initial state sι satisfies a CTL∗K∆m formula φ,
writtenM |= φ, if sι , ∅ |= φ, where ∅ is the tuple where each agent

has empty observation record.

5.2 Alternative semantics
As in the one-agent case, we define an alternative semantics that we

prove equivalent to the natural one and upon which we build our

model-checking algorithm. Themain difference here is that we need

richer structures than information sets to represent an epistemic

situation of a system with multiple agents. For instance, to evaluate

formula KaKbKcp, we need to know what agent a knows about

agent b’s knowledge of agent c’s knowledge of the system’s state.

To do so we use the k-trees introduced in [39, 40] in the setting

of static observations, and which contain enough information to

evaluate formulas of knowledge depth k .

k-trees. Fix a modelM = (AP, S,T ,V , {∼o }o∈O , s
ι ,oι ). Intuitively,

a k-tree over M is a structure of the form ⟨s,I1, . . . ,Im⟩, where
s ∈ S is the current state of the system, and for each i ∈ {1, . . . ,m},
Ii is a set of (k − 1)-trees that represents the state of knowledge (of
depth k − 1) of agent ai . Formally, for every history h and record

tuple r we define by induction on k the k-tree Ik (h,r ) as follows:

I0(h,r ) = ⟨last(h), ∅, . . . , ∅⟩

Ik+1(h,r ) = ⟨last(h),I1, . . . ,Im⟩,

where for each i , Ii = {I
k (h′,r ) | h′ ≈rai h}.

For a k-tree Ik = ⟨s,I1, . . . ,Im⟩, we call s the root of I
k
, and

write it root(Ik ). We also write Ik (a) forIi , where a = ai , and we let
T k

be the set of k-trees forM . Observe that for one agent (m = 1),

a 1-tree is an information set together with the current state.

Updating k-trees.We generalise our update functionsU∆ andUT
(Definition 3.2) to update k-trees. We first define, by induction on

k , the function U k
T that updates k-trees when a transition is taken.

U 0

T (⟨s, ∅, . . . , ∅⟩, s
′,o) = ⟨s ′, ∅, . . . , ∅⟩

U k+1
T (⟨s,I1, . . . ,Im⟩, s

′,o) = ⟨s ′,I ′
1
, . . . ,I ′m⟩,

where for each i ,

I ′i = {U
k
T (I

k , s ′′,o) | Ik ∈ Ii , s
′′ ∼oi s

′
and root(Ik )Ts ′′}.

U k
T takes the current k-tree ⟨s,I1, . . . ,Im⟩, the new state s ′ and

the current observation o for each agent, and returns the new k-tree
after the transition.

We now define the second update function U k
∆ , which is used

when an agent ai changes observation for some o′.

U 0

∆(⟨s, ∅, . . . , ∅⟩,o,ai ) = ⟨s, ∅, . . . , ∅⟩

U k+1
∆ (⟨s,I1, . . . ,Im⟩,o,ai ) = ⟨s,I

′
1
, . . . ,I ′m⟩,

where for each j , i ,

I ′j = {U
k
∆ (I

k ,o′,ai ) | I
k ∈ Ij }, and

I ′i = {U
k
∆ (I

k ,o′,ai ) | I
k ∈ Ii and root(Ik ) ∼o′ s}.

Intuitively, when agent ai changes observation for o′, in every

place of the k-tree that refers to agent ai ’s knowledge, we remove

possible states (and corresponding subtrees) that are no longer

equivalent to the current possible state for ai ’s new observation o′.

We let O(h,r ) be the tuple of last observations taken by each

agent after historyh, according to r . For each a ∈ Ag,O(h,r )a = on
if ola (r , |h | −1) = o1 · . . . ·on . The following proposition establishes

that functionsU k
T andU k

∆ correctly update k-trees.

Proposition 5.5. For every history h · s , record tuple r that stops

at h, observation tuple o and integer k , it holds that

Ik (h · s,r ) = U k
T (I

k (h,r ), s,o(h,r )), and

Ik (h,r · (o, |h | − 1)a ) = U k
∆ (I

k (h,r ),o,a).

We now define the alternative semantics for CTL∗K∆m .

Definition 5.6 (Alternative semantics). The semantics of a history

formula φ of knowledge depth k is defined inductively on a k-tree

Ik and a tuple of current observations o (note that the current state

is the root of the k-tree). We only give the following inductive cases,

the others are simply adapted from Definition 3.4.

Ik ,o |=I p if p ∈ V (root(Ik ))

Ik ,o |=I Aψ if ∀π s.t. π0 = root(Ik ), π , Ik ,o |=I ψ

Ik ,o |=I Kaφ if ∀Ik−1 ∈ Ik (a), Ik−1,o |=I φ
Ik ,o |=I ∆

o′
a φ if U k

∆ (I
k ,o′,a),o[a ← o′] |=I φ

The following theorem can be proved similarly to Theorem 3.5,

using Proposition 5.5 instead of Proposition 3.3.

Theorem 5.7. For every history formula φ of knowledge depth k ,
each modelM , history h and tuple of records r ,

h,r |= φ iff Ik (h,r ),o(h, r ) |=I φ.

6 MODEL CHECKING CTL∗K∆m
Like in the mono-agent case, it is rather easy to devise from this

alternative semantics a model-checking algorithm for CTL∗K∆m ,

the main difference being that the states of the augmented model

are now k-trees. We prove the following result.

Theorem 6.1. The model-checking problem for CTL∗K∆m is in

k-EXPTIME for formulas of knowledge depth at most k .

Augmented model. Given a model M , we define an augmented

model M̂ in which the states are pairs (Ik ,o) consisting of a k-tree

Ik and an observation for each agent, o.
Let M = (AP, S,T ,V , {∼o }o∈O , s

ι ,oι ). We define the Kripke

structure M̂ = (S ′,T ′,V ′, sι ′), where:

• S ′ = T k × OAg ,

• (Ik ,o) T ′ (Ik
′
,o) if s T s ′ and Ik

′
= U k

T (I
k , s ′,o), where

s = root(Ik ) and s ′ = root(Ik
′
),

• V ′(Ik ,o) = V (root(Ik )), and
• sι ′ = (Ik (sι , ∅),oι ).

We call M̂ the augmented model, and we write M̂o the Kripke struc-

ture obtained by restricting M̂ to states of the form (Ik ,o′) where
o′ = o. Again, the different M̂o are disjoint with regards to T ′.

Model-checking procedure.Wedefine functionCheckCTL∗K∆m
which evaluates a history formula in a state of M̂ :

CheckCTL∗K∆m (M̂, (Ikc ,oc ),Φ) returns true if M, I
k
c ,oc |=I φ

and false otherwise, and is defined as follows: if Φ is aCTL∗ formula,

we evaluate it using a classic model-checking procedure for CTL∗.
Otherwise, Φ contains a subformula of the form φ = Kaφ

′
or φ =



∆o
′

a φ
′
where φ ′ ∈ CTL∗. We evaluate φ ′ in every state of M̂ , and

mark those that satisfy φ ′ with a fresh atom pφ ′ . Then, if φ = Kaφ
′
,

we mark with a fresh atomic proposition pφ every state (Ik ,o) of

M̂ such that for every Ik−1 ∈ Ik (a), (Ik−1,o) is marked with pφ ′ .

Else, φ = ∆o
′

a φ
′
and we mark with a fresh proposition pφ every

state (Ik ,o) such that (U k
∆ (I

k ,o′,a),o[a ← o′]) is marked with pφ ′ .
Finally, we recursively call CheckCTL∗K∆m on the marked model

and formula Φ′ obtained by replacing φ with pφ in Φ.

To model check a formula φ in a modelM , we build M̂ and call

CheckCTL∗K∆m (M̂, (Ik (sι , ∅),oι ),φ).
Algorithm correctness. The correctness of the algorithm follows

from the following properties:

• For each formula Kaφ chosen by the algorithm,

pφ ∈ V
′(Ik ,o) iff M, Ik ,o |=I Kaφ

• For each formula ∆o
′

a φ chosen by the algorithm,

pφ ∈ V
′(Ik ,o) iff M, Ik ,o |=I ∆

o′
a φ

Complexity analysis.The number of differentk-trees form agents

and a model with l states is no greater than Ck = exp(m × l ,k)/m,

where exp(a,b) is defined as exp(a, 0) = a and exp(a,b + 1) =

a2exp(a,b) [40]. The size of the augmented model M̂ is thus bounded

by exp(m × l ,k)/m × |O| |Ag | , and it can be computed in time

exp(O(m × l),k) × |O| |Ag | .
Model checking a CTL∗ formula φ on a modelM with state-set

S can be done in time 2
O ( |φ |) × O(|S |) [16, 26]. For a CTL∗K∆m

formula φ of knowledge depth at most k and a model M with l
states, our procedure calls the CTL∗ model-checking procedure

for at most |φ | formulas of size at most |φ |, on each state of the

augmented model M̂ which has size exp(m × l ,k)/m × |O|m . Each

recursive call (for each subformula and state of M̂) is performed

on a disjoint component M̂o of size at most exp(m × l ,k)/m, and

thus takes time 2
O ( |φ |) ×O(exp(m × l ,k)/m), and there are at most

|φ | × exp(m × l ,k)/m × |O|m of them. Our overall procedure thus

runs in time |O|m × 2O ( |φ |) × exp(O(m × l),k), which we rewrite

as |O| |Ag | × 2O ( |φ |) × exp(O(|Ag | × |M |),k).

Note that, as described in [39, 40], the k-trees machinery can be

refined to deal with formulas of alternation depth k . Theorem 4.1

would then become the instanciation of Theorem 6.1 for one agent

and k = 1. We do not present this result here for reasons of space.

7 EXPRESSIVITY
In this section we prove that the observation-change operator adds

expressive power to epistemic temporal logics. Formally, we com-

pare the expressive power of CTL∗K∆m with that of CTL∗Km [12,

20], which is the syntactic fragment of CTL∗K∆m obtained by re-

moving the observation-change operator. Our semantics forCTL∗K∆m
generalises that of CTL∗Km , with which it coincides on CTL∗Km
formulas. Note that our multi-agent models (Definition 5.2) are

more general than usual models for CTL∗Km , as they may contain

observation relations that are not initially assigned to any agent,

but such relations are mute in the evaluation of CTL∗Km formulas.

For two logics L and L′ over the same models, we say that L′

is at least as expressive as L, written L ⪯ L′, if for every formula

φ ∈ L there exists a formula φ ′ ∈ L′ such that φ ≡ φ ′. L′ is strictly
more expressive than L, written L ≺ L′, if L ⪯ L′ and L′ ̸⪯ L.

Finally, L and L′ are equiexpressive, written L ≡ L′, if L ⪯ L′

and L′ ⪯ L. First, since CTL∗K∆m extends CTL∗Km , we have that:

Proposition 7.1. For allm ≥ 1, CTL∗Km ⪯ CTL∗K∆m .

We now point out that when there is only one observation, i.e.,

|O| = 1, the observation-change operator has no effect, and thus

CTL∗K∆m is no more expressive than CTL∗Km .

Proposition 7.2. For |O| = 1, CTL∗Km ≡ CTL∗K∆m .

Proof. We show that for |O| = 1, CTL∗K∆m ⪯ CTL∗Km , which

together with Proposition 7.1 provides the result. Observe that

when |O| = 1, observation change has no effect, and in fact obser-

vation records can be omitted in the natural semantics. For every

CTL∗K∆m formula φ, define the CTL∗Km formula φ ′ by removing

all observation-change operators ∆oa from φ. Clearly, φ ≡ φ ′. ■

On the other hand, we show that as soon as we have at least two

observations, the observation-change operator adds expressivity.

We first consider the mono-agent case.

Proposition 7.3. If |O| > 1 then CTL∗K∆ ̸⪯ CTL∗K.

Proof. Assume that O contains o1 and o2. Consider the model

M from Example 2.9 (Figure 1), and define the modelM ′ which is

the same asM except that s4 and s5 are indistinguishable for both
o1 and o2, while inM they are only indistinguishable for o1. In both

models, agent a is initially assigned observation o1. To prove the

proposition we exhibit a formula of CTL∗K∆ that can distinguish

betweenM andM ′, and justify that no formula of CTL∗K can.

Consider formula φ = EF∆o2Kap. As detailed in Example 2.9, we

have thatM |= φ. We now show thatM ′ ̸ |= φ: The only history in

which p holds, and thus where agent a may get to know it, is the

path s0s2s5. After observing this path with observation o1, agent
a considers that both s4 and s5 are possible. She still does after

switching to observation o2, as s4 and s5 are o2-indistinguishable.
As a resultM ′ ̸ |= φ, and thus φ distinguishesM andM ′.

Now to see that no formula of CTL∗K can distinguish between

these two models, it is enough to see that in both models the only

agent a is assigned observation o1, and thus on these models no

operator of CTL∗K can refer to observation o2, which is the only

difference betweenM andM ′. ■

This proof for themono-agent case relies on the fact thatCTL∗K∆
can refer to observations that are not initially assigned to any agent,

and thus cannot be referred to within CTL∗K. This proof can be

easily adapted to the multi-agent case, by considering the same

modelsM andM ′ and assigning the same initial observation o1 to
all agents. We show that in fact, when we have at least two agents,

CTL∗K∆m is strictly more expressive than CTL∗Km even when we

assume that all observations are initially assigned to some agent.

Proposition 7.4. If |O| > 1 andm ≥ 2, CTL∗K∆m ̸⪯ CTL∗Km
even on models in which all observations are initially assigned.

Proof. Assume that O contains o1 and o2. We consider two

agents a and b; the proof can easily be generalised to more agents.

Consider again the models M and M ′ used in the proof of Propo-

sition 7.3. This time, in both models, agent a is initially assigned

observation o1 and agent b observation o2. For the same reasons as

before, formula φ = EF∆o2Kap distinguishes betweenM andM ′.



Now to see that no formula ofCTL∗Km can distinguish these two

models, recall that the only difference betweenM andM ′ concerns
observation o2, and that agents a and b are bound to observations

o1 and o2 respectively. Since in CTL∗Km agents cannot change

observation, the modification of o2 between M and M ′ can only

affect the knowledge of agentb, by making her unable to distinguish

s4 and s5. However this cannot happen. Indeed, these states can
only be reached via histories s0s1s4 and s0s2s5 respectively; since s1
and s2 are not o2-indistinguishable, and we consider perfect recall,

s0s1s4 and s0s2s5 are not o2-indistinguishable neither.
Formally, define the perfect-recall unfolding of a modelM as the

infinite tree consisting of all possible histories starting in the initial

state, in which two nodes h and h′ are related for oi if |h | = |h
′ |

and for all i < |h |, hi ∼oi h
′
i . It is clear that CTL

∗Km is invariant

under perfect-recall unfolding. Now it suffices to notice that the

perfect-recall unfoldings ofM andM ′ are the same, and thus cannot

be distinguished by any CTL∗Km formula. ■

Remark 3. Unlike CTL∗Km , CTL∗K∆m is not invariant under

perfect-recall unfolding. Indeed in these unfoldings observation rela-

tions on histories are defined for fixed observations, and thus cannot

account for observation changes induced by operators ∆oa .

Putting together Propositions 7.1, 7.3 and 7.4, we obtain:

Theorem 7.5. If |O| > 1 then CTL∗Km ≺ CTL∗K∆m .

8 ELIMINATING OBSERVATION CHANGE
In this section we show how to reduce the model-checking problem

for CTL∗K∆ to that of CTL∗K.
Fix an instance (M,Φ) of themodel-checking problem forCTL∗K∆,

where M = (AP, S,T ,V , {∼o }o∈O , s
ι ,oι ) is a (mono-agent) model

andΦ is aCTL∗K∆ formula.We build an equivalent instance (M ′,Φ′)
of the model-checking problem for CTL∗K; in particular, M ′ con-
tains a single observation relation, and Φ′ does not use operator ∆o .

We first define M ′. For each observation symbol o ∈ O we

create a copyMo of the original modelM . Moving to copyMo will

simulate switching to observation o. To make this possible, we need

to introduce transitions between each state so of a copyMo to state

so′ of copyMo′ , for all o , o
′
.

LetM ′ = (AP ∪ {po | o ∈ O}, S
′,T ′,V ′,∼′, sι ′), where

• for each o ∈ O, po is a fresh atomic proposition,

• S ′ =
⋃
o∈O{so | s ∈ S},

• T ′ = {(so , s
′
o ) | o ∈ O and (s, s ′) ∈ T }

∪ {(so , so′) | s ∈ S,o,o
′ ∈ O and o , o′}

• V ′(so ) = V (s) ∪ {po }, for all s ∈ S and o ∈ O,
• ∼′=

⋃
o∈O{(so , s

′
o ) | s ∼o s ′}, and

• sι ′ = sιoι .

We now define formula Φ′. The translation tr
o
is parameterised

with an observation o ∈ O and is defined by induction on Φ:

tr
o (∆o

′

φ) =

{
tr
o′(φ) if o = o′

AX (po′ → tr
o′(φ)) otherwise

tr
o (Aψ ) = A(Gpo → tr

o (ψ ))

All other cases simply distribute over operators. We finally let

Φ′ = tr
oι (Φ). Using the alternative semantics, we see that:

Lemma 8.1. M |= Φ if, and only if,M ′ |= Φ′.

Since we know how to model-check CTL∗K, this provides a

model-checking procedure for CTL∗K∆. However this algorithm
does not provide optimal complexity. Indeed, the model M ′ is of
size |M | × |O|, and the best known model-checking algorithm for

CTL∗K runs in time exponential in the size of the model and the

formula [11]. Going through this reduction thus yields a proce-

dure that is exponential in the number of observations. Our direct

model-checking procedure, which generalises techniques used for

the classic case of static observations, provides instead a decision

procedure which is only linear in the number of observations (The-

orem 4.1).

This reduction can be easily generalised to multiple agents, by

creating one copy Mo of the original model M for each possible

assignment o of observations to agents. We get a modelM ′ of size

|M | × |O| |Ag | , and since the best known model-checking procedure

for CTL∗Km is k-exponential in the size of the model [11], this re-

duction provides a procedure which is k-exponential in the number

of observations and k + 1-exponential in the number of agents.

Again our direct approach does better, as it is only polynomial in

the number of observations, exponential in the number of agents,

and its combined complexity is k-exponential time (Theorem 6.1).

9 CONCLUSION
Previous works in epistemic temporal logics have treated agents’

observation power as a static feature. However, in many scenarios,

agents’ observation power may change. In this work we introduced

CTL∗K∆, a logic that can express such dynamic changes of observa-

tion power. We showed that it can express natural properties that

are not expressible without this operator, and provided some exam-

ples of applications of our logic. We showed that model checking

is decidable, and known techniques can be extended to deal with

observation change with no additional cost in complexity.

We also showed how to reduce the model-checking problem

for our logic to that of CTL∗K, removing the observation-change

operator. This yields a model-checking procedure for CTL∗K∆, but
that is not as efficient as the direct algorithm we provide.

As future work we would like to establish the precise complexity

of model checking CTL∗K∆. We conjecture that it should be the

same as for CTL∗K, i.e., that adding the possibility to reason about

changes of observational power comes for free. However, the exact

complexity of model checking classic epistemic temporal logics

such as LTLK or CTL∗K is a long-standing open problem. It would

also be interesting to study the satisfiability problem of epistemic

temporal logic with changes of observation power. Finally, develop-

ing axiomatisations of our logic could provide more insights into

how changes of observation power work.
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